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Abstract:    This paper is concerned with the free vibration analysis of open circular cylindrical shells with either the two 
straight edges or the two curved edges simply supported and the remaining two edges supported by arbitrary classical boundary 
conditions. Based on the Donnell-Mushtari-Vlasov thin shell theory, an analytical solution of the traveling wave form along the 
simply supported edges and the modal wave form along the remaining two edges is obtained. With such a unidirectional travel-
ing wave form solution, the method of the reverberation-ray matrix is introduced to derive the equation of natural frequencies of 
the shell with different classical boundary conditions. The exact solutions for natural frequencies of the open circular cylindrical 
shell are obtained with the employment of a golden section search algorithm. The calculation results are compared with those 
obtained by the finite element method and the methods in the available literature. The influence of length, thickness, radius, 
included angle, and the boundary conditions of the open circular cylindrical shell on the natural frequencies is investigated. The 
exact calculation results can be used as benchmark values for researchers to check their numerical methods and for engineers to 
design structures with thin shell components.  
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1  Introduction 
 

Thin shells are extensively used in naval archi-
tecture and ocean engineering, as well as in civil, 
mechanical, and aeronautical engineering. Open cir-
cular cylindrical shells (OCCSs) are often used as 
structural components of pressure vessels, roof struc-
tures, open space buildings, and marine structures. It 
is of great significance for engineers to be familiar 
with the vibration behaviors of such shell structures 
in practical design. 

Many pioneering scholars have developed nu-
merous approximate analytical models for thin 
shells. Most thin shell theories developed before 
1973 were formulated by Leissa (1973). In subse-
quent decades many studies of the vibration of OC-
CSs have been carried out. Early research mainly 
used numerical approaches such as the Rayleigh-Ritz 
method (Sewall, 1967; Leissa and Narita, 1984), the 
finite element method (FEM) (Cantin and Clough, 
1968; Lakis and Selmane, 2000), and the finite strip 
method (Cheung et al., 1989). Exact solutions for 
determining the natural frequencies of OCCSs were 
presented in (Suzuki and Leissa, 1986; Lim and 
Liew, 1995; Yu et al., 1995; Price et al., 1998; Ye et 
al., 2014a). A wave propagation approach is intro-
duced by Zhang et al. (2001) to carry out frequency 
analysis of cylindrical panels. Free vibration anal-
yses of stiffened cylindrical shallow shells are  
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presented in (Mecitoglu and Dokmeci, 1992; Nayak 
and Bandyopadhyay, 2002; Zhang and Xiang, 2006). 
Vibration behaviors of anisotropic OCCSs are ana-
lyzed by Selmane and Lakis (1997a; 1997b) and 
Toorani and Lakis (2001). Recently, much attention 
has been paid to vibration analysis of laminated, 
composite or functionally graded OCCSs (Qatu, 
2002; Singh and Shen, 2005; Qatu et al., 2010; Su et 
al., 2014; Ye et al., 2014b). 

