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Abstract:    An excellent airfoil with a high lift-to-drag ratio may decrease oil consumption and enhance the voyage. Based on 
NACA 0012, an improved airfoil is explored in this paper. The class/shape function transformation has been proved to be a good 
method for airfoil parameterization, and in this paper it is modified to improve imitation accuracy. The computational fluid dy-
namics method is applied to obtain numerically the aerodynamic parameters of the parameterized airfoil, and the result is proved 
credible by comparison with available experimental data in the open literature. A polynomial-based response surface model and 
the uniform Latin hypercube sampling method are employed to decrease computational cost. Finally, the nonlinear programming 
by quadratic Lagrangian method is utilized to modify the multi-island genetic algorithm, which has an improved optimization 
effect than the method used on its own. The obtained result shows that the modified class/shape function transformation method 
produces a better imitation of an airfoil in the nose and tail regions than the original method, and that it will satisfy the tolerance 
zone of the model in a wind tunnel. The response surface model based on the uniform Latin hypercube sampling method gives an 
accurate prediction of the lift-to-drag ratio with changes in the design variables. The numerical result of the flow around the airfoil 
shows reasonable agreement with the experimental data graphically and quantitatively. Ultimately, an airfoil with better capacity 
than the original one is acquired using the multi-island genetic algorithm based nonlinear programming by quadratic Lagrangian 
optimization method. The pressure contours and lift-to-drag ratio along with the attack angle have been compared with those of the 
original airfoil, and the results demonstrate the strength of the optimized airfoil. The process for exploring an improved airfoil 
through parameterization to optimization is worth referencing in future work. 
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1  Introduction 

 
In modern society, flying by air has become a 

more and more popular part of people’s lives. With 
the development of the aviation industry, environ-
mental aircraft with low flight costs have attracted 
increasing attention worldwide. Improving the ca-

pacity of aircraft is essential work for their designers. 
According to the voyage equation, the lift-to-drag 
ratio of an aircraft is very important for enhancing the 
voyage in terms of keeping the oil costs low (Huang 
et al., 2012c), and this relates to the environment 
surrounding the aircraft. The choice of airfoil is of 
great importance in aircraft design; thus, it is very 
important to discover the characteristics of airfoils 
with different shapes. With the development of 
computing techniques, the numerical method is be-
coming a significant technique in the fields of avia-
tion and aerospace vehicle design (Huang, 2015). 
Therefore, an accurate approach for transforming the 
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geometric configuration to parameters that can be 
identified by computers is of great importance. Yu et 
al. (2003) reviewed the existing method of airfoil 
parameterization and proposed a novel method based 
on the general fifth-order parametric spline. This 
method can work with nearly any airfoil using 7–13 
control points, but the control point optimization 
process is time consuming. The class/shape function 
transformation (CST) method (Kulfan, 2007) is a 
novel parameterization method which can model a 
wide array of smooth geometries with a small num-
ber of equations and parameters (Kevin and David, 
2009). It has been modified as class/shape refinement 
transformation (CSRT) by Straathof and van Tooren 
(2012) to improve local matching ability, but the 
number of variables increases for that method. A 
numerical method has been applied to obtain infor-
mation about the flow field around airfoils by Nejat 
et al. (2014), but the calculation program used, 
namely XFOIL, can deal with only flow with no 
viscosity, and they failed to discuss the precision that 
was calculated; the numerical results often failed to 
compare with the experimental data. In the optimi-
zation process, an increase in the number of design 
variables will lead to enormous computational costs; 
thus, a surrogate model and a reasonable sampling 
method are required to replace the numerical process. 
Luo and Lu (2014) compared polynomial regression 
(PR), radial basis function artificial neural networks 
(RBFANN), and kriging methods for simulating a 
multiphase problem, which proved the advantage of 
establishing a surrogate model before optimization. 
The accuracy of surrogate models for a particular 
problem should be checked because different models 
may have different performances. Global optimiza-
tion algorithms such as the multi-island genetic al-
gorithm (MIGA) (Zhao et al., 2015) and optimal 
gradient methods such as nonlinear programming by 
quadratic Lagrangian (NLPQL) have been presented 
recently, and their capacities for airfoil optimization 
have been compared in this paper. Ma et al. (2015) 
optimized the aerodynamic shape of a hypersonic 
lifting body using a multi-objective evolutionary 
algorithm based on a decomposition (MOEA/D) 
method, which was in turn based on the kriging 
model, but the shape function of the CST method 
they used was omitted in optimization, so not all 
configurations may have been presented. 

