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Abstract:    We made a theoretical study of the carrier distribution and electromechanical fields in a free piezoelectric semicon-
ductor rod of crystals of class 6 mm. Simple analytical expressions for the carrier distribution, electric potential, electric field, 
electric displacement, mechanical displacement, stress, and strain were obtained from a 1D nonlinear model reduced from the 
3D equations for piezoelectric semiconductors. The distribution and fields were found to be either symmetric or antisymmetric 
about the center of the rod. They are qualitatively the same for electrons and holes. Numerical calculations show that the carrier 
distribution and the fields are relatively strong near the ends of the rod than in its central part. They are sensitive to the value of 
the carrier density near the ends of the rod.  
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1  Introduction 
 

Piezoelectric materials are widely used to make 
electromechanical transducers for converting electric 
energy to mechanical energy or vice versa, and 
acoustic wave devices for frequency operation and 
sensing. In most cases, piezoelectric crystals and 
ceramics are treated as non-conducting dielectrics, 
but in reality there is no sharp division separating 
conductors from dielectrics. Real materials always 
show some conductance (Tiersten and Sham, 1998). 
For example, in acoustic wave devices made from 
quartz crystals, the small ohmic conductance and the 
related dissipative effects need to be considered 

when calculating the Q value (quality factor) of the 
devices (Lee et al., 2004; Yong et al., 2010; Wang et 
al., 2011), because other dissipative effects in quartz, 
such as material damping and radiation damping, are 
very small. Another origin of conduction in piezoe-
lectric crystals is that some of them are in fact semi-
conductors with charge carriers of electrons and/or 
holes (Auld, 1973), e.g., the widely used ZnO and 
AlN films and fibers. In these materials, in addition 
to carrier drift under an electric field, carrier diffu-
sion also contributes to the electric current. Piezoe-
lectric semiconductors have been used to make de-
vices for acoustic wave amplification (White, 1962; 
Yang and Zhou, 2004; Ghosh, 2006; Willatzen and 
Christensen, 2014) and acoustic charge transport 
(Schülein et al., 2013; Büyükköse et al., 2014) based 
on the acoustoelectric effect, i.e., the motion of car-
riers under the electric field produced by an acoustic 
wave through piezoelectric coupling. Recently, the 
electric field produced by mechanical fields in a pie-
zoelectric semiconductor has been used to manipulate 

 

 

‡ Corresponding author 

* Project supported by the National Natural Science Foundation of 
China (Nos. 11202182, 11272281, and 11321202) 

 ORCID: Chun-li ZHANG, http://orcid.org/0000-0002-6688-2785; 
Jia-shi YANG, http://orcid.org/0000-0003-3971-1240 
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2016 

Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering) 

ISSN 1673-565X (Print); ISSN 1862-1775 (Online) 

www.zju.edu.cn/jzus; www.springerlink.com 

E-mail: jzus@zju.edu.cn 



Zhang et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2016 17(1):37-44 38

the operation of semiconductor devices, which forms 
the foundation of piezotronics (Wang et al., 2006; 
Wang, 2007; 2010). Piezoelectric semiconductors, 
such as ZnO, are also used for mechanical energy 
harvesting and conversion to electric energy (Hiralal 
et al., 2012; Kumar and Kim, 2012; Graton et al., 
2013; Yin et al., 2013). 

The basic behaviors of piezoelectric semicon-
ductors can be described by the conventional theory 
which consists of the equations of linear piezoelec-
tricity and the equations for the conservation of 
charges of electrons and holes (Hutson and White, 
1962). This theory has been used to study some of 
the applications mentioned above: the inclusion 
problem for composites (Yang et al., 2006), the frac-
ture of piezoelectric semiconductors (Hu et al., 2007; 
Sladek et al., 2014a; 2014b), the electromechanical 
energy conversion in these materials (Li et al., 2015), 
the vibrations of plates (Wauer and Suherman, 1997), 
and to develop low-dimensional theories of piezoe-
lectric semiconductor plates and shells (Yang and 
Zhou, 2005; Yang et al., 2005). Researchers have 
also developed more general and fully nonlinear the-
ories (de Lorenzi and Tiersten, 1975; McCarthy and 
Tiersten, 1978; Maugin and Daher, 1986).  