As far we are aware, research on the vibration 
analysis of plate-shell coupled structures is rare, es-
pecially any using analytical methods. From the lit-
erature, it appears that the accuracy of approximate 
methods is lower than that of analytical methods. 
The available analytical methods are sometimes too 
targeted for shell structures to be consistent with 
exact solutions of other structural components, such 
as beams and plates. The method of reverberation- 
ray matrix (MRRM) is suitable for determining the 
natural frequencies and steady-state response of  
multi-span structures and space frame structures with 
complex geometry. MRRM was first proposed by 
Howard and Pao (1998) and Pao et al. (1999) to ana-
lyze wave propagation in planar trusses. Subsequent-
ly, Pao and his associates extended the method to 
study waves propagating in multilayered media (Pao 
et al., 2000; Su et al., 2002; Guo and Chen, 2008; 
Tian and Xie, 2009). Much attention was paid to 
applications of MRRM for dynamic analysis of 
frames and beams (Tian et al., 2003; Chen et al., 
2005; Liu et al., 2006; Yu, 2007a; 2007b; Guo et al., 
2008; Jiang et al., 2011; Qiao and Chen, 2011; Miao 
et al., 2013; Guo and Fang, 2014). MRRM is also 
employed to analyze unidirectional wave propaga-
tion through plates (Li et al., 2005; Liu and Xie, 
2005; Liu et al., 2010; 2011a; Zhu et al., 2011; 2012; 
Li et al., 2012, Yu et al., 2012) and closed shells 
(Tian and Su, 2000; Liu et al., 2011b; 2013). Recent-
ly, MRRM has been directed towards the study of 
functionally graded or laminated structures (Zhou et 
al., 2009; Li et al., 2012; Liu et al., 2013; Miao et 
al., 2013; 2015). It is aimed to obtain a unidirection-
al traveling wave form solution for OCCSs, which is 
of good consistency with the solutions for beams and 
plates presented in (Yu, 2007a; 2007b; Jiang, 2011; 
Liu et al., 2010; 2011a). Therefore, the formulation 
presented in this paper should prove to be fundamen-
tal for vibration analysis of ring-stiffened OCCSs 
and plate-shell coupled structures. 

This paper extends MRRM to the dynamic 
analysis of OCCSs. Based on the Donnell-Mushtari-
Vlasov (DMV) thin shell theory, the free vibration 
equation of the OCCS with either two simply sup-
ported straight edges or two simply supported curved 
edges is solved to obtain an analytical solution of the 
traveling wave form along the simply supported 
edges and the modal wave form along the remaining 
two edges. With these solutions expressed in matrix 
form, the scattering matrix, phase matrix, and per-
mutation matrix as well as the reverberation-ray ma-
trix of the OCCS are derived. Then, the equation of 
natural frequencies of the OCCS is obtained and 
subsequently solved by the golden section search 
algorithm (Press et al., 1992; Vajda, 2007). Finally, 
the method presented in this paper is validated by 
comparing the calculation results with those obtained 
by FEM and the method of Leissa (1973). In addi-
tion, the effects of shell length, shell radius, shell 
thickness, and the included angle as well as the clas-
sical boundary conditions such as simply supported 
edge (SSE), clamped edge (CE), and free edge (FE) 
for the remaining two edges on the natural frequen-
cies are investigated. 

 
 

2  Formulation 
 

Consider an isotropic OCCS with length L, in-
cluded angle θ0, uniform thickness h, middle surface 
radius R, Young’s modulus E, Poisson’s ratio μ, and 
mass density ρ shown in Fig. 1. The axial, circum-
ferential, and radial displacements of the middle sur-
face of the OCCS with reference to the coordinate 
system are denoted as u(x, θ, t), v(x, θ, t), and w(x, θ, 
t), respectively. Either the two straight edges or the 
two curved edges of the shell are assumed to be 
simply supported in the following discussion. The 
problem at hand is to determine the natural frequen-
cies of the OCCS. 

To begin with, the expressions of the force and 
moment resultants in terms of the displacement 
components and the governing equations based on 
the DMV thin shell theory are introduced. Subse-
quently, with the employment of a Fourier trans-
form, an analytical solution of the traveling wave 
form along the simply supported edges and the mod-
al wave form along the remaining two edges is  
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obtained in the frequency domain. Then, the solu-
tions of the displacements and the force and moment 
resultants are expressed in matrix form. Finally, the 
equation of natural frequencies of the OCCS with 
various classical boundary conditions is obtained by 
MRRM and solved by the golden section search al-
gorithm. The above-mentioned formulation is pre-
sented in detail as follows. 