This paper has improved the CST method by 
redistributing the control points without changing the 
number of variable parameters. The computational 
fluid dynamics (CFD) approach has been proved 
credible, and the result has been compared with the 
experimental data graphically and quantitatively. The 
optimization methods NLPQL and MIGA are com-
bined in an airfoil optimization process based on the 
response surface model, and the result shows better 
capacity than that obtained by the optimization 
method on its own. This paper illustrates the pro-
cesses of parameterization, sampling, modeling, and 
optimization of an airfoil based on the CFD method. 

 
 
2  Parameterization method 

 
Low-speed airfoils typically have a configura-

tion with a round nose and a sharp tail. Traditional 
methods, such as the polynomial fitting method, the 
spline method, Hicks-Henne, and the parametric sec-
tion method (PARSEC), describe their basic profile. 
However, the weaknesses in accuracy and robustness 
of these methods are exposed when the number of 
describing parameters is limited (Zhang et al., 2014). 
Kulfan (2007) presented a novel two-step airfoil fit-
ting technique, namely CST, which is defined as  
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where φ stands for x/c, and c is the chord length. Thus, 
φ is the normalized coordinate in the x direction.
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2
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NC   is the class function, and S(φ) stands for shape 

function, which may together describe the original 
curve. The basic classification of the airfoil curve is 
determined by the class function, which is controlled 
by two parameters, namely N1 and N2: 

 
1 1 2

2
( ) (1 ) .N N N

NC                            (2) 

 

Morris et al. (2014), Nejat et al. (2014), and Su 
et al. (2015) have showed the shape of curves for 
different values of N1 and N2. They also claimed that 
when describing an airfoil, the values we normally 
use are N1=0.5 and N2=1. Bernstein’s polynomial is 
often used as the basic shape function, which is de-
scribed as  
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where n stands for the order of polynomial, and Bi is 
Bernstein’s coefficient, which has n+1 in total. It also 
implies that n+1 control points will be needed to 
modify the shape function. Different values of Bi will 
represent different curves; thus, Bi is the lynchpin for 
airfoil fitting and optimization. We can conclude from 
Eq. (3) that each Bi coefficient in Bernstein’s poly-
nomial will produce global variance of the curve. To 
settle this problem, Straathof and van Tooren (2011; 
2012) put forward a refined CST method (CSRT) 
using a B-spline. The B-spline function is employed 
to modify the curve locally, based on CST. This 
method has been applied successfully in the parame-
terization of 2D airfoils, and it was also expanded to 
3D parameterization. Although the CSRT parame-
terization method can improve airfoil imitation ac-
curacy in the nose and the tail areas, this method will 
increase the number of design variables, and it will 
dramatically increase the computation cost and re-
duce the efficiency, especially during the optimization 
process. Sobieczky (1999) claimed that it would sat-
isfy the tolerance zone of the model in a wind tunnel 
when the fitting error of airfoil parameterization is 
below 0.0007. Therefore, it is unnecessary to add 
design variables when the accuracy condition is  
satisfied.  

To check the strength of CST in airfoil parame-
terization, NACA 1412 is utilized as the basic curve to 
be fitted using the CST and polynomial methods. The 
fifth-order form was applied in both of the methods, 
and the fitting results are shown in Figs. 1 and 2. 
Fig. 1 illustrates the matching error distribution with 
the fifth-order CST method. It can be found that the 
maximum error is below 0.0005, and it satisfies the 
tolerance requirement proposed by Sobieczky (1999). 
However, the matching error of the fifth-order poly-
nomial method illustrated in Fig. 2 has an order of 
magnitude of 10−3, which is out of the tolerance zone. 
Thus, it cannot match the airfoil configuration  
accurately.  

An airfoil with no chamber such as NACA 0012 
has a symmetric surface and a more regular shape. It 
was parameterized by CST and the polynomial 
method from the first order to the fifth order. As 
shown in Figs. 3 and 4, the matching errors of the 
upper surface for different matching orders are  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

compared. The standard deviations of the matching 
residual (SR) for different orders are calculated by  
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where Y(i) stands for the original ordinate of the 
samples, while y(i) is the matching ordinate; ns is the 
number of samples. The values tell us that both of the 
parametric methods have smaller standard deviations 
for matching error as the matching order increases. 
However, CST is far more accurate than the polyno-
mial method when the matching order is fixed. 
Moreover, as for a simple airfoil, such as NACA 
0012, CST has a precision below 0.0004 when the 
matching order is just 1, and it is enough to satisfy the 
tolerance requirement. It implies that two design 
variables are enough to describe this airfoil using the 
CST method. In comparison, the polynomial method 
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Fig. 1  Comparison between the NACA 1412 airfoil and the 
fifth-order CST imitation result 