This paper is concerned with the carrier distri-
bution and electromechanical fields in the thin pie-
zoelectric semiconductor rod, which is often used in 
piezoelectric semiconductor devices. The rod is free 
from externally applied mechanical and electrical 
loads. Because of the presence of carriers and the 
electromechanical coupling in the material, electro-
mechanical fields develop and the carriers assume a 
certain spatial distribution. This problem is funda-
mental to the applications of piezoelectric semicon-
ductor rods or wires. However, there exists some 
nonlinearity associated with the drift current, which 
is proportional to the product of the unknown carrier 
density and the unknown electric field (Pierret, 
1988), and hence the problem presents some mathe-
matical challenges. We performed a theoretical anal-
ysis using a 1D model and obtained simple and use-
ful results for carrier distribution and electromechan-
ical fields. 

 
 

2  Equations for piezoelectric semiconductors 
 
For a piezoelectric semiconductor, the 3D phe-

nomenological theory consists of the linear momen-

tum equation of motion, the charge equation of elec-
trostatics, and the conservation of charge for elec-
trons and holes (continuity equations) (Hutson and 
White, 1962; Pierret, 1988): 
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where Tji is the component of stress, ρ the mass den-
sity, ui the component of mechanical displacement, 
Di the component of electric displacement, q=1.6 
×10−19 C the magnitude of the electronic charge, p 
and n the number densities of holes and electrons, 

DN   and AN   the densities of impurities of donors 

and accepters, and p
iJ  and n

iJ  the hole and electron 

current densities, respectively. The reference state is 
the state before doping when the charges are not pre-
sent. When the charges are introduced, they assume 
certain distributions and electromechanical fields 
develop. In Eq. (1), we have neglected carrier re-
combination and generation. Cartesian tensor nota-
tion has been used. A comma followed by an index 
indicates a partial derivative with respect to the co-
ordinate associated with the index. A superimposed 
dot represents a time derivative. We consider doped 

n-type semiconductors for which n and DN   are 

much greater than p and AN  . Therefore, we neglect 

p and AN   in this paper. In this case Eq. (1)1-3 be-

come uncoupled to the p in Eq. (1)4. Constitutive 
relations for Eq. (1)1-3 describing material behaviors 
can be written in the following form:  
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where Sij is the component of strain, Ei the compo-

nent of electric field, E
ijkls  the elastic compliance con-

stant, dkij the piezoelectric constants, T
ij  the dielec-

tric constant, μij the carrier mobility, and Dij the car-
rier diffusion constants. The superscripts “E” and 
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“T” in E
ijkls  and T

ij  as well as the superscript “n” in 

n
iJ  will be dropped in the rest of the paper. The 

strain Sij and the electric field Ei are related to the 
mechanical displacement ui and the electric potential 
 through  
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3  1D model for a rod 
 

Specifically, we consider a cylindrical rod of 
length 2L as shown in Fig. 1. It is within |x3|<L. The 
cross section of the rod is arbitrary. Its surface is 
traction free. The rod is made from crystals of class 
6 mm which includes the widely used crystals of ZnO 
and AlN. The c-axis of the crystal is along the axis 
of the rod, i.e., the x3 axis. The rod is assumed to be 
long and thin. The electric field in the surrounding 
free space is neglected. The rod has electrons de-
scribed by its density n varying along x3 only. The 
electric field produced by the electrons causes de-
formation in the rod through piezoelectric coupling. 