 

 
 
 
 
 
 
 
 
 
 

2.1  Force and moment resultants in the shell 

The force and moment resultants in an OCCS, 
shown in Fig. 2, are expressed in terms of the dis-
placements u, v, and w as follows (Leissa, 1973): 
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where u, v, and w denote the displacement compo-
nents in the axial (x), circumferential (θ), and radial 
(z) directions, respectively. C=Eh/(1−μ2) and D 
=Eh3/[12(1−μ2)] represent the middle surface stiff-
ness and the bending stiffness of the shell. Nxx and 
Nθθ denote the in-plane normal forces, Nxθ and Nθx, 
the in-plane shear forces, Mxx and Mθθ, the bending 
moments, Mxθ and Mθx, the torsional moments, and 
Qxz and Qθz, the out-of-plane shear forces acting on 
the cross-sections perpendicular to the axial and cir-
cumferential directions. Fxθ and Fθx indicate the in-
plane shear force resultants, and Vxz and Vθz, the out-
of-plane shear force resultants acting on the cross-
sections perpendicular to the axial and circumferen-
tial directions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

L

z
x

R

θ0

h

θ

Fig. 1  Geometry and coordinate system for an OCCS
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Fig. 2  Force and moment resultants in a shell
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2.2  Governing differential equations 
 
The governing differential equations for free 

vibration of an OCCS based on the DMV thin shell 
theory can be written as (Leissa, 1973) 
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where λ=h2/(12R2) is a dimensionless parameter, 
which is related to the ratio of shell thickness to  
radius. 

The Fourier transform of an arbitrary physical 
quantity X(t) is defined by 
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where ω is the circular frequency, and a tilde over a 
symbol represents the corresponding quantity ex-
pressed in the frequency domain. The inverse Fouri-
er transform is given by 
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Taking the Fourier transforms of Eqs. (13)–(15) 

and eliminating the other two displacement compo-
nents from the Fourier transforms of Eqs. (13)–(15), 
three independent equations of motion respectively 
in terms of ,u  ,v  and w  are obtained as follows: 

 

1 2 3 4 5 64

1 1
0,

1

u
L L L L L L

R x


 

  
    


             (18) 

1 2 3 4 5 64

1 1
0,

1

v
L L L L L L

R R


  

  
    


          (19) 

2

1 2 3 4 5 64

1 1 1
0,

1

w
L L L L L L

R R x


  

  
     


    (20) 

 
where ,u  ,v  and w  denote the axial, circumferential, 

and radial displacement components expressed in the 
frequency domain. γ={[R2kL

2−(1−μ)/(1+μ)]/(λR4)}1/4 
is a parameter of the same dimension with the wave 
number. Lj (j=1, 2, …, 6) are linear differential oper-
ators defined as follows: 
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where kL=ω[(1−μ2)ρ/E]1/2. 

It can be observed from Eqs. (18)–(20) that, the 
differences among the linear differential operators 
operating on the axial, circumferential, and radial 
displacement components lie in the parts outside the 
braces, which represent zero wave number solutions, 
or in other words, the rigid-body motions. As normal 
in free vibration analysis, the zero wave number so-
lutions will be neglected throughout this paper. 

2.3  Solutions for OCCS with simply supported 
curved edges  

As the two curved edges of the OCCS are as-
sumed to be simply supported, the boundary condi-
tions at x=0 and x=L are given by (Leissa, 1973) 

 
0, 0, 0, 0, 0, .xx xxv w N M x L        (27) 

 
According to the boundary conditions defined 

by Eq. (27), the axial, circumferential, and radial 
displacements of the OCCS can be written as 
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where kx=mπ/L denotes the wave number in the axial 
direction, m is the axial mode number, and L repre-
sents the length of the OCCS. 