Fig. 2  Comparison between the NACA 1412 airfoil and the 
fifth-order polynomial imitation result 
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cannot describe the airfoil accurately with few varia-
bles. As a result, CST is a good choice for the pa-
rameterization and optimization of airfoils. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Acquiring a value for Bernstein’s coefficient in 

the shape function is the most significant step in pa-
rameterization by the CST method. The optimization 
method and the method used to calculate the coeffi-
cient matrix are normally used to acquire Bernstein’s 
coefficient. The optimization method will obtain the 
coefficient by minimizing the standard deviations of 
the matching error for a given order. This method has 
a great ability for adaption and high accuracy, which 
can also satisfy the calculation for higher orders. 
However, when the number of design variables 
grows, computing cost will increase dramatically. The 

choice of optimization method will also influence the 
veracity of the result. The method for calculating the 
coefficient matrix involves choosing several control 
points [φj, y(φj)] with the number equal to the fitting 
order. 

Assuming that 
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Bernstein’s coefficient can be acquired using Eq. (6). 
Then, the matching curve of the airfoil will be gained 
using Eqs. (1)–(3) (Liu et al., 2014). 

The traditional method for choosing control 
points is to sample homogeneously along the hori-
zontal ordinate. 
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If n=5, the distribution of the control points on 

the surface of NACA 0012 is shown in Fig. 5a, and 
the matching error distribution is shown in Fig. 6. It is 
clear that the nose and tail of the airfoil have a higher 
error than the main body. To improve the matching 
accuracy of the nose and tail regions, the authors 
redistributed the sample points on the airfoil, and this 
is illustrated in Fig. 5b. The sampling method is as 
follows: 
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where λ can be determined by optimization, and it has 
a different optimal value when the target is different. 
In this case, λ=4.2; thus, the control points were re-
fined to be in the direction of the nose and tail. As a 
result, the matching error distribution is improved 

Fig. 3  CST imitation residual for different orders for the
NACA 0012 airfoil 
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Fig. 4  Polynomial imitation residual for different orders
for the NACA 0012 airfoil 
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through Bernstein’s coefficient obtained by this 
sampling method, which can be identified in Fig. 6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The CST method has an excellent ability for 
parameterization; thus, it has become more and more 
popular for 2D airfoil parameterization. The authors 
refined the method, and obtained a higher matching 
accuracy. CST can also be expanded to 3D space for 
parameterizing aircraft. Fig. 7 demonstrates a wave- 
rider aircraft being imitated by the 3D CST method, 
and work in this field will be conducted in the near 
future.  
 
 
 
 
 
 
 
 
 

 

3  Numerical method 
 
NACA 0012 is a standard airfoil which is often 

used in experimentation and simulation; hence, plenty 
of reference data are available for comparison. 
Therefore, NACA 0012 is chosen to be the optimiza-
tion target. Firstly, the independency of the grid den-
sity has been checked by the CFD method, and the 
results have been compared with the available ex-
perimental data in the open literature. Thus, the ef-
fectiveness of the CFD result can be proved. Qian and 
Wang (2011) experimentally tested the pressure dis-
tribution on the surface of NACA 0012 at low velocity, 
and the result has been compared with the CFD result. 
The computational conditions in this study are set 
according to the experimental conditions of Qian and 
Wang (2011). The main flow is set to be pressure 
far-field with an original speed of 8 m/s. The attack 
angle is 2.5°, while the temperature is 298 K and the 
pressure is 101 325 Pa. The boundary condition of the 
outlet is set to outflow, and adiabatic and no-slip 
conditions are assumed for the surfaces of the airfoil. 
The Spalart–Allmaras turbulence model is applied to 
the model, which was widely used in airfoil design 
and has been proved to be accurate (Nordanger et al., 
2015), in addition to turbulent diffusion combustion 
in supersonic flows (Huang et al., 2012a). The equa-
tions are solved using a pressure-based (coupled) 
double-precision solver in Fluent Inc. (2006), and a 
second upwind scheme is applied to the convection 
terms. The SIMPLE method is employed to solve the 
equations. The calculation process finishes when all 
of the residuals converge to the order of 10−5. 