 
 
 
 
 
 
 
 
 
 
 

The deformation of the thin rod is mainly an ax-
ial extension or contraction which can be described 
by a 1D model (Yang, 2005). For the 1D model, cor-
responding to Eq. (1)1-3, the field equations for the 
static case we want to consider when all the time 
derivatives vanish are  
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For a thin rod, as will be seen later, the elec-
trons tend to concentrate near the two ends of the rod. 
If the impurity is essentially uniform along the rod, 
then, near the two ends of the rod, which is the re-

gion of  interest, n is much larger than 
DN . There-

fore, in the following we will neglect the non-mobile 

impurity charge 
DN  in Eq. (4) and focus on the mo-

bile electrons described by n. In the compact matrix 
notation (Yang, 2005), the relevant constitutive rela-
tions from Eq. (2) for the axial fields are 
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The relevant strain-displacement relation and 

the electric field-potential relation are the following 
ones from Eq. (3):  
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Eq. (5)1,2 can be solved for T3 and rewritten as  
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where the effective 1D elastic, piezoelectric, and 
dielectric constants are: 
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With the use of Eq. (6), Eqs. (7) and (5)3  

become: 
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which are the 1D constitutive relations ready to be 
used in Eq. (4).  

Fig. 1  A piezoelectric semiconductor rod of crystals of 
class 6 mm 
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4  Carrier distribution and fields 
 

The substitution of Eq. (9)1,2 in Eq. (4)1,2 yields 
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which can be rearranged to 
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Eq. (4)3 can be integrated to give  
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where Eq. (9)3 has been used and C1 is an integration 
constant. Substituting Eq. (11)2 into Eq. (12), we can 
obtain 
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The integration of Eq. (13) leads to 
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where C2 is another integration constant. Let 
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then Eq. (14) takes the following form 
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For the static and free rod we are considering, 

J3=0 and hence C1=0. Eq. (16) reduces to 
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In Eq. (18), we have used the Einstein relation-

ship (Navon, 1986) that  
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Since a>0, from Eq. (17) it can be seen that b>0 

if E,3<0 and dominates aE2, which is always positive. 
In this case ab>0 and the solution to Eq. (17) can be 
found as  
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where C3 is an integration constant. Because of the 
symmetry in the problem, we expect that E=0 when 
x3=0 which can be satisfied by choosing C3=0 in 
Eq. (20). Then, integrating Eq. (20), we have 
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where C4 is an integration constant and is immaterial. 
The substitution of Eq. (20) in Eq. (11)2 gives the 
carrier distribution which is always positive:  
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From Eqs. (11)1 and (20), we can obtain  
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where C5 and C6 are integration constants. C6 repre-
sents a rigid-body displacement and can be set to 
zero. Then, from Eq. (7)1, 
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For a free rod without an axial force, C5=0. 
From Eq. (7)2,  
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In summary, the electromechanical fields and 

the carrier distribution are:  
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The traction-free mechanical end conditions are sat-
isfied by T3=0. The non-conducting end conditions 
are satisfied by J3=0. b is related to C2 through 
Eq. (18)2 and is the only integration constant left. To 
determine b, we impose the boundary condition that 
the carrier density at the ends of the rod where x3=L 
is known to be n0 and  
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n0 makes the boundary value problem non-

homogeneous and may be viewed as a driving term 
or a load.  

In the case when holes dominate, Eqs. (4)2 and 
(5)3 should be replaced by (Pierret, 1988) 
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and 

3 33 3 33 ,3.J qp E qD p                       (30) 

In this case, formally Eq. (17) is still valid but a 
becomes negative. When b<0, if E,3>0 and domi-
nates aE2 which is always negative, we still have 
ab>0 and the solution to Eq. (17) is still given by 
Eq. (20). Then the carrier distribution and the elec-
tromechanical fields are still given by Eq. (27). The 
only difference is that for holes a and b are both 
negative.  
 
 
5  Numerical results and discussion 
 

Denoting ,X ab L  we write Eq. (28) as the 

following equation for X: 
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As a numerical example, consider a rod with 

L=10 mm. At room temperature kT/q=0.026 V 
(Pierret, 1988) which determines a through Eq. (18). 
The material constants for ZnO can be found in Auld 
(1973). For different values of n0 and hence g, we 
plot Y=cosX and Y=±gX in Fig. 2. The intersections 
of the two families of curves determine the roots of 
Eq. (31). When n0=1012 m−3, there is only one root. 
When n0=1014 m−3, there are several roots. When n0 
increases further, the slopes of the straight lines de-
scribed by Y=±gX become smaller which implies 
more roots of Eq. (31). This is not surprising in view 
of the nonlinear nature of the problem which is asso-
ciated with strong fields and high carrier density. 