Assuming that the axial, circumferential, and 
radial displacement components can be expressed by 
exponential functions of the circumferential variable 
θ, a common circumferential wave number equation 
for the axial, circumferential, and radial displace-
ments of the OCCS is obtained as 
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By solving Eq. (31), eight circumferential wave 

numbers are obtained: 
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Therefore, the solutions of the equations of mo-

tion of the OCCS with two simply supported curved 
edges are expressed as 
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where aj and dj (j=1, 2, 3, 4) are amplitudes of the 
axial and circumferential waves. αj and βj (j=1, 2, 3, 
4) are ratios of the amplitudes of the axial and cir-
cumferential waves to the amplitude of the radial 

wave. The expressions of αj and βj are defined as 
follows: 
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The rotation of the normal to the middle sur-

face of the OCCS about the axial direction is de-
fined as 
 

.
v w

R R 


 


                        (38) 

 

Substituting Eqs. (34) and (35) into the Fourier 
transform of Eq. (38) yields the frequency domain 
expression of the rotation as 

 

   
4

i i

1 1

i
e e sin .j jk kj j

j j x
m j

k
a d k x

R
  









 


  (39) 

 

Substitution of Eqs. (33)–(35) into the Fourier 
transforms of Eqs. (2), (5), (10), and (12) yields the 
frequency domain expressions of the force and mo-
ment resultants of the OCCS: 

 

 
   

4

1 1
i i

1 i

e e sin ,j j

x j j j
m j

k k

j j x

C
N Rk k

R

a d k x 

 

 

  


 


  

  


             (40) 

 
   

4
2 2 2

2
1 1
i ie e sin ,j j

j x
m j

k k

j j x

D
M k R k

R

a d k x 

 

 




 


 
  


           (41) 

 
   

4

1 1
i i

1
i

2

e e cos ,j j

x j j j x
m j

k k

j j x

C
F k Rk

R

a d k x 

 

 

  


 


  

  


              (42) 


   

4
2 2 3

3
1 1

i i

(2 ) i i

e e sin .j j

z x j j
m j

k k

j j x

D
V R k k k

R

a d k x 

  

 




 


    

 


            (43) 
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2.4  Solutions for OCCS with simply supported 
straight edges  
 

Since the derivation for solutions of the OCCS 
with simply supported straight edges is independent 
of the derivation for the OCCS with simply support-
ed curved edges and the two derivation procedures 
are quite similar to each other, the symbols used in 
this subsection will be very similar and frequently 
the same as those used in the preceding subsection. 
In addition, the derivation presented in this subsec-
tion will be greatly simplified and only the differ-
ences between the two derivation procedures will be 
pointed out. 

As the two straight edges of the OCCS are as-
sumed to be simply supported, the boundary condi-
tions at θ=0 and θ=θ0 are given by (Leissa, 1973) 
 

0, 0, 0, 0.u w N M              (44) 

 
According to the boundary conditions defined 

by Eq. (44), the axial, circumferential, and radial 
displacements of the OCCS can be written as 
 

 
1

( , ) ( )sin ,
n

u x U x k 




                   (45) 

 
1

( , ) ( )cos ,
n

v x V x k 




                  (46) 

 
1

( , ) ( )sin ,
n

w x W x k 




                 (47) 

 
where kθ=nπ/θ0 denotes the wave number in the cir-
cumferential direction, and n is the circumferential 
mode number. 

Assuming that the axial, circumferential, and 
radial displacements can be expressed by exponen-
tial functions of the axial variable x, a common axial 
wave number equation of the axial, circumferential, 
and radial displacements of the OCCS can be ob-
tained as 

 

2 2 2 2 2 2
2 2

2
2 2 2 2 2

2 2

1 1

21 1

1

x x

L
x L x

k k k k
R R

k
k k k k k

R R

 

 

 



       
  

           

         

2
2 2

4 2

2
2 2

2

2(1 )(2 ) 1 1

1 1
21 1

0.
2 (1 )(2 )

L
x

L
x

k
k k

R R
k

k k
R





  
   

  

  
     
 

       

    (48) 

 
By solving Eq. (48), eight axial wave numbers 

are obtained as follows: 
 

1 2 3 4, , , .x x x x xk k k k k                      (49) 