The grid around the airfoil is a type of C-grid 
generated by the commercial software Pointwise. The 
flow field has a distance of 4-times chord length in 
front of the airfoil and a 10-times chord length from 
the tail to the outlet. The grid has been refined to the 
direction of the airfoil with the grid height of the first 
layer Δs=0.001 mm to confirm Yplus y+<5 (Fluent 
Inc., 2006), so that the result around it can be more 
precise. Fig. 8 illustrates the global and local grid 
distributions around the NACA 0012 airfoil.  

 
 
4  Grid independency analysis 
 

Smirnov et al. (2015) stated that the accumula-
tion of stochastic error is proportional to the number 

Fig. 6  Residual comparison for imitating the upper side of 
NACA 0012 between the original and the refined methods

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-3

-2

-1

0

1

2

x/c

R
e

si
du

al
/c

 (
×

10
-

4 )

Original method
Refined method

Fig. 5  Comparison between different methods to obtain
control points 
(a) Original method; (b) Refined method 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

-0.05

0

0.05

0.1

x/c

y/
c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

-0.05

0

0.05

0.1

x/c

y/
c

(a)

(b)

Fig. 7  Wave-rider aircraft imitation using a 3D CST
method 



Zhang et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2016 17(8):632-645 637

of time steps and depends on the accuracy of the 
scheme and the approximation error. Three grids of 
different densities are generated to check the grid 
independency, namely coarse, moderate, and refined 
grids. Information for these is shown in Table 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
The CFD process is applied to all of the grids 

with the same computational and convergent condi-
tions. After that, the pressure coefficient distribution 
on the surface of the airfoil is collected from the result, 
and it is then compared with the experimental data 
from Qian and Wang (2011). The results are shown in 
Fig. 9. Qian and Wang (2011) also studied the influ-
ence on the pressure distribution induced by the dis-
tance between the lower surface of the airfoil and the 
surface of the wind tunnel. As a result, the experi-
mental data of the lower surface may have a few de-
viations from the actual number, and this may have  

some impact on the comparison. It can be clearly 
observed in Fig. 9 that the predicted results all show 
reasonable agreement with the experimental data. To 
compare the CFD result and the experimental data 
quantitatively, Ding et al. (2015) employed a method 
to transform the graphic comparison to a numerical 
one, which is easier to compare. The method is as 
follows:  
 

1

( ) ( )1
1 tanh ,

( )

N
i i

i i

y x Y x
V

N Y x


                   (9) 

 
where y(xi) stands for the CFD result of sample i in the 
horizontal ordinate xi while Y(xi) is the experimental 
data. V is the validation metric, which is better the 
closer it is to 1. This value will give the quality of the 
CFD result when the experimental measurement error 
is zero.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nevertheless, this method is not perfect because 
different results will be acquired when the baselines 
of the data are different. For example, the validation 
metric obtained when Y(xi)=1 is closer to 1 than the 
value obtained when Y(xi)=0, although y(xi)−Y(xi) 
remains constant. To settle this problem, we modified 
the equation as follows: 
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This new method can give a reasonable com-

parison result for every circumstance except Y(xi)≡0. 

Experimental data  
(Qian and Wang, 2011)

C
p 

 

 X (m) 

Fig. 9  Wall pressure coefficient (Cp) comparison of NACA
0012 

Table 1  Comparison of different grid densities around 
the NACA 0012 airfoil 

Grid Grid density Validation metric 

Coarse  60×370 0.9476 

Moderate 90×370 0.9541 

Refined 90×470 0.9535 

Fig. 8  Global (a) and local (b) grid distributions around
NACA 0012 
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Table 1 shows the validation metrics of different grid 
densities calculated by Eq. (10) in comparison with 
the experimental data. The numbers show that three 
grids of different densities can obtain good CFD re-
sults which fit well with the experimental data, alt-
hough the moderate grid has the greatest validation 
metric. Consequently, the moderate grid will be used 
as the standard grid in the following calculation. 