Fig. 3 shows the carrier distribution n(x3) along 
the rod for different values of n0. For these values of 
n0, there are multiple roots from Eq. (31). The first 
root is chosen which presents the physical picture 
expected. n(x3) is symmetric about the rod center as 
expected. n(x3) is nearly constant in the central part 
of the rod, and increases rapidly near the ends. When 
n0 increases, the carrier density near the rod ends is 
more sensitive to n0 than the carrier density in the 
central part. Later, more insight into the carrier dis-
tribution will be given when examining the electric 
field in the rod. 
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Fig. 4 shows the axial distributions of the elec-

tric field E3, the electric potential φ, and the electric 
displacement D3. The electric field in Fig. 4a is 
physically symmetric about x3=0 as it should be, but 
mathematically it is described by an odd function of 
x3. As an odd function it vanishes at the origin. It 
increases its magnitude rapidly near the ends of the 
rod, which is consistent with the fact shown in Fig. 3 
that near the ends the carrier distribution also has a 
large gradient. The electric field and the gradient of 
n(x3) have to balance each other to make J3=0. 
Hence, E3 and n3 have to be large or small together 
in magnitude. A larger n0 is associated with a higher 
electric field as expected. The electric potential in 
Fig. 4b is the spatial integration of E3 along the rod 
and as a consequence it is an even function of x3. It 
may have an arbitrary constant which is fixed by 
choosing φ(0)=0. A larger n0 is also associated with 
a higher electric potential as expected. The behavior 
of D3 in Fig. 4c is similar to that of E3 in Fig. 4a.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 shows the mechanical fields which are 

present because the material is piezoelectric. For free 
extension the axial stress is zero. Hence, only the 
axial strain and the axial displacement are plotted in 
Fig. 5a and Fig. 5b, respectively. The strain is an odd 
function of x3, indicating that half of the rod is in 
axial extension and the other half in contraction. 
This is related to the fact that the electric field in 
Fig. 4a is also an odd function of x3. For the dis-
placement in Fig. 5b, the rigid-body axial displace-
ment is removed by choosing the axial displacement 
at the rod center to be zero. From Fig. 5 it can be 

Fig. 2  Roots of Eq. (31): n0=1012 m−3, Y=±0.603X; n0=
1014 m−3, Y=±0.0603X 

Y

Fig. 4  Axial distributions of the electric field E3 (a), elec-
tric potential φ (b), and electric displacement D3 (c) 
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Fig. 3  Carrier distribution along the rod
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seen that the mechanical fields are also relatively 
large near the ends of the rod and are sensitive to n0 
near the ends. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6  Conclusions 
 

Because of the presence of carriers and piezoe-
lectric coupling, a thin piezoelectric semiconductor 
rod undergoes axial extension/contraction. The equa-
tions for determining the carrier density and elec-
tromechanical fields are nonlinear because of the 
drift current term. The carrier distribution and elec-
tromechanical fields are either symmetric or anti-
symmetric about the center of the rod. They are rela-
tively strong near the ends of the rod than at its cen-
tral part. They are also sensitive to the number of 
carriers. The effects of electrons and holes are quali-
tatively the same.  
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中文概要 
 

题 目：压电半导体杆中的机械场、电场与载流子分布

研究 

目 的：导出两端自由压电半导体杆在自平衡状态下内

部的位移、电场和载流子的解析表达式，研究

它们在杆内的分布规律。 

方 法：从三维压电半导体基本方程出发，以 n-型半导

体为例，导出考虑拉伸变形模式的一维模型方

程。由平衡方程和电学高斯方程和平衡态下杆

内电流为零的条件得到以电场为未知函数一阶

非线性偏微分方程，再利用两端自由的边界条

件解出位移、电场和载流子的分布函数。 

结 论：压电半导体杆内位移、载流子和电势关于杆的

几何中心对称分布，电场、应变则关于中心呈

反对称分布形式；它们在半导体两端部的区域

变化比在中心区域的变化剧烈。此外，半导体

杆两端部的载流子浓度、位移和电场显著依赖

于端部的初始载流子浓度。 

关键词：力电耦合；半导体；杆；载流子 

 
 