 
Therefore, for the boundary conditions defined 

by Eq. (44), the solutions of Eqs. (18)–(20) are writ-
ten as 

 

   
4

i i

1 1

( , ) e e sin ,xj xjk x k x

j j j
n j

u x a d k  




 

     (50) 

   
4

i i

1 1

( , ) e e cos ,xj xjk x k x

j j j
n j

v x a d k  




 

     (51) 

   
4

i i

1 1

( , ) e e sin ,xj xjk x k x

j j
n j

w x a d k 




 

        (52) 

 
where α′j and β′j (j=1, 2, 3, 4) are ratios of the ampli-
tudes of the axial and circumferential waves to the 
amplitude of the radial wave. The expressions of α′j 
and β′j are defined as follows: 
 

 

2 2
2 2 2

2 2
2 2 2 2 2 2 2 2

2
i

1
,

2

1

L
xj xj

j

L
xj L xj

R k
Rk R k k

R k
R k k R k R k k



 








 
    
 

     

  (53) 

 

2 2
2 2 2

2 2
2 2 2 2 2 2 2 2

2
(2 )

1
= .

2

1

L
xj

j

L
xj L xj

R k
k R k k

R k
R k k R k R k k

 

 








 
    

 
     

  (54) 

 

The rotation of the normal to the middle surface 
about the circumferential direction is defined as 

 

/ .x w x                            (55) 

 

Substituting Eq. (52) into the Fourier transform 
of Eq. (55) yields the frequency domain expression 
of the rotation as 
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   
4

i i

1 1

i e e sin .xj xjk x k x

x xj j j
n j

k a d k 




 

     (56) 

 

Substituting Eqs. (50)–(52) into the Fourier 
transforms of Eqs. (1), (4), (9), and (11) yields the 
frequency domain expressions of the force and mo-
ment resultants of the OCCS: 

 

   

4

1 1

i i

i

e e sin ,xj xj

j
xx xj j

n j

k x k x

j j

k
N C k

R R

a d k





  





 



    
 


  




               (57) 

   

24
2

2
1 1

i ie e sin ,xj xj

xx xj
n j

k x k x

j j

k
M D k

R

a d k











 



 
  

 


  



              (58) 

   

4

2 2 2
1 1

i i

i i
6

6

(1 ) e e cos ,xj xj

j xj j xj
x

n j

k x k x

j j

k k k k
F D

Rh h R

a d k

 




 

 



 



  
   

 


   



    (59) 

   

24
3

2
1 1

i i

(2 )i i

e e sin .xj xj

xz xj xj
n j

k x k x

j j

k
V D k k

R

a d k











 



    
 

  




               (60) 

 

2.5  Solutions expressed in matrix form 

2.5.1  Simply supported curved edges 

For an arbitrary axial mode number m, 
Eqs. (33)–(35) and (39) can be expressed in matrix 
form as 
 

*
d m d( ) ,xW H W                            (61) 

 
where Wd denotes the displacement vector of the 
OCCS, Hm(x) indicates the axial mode matrix, and 
Wd

* represents the wave vector of the circumferential 
displacement. They are presented in detail as  
follows: 
 

T

d ,u v w    
  W                                 (62) 

 m ( ) diag cos( ) sin( ) sin( ) sin( ) ,x x x xx k x k x k x k xH

    (63) 

*
d d h d h( ) ( ) ,   W A P a D P d                     (64) 

 
where Ph(θ) denotes the phase matrix, Ad and Dd are 
coefficient matrices of fourth-order, a and d are am-
plitude vectors of the arriving wave and the depart-
ing wave corresponding to the displacements of the 
OCCS, which can be given by 
 

 1 2 3 4i i i i
h ( ) diag e e e e ,k k k k       P     (65) 

 T1 2 3 4 ,a a a aa                                 (66) 

 T1 2 3 4 ,d d d dd                                (67) 