 
 

5  Sampling and modeling approach 
 
An airfoil with better capacity in the low- 

velocity condition is required in this study. The curve 
of NACA 0012 will be applied as the design baseline. 
The third-order CST method is employed to parame-
terize the airfoil curves upwards and downwards, and 
Fig. 3 has already illustrated the fitting effect. In this 
circumstance, eight Bernstein’s coefficients in total 
are needed as the design variables. The lift-to-drag 
ratio of the airfoil for the low-velocity condition is 
chosen to be the optimization objective, and it is ex-
pected to be as large as possible. Bernstein’s coeffi-
cient is limited to range in the zone from 70% to 
130% of the baseline to prevent tortuosity of the 
curves, which will influence the quality of the grid. 
Therefore, the optimization result will be restricted in 
certain values, and the permission zone of Bernstein’s 
coefficient could be enlarged in future. The optimi-
zation problem can be expressed as follows: 
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where Cl and Cd are the lift and drag coefficients of 
the airfoil, respectively, and bi is the original Bern-
stein’s coefficient of NACA 0012.  

The computational cost will be immense with an 
increase in the number of design variables, especially 
when the samples are challenging. It is urgent to ac-
quire an accurate optimization result when the num-
ber of samples has been decreased. The surrogate 
model will construct a mathematical model which 
will imitate the original physical model with high 
precision using few samples. The optimization pro-
cess applied on the surrogate model will dramatically 
cut down the computational cost. In recent years, 

finding a surrogate model with high accuracy and 
which needs only a small number of samples has been 
of great concern, and many new models have ap-
peared including the kriging model (Namura et al., 
2015), the radial basis function model (Wu Z.Y. et al., 
2015), the artificial neural network model, the multi-
ple output Gaussian process (MOGP) (Liu et al., 
2014), and so on. Among all of the surrogate models, 
the polynomial-based response surface model 
(P-RSM) is the most mature one, which has been 
employed successfully in aerodynamic design and 
reverse design (Wu X.J. et al., 2015). Therefore, the 
fourth-order polynomial response surface model with 
cross terms has been applied in this study. 

To guarantee the predictive accuracy of the 
surrogate model while reducing the number of sam-
ples, a reasonable sampling method is of great im-
portance for enhancing the design efficiency. Latin 
hypercube sampling (LHS) was originally presented 
by McKay et al. (1979), and is a type of space-filling 
design technique (Huang et al., 2012b). The sampling 
method is: 
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j ji
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π U
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where i represents the serial number of the sample, 
while j represents the serial number of the design 
variable. U is a random number in the range from 0 to 
1; π is a random permutation of 0, 1, …, N−1, while N 

is the total number of the samples. As a result, ( )i
jπ  

and ( )i
jU  determine the local area and the specific 

coordinate in this area of ( ) .i
jx  This sampling method 

can assure that there are subintervals which have the 
same number as the samples in every dimension. 
Moreover, there will be one and only one sample in 
every subinterval. The application of a random 
number may ensure that the sample will distribute 
randomly within the subinterval. On the other hand, 
because of the random number, the samples are likely 
to aggregate in a certain area, and thus they cannot 
distribute uniformly. The uniform LHS is a modifi-
cation of the LHS, which can obtain the optimum 
design strategy by applying several optimization 
techniques on the original LHS method (Shi et al., 
2012). This method will avoid a uniform distribution 
of the samples, and thus is applied in this study. 
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6  Optimization method 
 
It is a significant consideration to choose a good 

optimization method to get the best design results, 
and the quality of the optimization method will in-
fluence the credibility and efficiency of the process. 
CFD solvers are typically combined with numerical 
optimization methods, in particular gradient-based 
and non-gradient-based methods. Non-gradient-based 
numerical optimization methods, such as genetic 
algorithms, are generally not as efficient as gradient- 
based methods. However, gradient-based methods 
require a design space free from discontinuity as the 
derivatives have to be recalculated as the search pro-
gresses (Nejat et al., 2014). Further, when a problem 
is multimodal, gradient-based methods will fail to 
find solutions beyond the local best result close to the 
start point. Therefore, to compare the efficiency of 
gradient-based and non-gradient-based methods, the 
multi-island genetic algorithm (MIGA), nonlinear 
programming by quadratic Lagrangian (NLPQL), and 
a combination of them were utilized in this study 
(Fig. 10). Genetic algorithms are classical stochastic 
optimization algorithms inspired by evolutionary 
analogy. In MIGA, the population is divided into 
several sub-populations staying on isolated “islands”, 
whereas traditional genetic algorithm operations are 
performed on each sub-population separately. All  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

traditional genetic operations are performed sepa-
rately on each sub-population. Some individuals are 
then selected from each island and migrated to dif-
ferent islands periodically. This operation is called 
‘migration’. Thus, MIGA can prevent the problem of 
being ‘premature’ by maintaining the diversity of the 
population. In addition, the calculation speed of 
MIGA can be faster than those of traditional genetic 
algorithms (Zhao et al., 2015). NLPQL is a sequential 
quadratic programming (SQP) method which can 
solve problems by continuous smoothing. The Hes-
sian of the Lagrange function is used to make a 
quadratic approximation of the Lagrange function 
(Chen and Lv, 2014). When solving constrained non-
linear mathematical problems, the NLPQL algorithm 
shows stability, rapid convergence, and the capacity 
to seek globally optimal solutions. As the NLPQL can 
quickly determine the local optimal solution near the 
starting point, it can reduce computing time during 
the optimization process (Li et al., 2014). It is offered 
in the commercial software ISIGHT. ISIGHT is an 
excellent optimization solving method. Its integration 
ability makes it an efficient tool for combining dif-
ferent software and programs together to achieve 
automation of sampling, modeling, and optimization. 
The samples we obtain from it can also be exported so 
that they can be processed in other modeling and 
optimization programs with improved performance.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10  Schematic diagram of sampling, modeling, and optimization 
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MIGA is a global optimization method, which 
can find the result next to the best one. NLPQL is a 
local optimization method that can explore the best 
result around the start point. The combination of 
MIGA and NLPQL involves using MIGA to obtain 
the expected area and then following that with 
NLPQL to obtain the best point. A flow chart de-
scribing this method using ISIGHT is given in 
Fig. 11. The Matlab item will generate the database 
of airfoils according to the variables generated by 
the uniform LHS. Pointwise & Fluent is a batch file 
for accomplishing meshing and CFD solving pro-
gress, and the lift force and drag force of the airfoil 
will be exported. After that, the lift and drag will be 
read to ISIGHT, and the lift-to-drag ratio will be 
calculated. After 122 rounds of this process, the 
RSM will be established, and another 61 rounds of 
this progress will run after that to verify the effec-
tiveness of this model. Finally, MIGA followed by 
NPLQL will explore the best point to maximize the 
lift-to-drag ratio. 

 
 

7  Results and discussion 
 
Some 122 variable samples were generated by 

the uniform LHS to establish the response surface 
model, while another 61 variable samples obtained 
randomly were utilized to check the model. Fig. 12 
shows the comparison of lift-to-drag ratio of the 
random samples with the predicted value by RSM as 
the horizontal axis and the CFD result as the vertical  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

axis. The solid line is the central line with equal hor-
izontal ordinate and vertical ordinate, while the points 
stand for the results of the 61 samples mentioned 
above. It shows that the results predicted by RSM 
meet well with the actual results gained from the CFD 
method, as the points are spread precisely along the 
solid line. As a result, it can be believed that the 
polynomial-based response model we use is effective 
and that it can be used for the optimization process 
instead of using the CFD process. 

The MIGA, NLPQL, and MIGA-based NLPQL 
method were utilized to optimize the RSM model 
established previously. Before executing the MIGA 
method, the number of generations, the number of 
islands, and the number of individuals on each island 
were all set to 10. The number of interval generations 
of migration was set to 5. The crossover rate was set 
to 1, while the rates of migration and mutation were  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12  Comparison of response value calculated and pre-
dicted by RSM 

Fig. 11  Processing flow of the combination of MIGA and NLPQL in ISIGHT 

Calculate Cl/Cd Calculate Cl/Cd
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both 0.01. In contrast, when NLPQL was used, the 
maximum iterations were 40, and the termination 
accuracy was 10−6, while the relative step size was set 
to 0.001. The parameters of each method were all kept 
the same when MIGA-based NLPQL was utilized.  

The iteration histories of the lift-to-drag ratio 
obtained by the three optimization methods, namely 
MIGA only, NLPQL only, and the combination of 
MIGA and NLPQL, are shown in Fig. 13, and the 
results of the comparison of different optimization  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

methods are given in Table 2. Bernstein’s variables at 
both the lower side (Bl) and the upper side (Bu) of the 
airfoil were all optimized based on the RSM model, 
and the highest lift-to-drag ratios were predicted by 
the RSM. After that, the real lift-to-drag ratios based 
on Bernstein’s variables were calculated using the 
CFD method; thus, they can be compared with the 
original value and predicted results. The result illus-
trates that the RSM model predicts credible results 
because the lift-to-drag ratio predicted meets well 
with the real results. Compared with the original air-
foil, the lift-to-drag ratio optimized by the MIGA 
method increased by 49.43%, while the lift-to-drag 
ratio optimized by the NLPQL method increased by 
59.15%. However, neither of the results gained are 
optimal. Based on the result obtained from MIGA, 
NLPQL improved the lift-to-drag ratio by 62.32%. It 
shows that MIGA-based NLPQL can achieve an im-
proved optimization result compared with the single 
optimization method. To compare the computational 
cost of the three methods, computational time and 
iteration number are also given in Table 2, from 
which we find that the MIGA-based NLPQL method 
costs more time and iterations than the other two 
optimization methods. However, based on the re-
sponse surface model established previously, the 
computational cost of the optimization process has 
been minimized dramatically; thus, it can be ne-
glected from the complete flow path. 