 

d d

d d

d d

d d

(1, ) (1, ) ,
(2, ) (2, ) ,
(3, ) (3, ) 1,
(4, ) (4, ) i / ,

j

j

j j

j j
j j
j j
j j k R






 
   
  
    

A D
A D
A D
A D

        (68) 

 

where j=1, 2, 3, 4. 
Meanwhile, Eqs. (40)–(43) can be expressed in 

matrix form as 
 

*
f m f( ) ,xW H W                                (69) 

 

where Hm(x) is defined in Eq. (63). Wf denotes the 
force vector of the shell, and Wf

* represents the wave 
vector of the circumferential force and moment re-
sultants. Then, we can obtain: 
 

T

f ,x zF N V M      
   W             (70) 

*
f f h f h( ) ( ) ,   W A P a D P d               (71) 

 

in which the physical significances and expressions 
of Ph(θ), a, and d are the same as those presented in 
Eq. (64). However, Af and Df are coefficient matrices 
of the arriving wave and the departing wave corre-
sponding to the force and moment resultants of the 
OCCS. They are presented as 
 

 
 

 

f f

f f

2 2 3
f f 3

2 2 2
f f 2

(1 )
(1, ) (1, ) i ,

2

(2, ) (2, ) i 1 ,

(3, ) (3, ) (2 ) i i ,

(4, ) (4, ) ,

j j j x

x j j j

x j j

j x

C
j j k Rk

R
C

j j Rk k
R

D
j j R k k k

R
D

j j k R k
R





 



  

  






   

    

      

  

A D

A D

A D

A D

 (72) 

 

where j=1, 2, 3, 4. 
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2.5.2  Simply supported straight edges 
 
For an arbitrary circumferential mode number 

n, Eqs. (50)–(52) and (56) can be written in the same 

matrix form as Eq. (61) only if the element   in Wd 

is replaced by x , the axial mode matrix Hm(x) and 

the phase matrix Ph(θ) are replaced by the circum-
ferential mode matrix Hn(θ) and the phase matrix 
Ph(x) defined as follows: 
 

 n ( ) diag sin( ) cos( ) sin( ) sin( ) ,k k k k       H      

(73) 

 1 2 3 4i i i i
h ( ) diag e e e e .x x x xk x k x k x k xx P        (74) 

 
The elements of the coefficient matrices Ad and Dd 
are replaced by 
 

d d

d d

d d

d d

(1, ) (1, ) ,
(2, ) (2, ) ,
(3, ) (3, ) 1,
(4, ) (4, ) i ,

j

j

xj

j j
j j
j j
j j k




  
  
     

A D
A D
A D
A D

                 (75) 

 

where j=1, 2, 3, 4. 
Eqs. (57)–(60) can be written in the same ma-

trix form as Eq. (69) only if the axial mode matrix 
Hm(x) and the phase matrix Ph(θ) are replaced by the 
circumferential mode matrix Hn(θ) and the phase 
matrix Ph(x), and the force vector Wf turns to be 
 

T

f .x xx xz xxF N V M   
   W             (76) 

 

The elements of the coefficient matrices Af and 
Df are replaced by 
 

f f

f f

2 2

2
3

f f 2

2
2

f f 2

(1, ) (1, ) i ,

(2, ) (2, )
i i

6(1 ) ,
6

i
(3, ) (3, ) (2 ) i ,

(4, ) (4, ) ,

j
xj j

j xj j xj

xj
xj

xj

k
j j C k

R
j j

k Rk k k
D

Rh R
k k

j j D k
R

k
j j D k

R



 





  


 






 
   

 
 

 
   

 
 

     
  
 

   
 

A D

A D

A D

A D

 

(77) 
 

where j=1, 2, 3, 4. 