Figs. 14 and 15 show the airfoils optimized by 
three optimization methods and the Cp distribution on 
the airfoil, respectively. We can conclude that alt-
hough the airfoils look alike, their capability may 
differ a lot. Therefore, an accurate parametric method 
for describing airfoils and a good optimization 
method to improve them are very significant for air-
foil design. 

Since we have known that the airfoil with the 
highest lift-to-drag ratio was gained by the MIGA- 
based NLPQL method, line contour graphs of pres-
sure coefficient in the flow-field around the airfoil are 
compared in Fig. 16. From the comparison we find 
that, under the attack angle of 2.5°, the main lift of the 
airfoil comes from the suck force on the upper side. 
Before optimization, the area of negative pressure on 
the upper side of NACA 0012 is small, but the area  
is enlarged after optimization. Moreover, the under-
side of the NACA 0012 suffers negative pressure,  

Fig. 13  Optimization history of three optimization meth-
ods: (a) MIGA only; (b) NLPQL only; (c) combination of 
MIGA and NLPQL 
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which may counteract the lift force generated by the 
upper surface. However, this problem is settled after 
optimization. As a result, the lift force of the airfoil is 
improved.  

From the optimization record, we find that the 
drag force of the airfoil decreased by 6% in total, the 
main contribution to this being pressure drag, which  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

cannot be distinguished easily from the distribution of 
the pressure coefficient. Therefore, the wall-shear- 
stress distribution along the airfoil is illustrated in 
Fig. 17. It shows that the distribution of wall-shear- 
stress does not change a lot after optimization, which 

Table 2  Result comparison of different optimization methods 

Method Bl0 Bl1 Bl2 Bl3 Bu0 Bu1 Bu2 Bu3 
Predicted 

Cl/Cd 
Actual 
Cl/Cd 

Tc 
(s)

Ni

Original 0.16898 0.15133 0.13829 0.13912 0.16898 0.15133 0.13829 0.13912 –   7.45761 – –

Multi-island 
GA only 

0.12005 0.13624 0.09962 0.10033 0.16823 0.19362 0.15733 0.17364 11.19873 11.14421 7 1001

NLPQL only 0.11829 0.10593 0.09680 0.09738 0.15709 0.19673 0.17980 0.15289 11.91620 11.86880 1 63

Multi-island 
GA+NLPQL 

0.11829 0.10593 0.09680 0.09738 0.15227 0.19673 0.17980 0.18086 12.21420 12.10500 7 1046

Tc: computational time; Ni: iteration number 

(a)

(b) 

Fig. 16  Line contour graphs of pressure coefficient in the 
flow-field around the airfoil: (a) NACA 0012; (b) opti-
mized airfoil

Fig. 14  Airfoils optimized by three optimization methods

X (m) 

Y
 (

m
) 

 

X (m) 

C
p 

 

Fig. 15  Comparison of wall pressure coefficient distribu-
tion of airfoils optimized by three methods 



Zhang et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2016 17(8):632-645 643

implies that the viscous force is not the main reason to 
decrease the drag on the airfoil. Thus, the optimiza-
tion does not change the viscous force a lot but boosts 
the lift-to-drag ratio by improving the pressure dis-
tribution on the airfoil. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To check the performance of the new airfoil we 
obtained, the CFD method is utilized to test the 
lift-to-drag ratio under different attack angles, and the 
result is compared in Fig. 18. NACA 0012 is a sym-
metrical airfoil, and thus the lift-to-drag ratio is 0 
when the attack angle is 0. It seems that the lift-to- 
drag ratio is linear to the attack angle in a small area 
next to 0, and the peak value occurs at around 7°. 
After that, the value decreases because the airfoil will 
suffer stall problems at high attack angles. In contrast, 
the lift-to-drag ratio optimized is greatly improved for 
a range in attack angle of −2.5° to 10°. When the flow 
passes the airfoil with no angle, the ratio can still 
reach 4.44. Indeed, a 0 lift-to-drag ratio point moves 
to a negative attack angle of −1.3°. However, the stall 
characteristics are not improved after optimization, 
and this could be another optimization objective for 
future work. This is a multi-objective design optimi-
zation problem, and it should be solved using the 
multi-objective design optimization approach and 
data mining method (Huang, 2014).  

Fig. 18 shows the similarity between the two 
airfoils, which may cause confusion about whether 
the optimized airfoil is the original one rotated by a 
particular angle. The comparison of pressure coeffi-
cient distribution when the lift-to-ratio is 0 shown in 
Fig. 19 may give the answer. It is clear that the orig-
inal airfoil has a symmetric configuration, and thus 

the pressure on the upper surface is equal to that on 
the lower surface. However, the airfoil after optimi-
zation shows a different reason why the lift-to-drag 
ratio is 0. The upper surface has a higher pressure 
distribution in the nose area while the pressure in the 
body and tail area is smaller than the lower surface. 
This proves that the optimized airfoil is not symmet-
rical, and that the configuration has nothing in com-
mon with the original one. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
8  Conclusions 

 
In this paper, parameterization methods of airfoil 

have been compared and a numerical method has 
been utilized to optimize the airfoil with better aero-
dynamic performance based on the response surface 
model. The results show that: 

1. The CST method is an excellent parametric 
approach, and it has been modified by redistributing 

Fig. 19  Pressure coefficient distribution comparison when
the lift-to-drag ratio is 0 
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Fig. 18  Lift-to-drag ratio comparison 

Fig. 17  Distribution of wall-shear-stress on the airfoil
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the control points of the shape function in this paper, 
which allows a better definition of the nose and tail 
areas of the airfoil. In comparison with the polyno-
mial, the CST method has a higher imitation accuracy 
with fewer design variables, which is beneficial for 
the optimization process. 

2. The nonlinear programming by quadratic La-
grangian optimization method is utilized after the 
multi-island genetic algorithm, which will search for 
the airfoil with the highest lift-to-drag ratio. Com-
parison of the optimization results shows that a com-
bination of the two optimization methods can achieve 
better results than the methods used separately. Alt-
hough it will cost more computational time and use 
more steps, the effect can be neglected from the whole 
flow path, because the response surface model is 
established to replace the CFD process and the 
computational cost has been reduced dramatically.  

After optimization, the result shows that the 
lift-to-drag ratio has improved a lot by enhancing the 
lift force and decreasing the drag force. However, the 
stall characteristics of the airfoil have not been im-
proved, and this should be investigated in the near 
future. 
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中文概要 
 

题 目：基于数值计算方法的翼型参数化、建模与优化 

研究 

目 的：1. 比较并改善翼型参数化方法，获得设计变量少、

拟合精度高的参数化方法；2. 在参数化的基础上

利用数值模拟的方法获取翼型流场参数，优化并

获得特定条件下升阻比最大的翼型。 

创新点：1. 通过与多项式拟合方法的对比证明了类别/形状

函数转换（CST）法在翼型拟合方面的优越性，

并通过调整控制点分布，在不增加设计变量的基

础上改善了 CST 方法；2. 通过建立响应面模型，

利用多岛遗传算法与非线性序列二次规划法相

结合的方式获得了更好的翼型优化效果。 

方 法：1. 利用修饰后的 CST 法对翼型进行参数化拟合与

设计，并通过与二项式拟合法比较来验证其优越

性；2. 通过数值方法对翼型周围流场进行计算并

与实验结果对比，获得精确计算气动参数的仿真

条件；3. 通过拉丁超立方采样获得设计变量，建

立设计变量与翼型升阻比之间的响应面模型，通

过多岛遗传算法与非线性序列二次规划法的结

合和优化，得到一定条件下升阻比最大的翼型。 

结 论：1. CST 法是一种优秀的参数化方法，本文的优化

改善了形状函数控制点选取法则，使其对翼型头

部和尾部的描述更加精确；与多项式相比，CST

法可以通过更少的设计变量得到更高的拟合精

度。2. 基于多岛遗传算法的非线性序列二次规划

法在本文中用以优化翼型使其具有更高升阻比。

优化前后翼型的比较显示，两种优化方法的结合

可以得到比单独使用各优化方法更好的结果。 

关键词：类别/形状函数转换；参数化；数值仿真；响应面

模型；优化；翼型设计 
 