2.6  Equations of natural frequencies 
 
Taking advantage of the unidirectional traveling 

wave solutions of the OCCS with simply supported 
curved edges and simply supported straight edges 
which are respectively obtained in Subsections 2.3 
and 2.4, the MRRM is introduced to derive the equa-
tion of natural frequencies of the OCCS. Since the 
scattering matrix is related to boundary conditions of 
the remaining two edges, it will be discussed in the 
first step. Then, the phase matrix and permutation 
matrix, which are independent of the boundary con-
ditions, are obtained. Finally, the reverberation ma-
trix and the equation for natural frequencies of the 
OCCS are derived. The formulations mentioned 
above are presented in detail in the following  
discussion. 

Since the derivation procedures of the scattering 
matrix, phase matrix, and permutation matrix for the 
OCCS with simply supported curved edges and 
simply supported straight edges are very similar to 
each other, the one for simply supported curved edg-
es will be taken as an example and the other will be 
omitted. Note that the only difference between the 
two derivation procedures is that the one for simply 
supported curved edges takes advantage of the solu-
tions obtained in Section 2.3 while the other one em-
ploys the solutions obtained in Section 2.4. 

2.6.1  Scattering matrix for various classical bounda-
ry conditions 

With regard to an OCCS with simply supported 
curved edges and simply supported straight edges, 
the boundary conditions and the dual local coordi-
nate systems of the OCCS are shown in Fig. 3. The 
scattering matrix corresponding to various classical 
boundary conditions, including simply supported 
edges, free edges, and clamped edges, of the remain-
ing two edges are derived in the following  
discussion. 

1. Simply supported edge 
Assuming that the OCCS is simply supported at 

Node Line 1, the boundary conditions are defined in 
the local coordinate (oxθz)12 as 

 
12 12 12 120, 0, 0, 0.u w N M           (78) 
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Substitution of Eqs. (33), (35), (40), and (41) 

into the Fourier transform of Eq. (78) yields 
 

4
12 12

1

0,j j j j
j

a d 


                                 (79) 

4
12 12

1

0,j j
j

a d


                                         (80) 

 
 

4
12

1
12

i 1

i 1 0,

x j j j j
j

x j j j j

Rk k a

Rk k d





  

  


   
    


          (81) 

   
4

2 2 2 12 2 2 2 12

1

0.j x j j x j
j

k R k a k R k d  


       (82) 

 
Eqs. (79)–(82) can be presented in matrix form 

as 

 
1 1 1,d S a                              (83) 

 
where d1=d12=[d1

12 d2
12 d3

12 d4
12]T and a1=a12=[a1

12 
a2

12 a3
12 a4

12]T are amplitude vectors of the departing 
wave and the arriving wave, and S1=−I4 is defined as 
the scattering matrix at Node Line 1, in which I4 is a 
unit matrix of fourth-order. 

2. Free edge 
Assuming that the edge of the OCCS at Node 

Line 1 is free, the boundary conditions are defined in 
the local coordinate (oxθz)12 as 

12 12 12 120, 0, 0, 0.x zN F V M                 (84) 

 
Substitution of Eq. (69) into the Fourier trans-

form of Eq. (84) yields 
 

*12 12 12
f f h f h(0) (0) .   0W A P a D P d       (85) 

 
Since the phase matrix turns into a unit matrix 

at the origin of the local coordinate, which is obvious 
from its definition, Eq. (85) can be presented in the 
same form as Eq. (83) with the scattering matrix re-
placed by S1=−Df

−1Af. 
3. Clamped edge 
Assuming that the edge of the OCCS at Node 

Line 1 is clamped, the boundary conditions are de-
fined in the local coordinate (oxθz)12 as 

 
12 12 12 120, 0, 0, 0.u v w               (86) 

 

Substituting Eq. (61) into the Fourier transform 
of Eq. (86) yields 

 
*12 12 12

d d h d h(0) (0) .   0W A P a D P d        (87) 

 
In a same manner, Eq. (87) can be presented in 

the same form as Eq. (83) with the scattering matrix 
replaced by S1=−Dd

−1Ad. 
Similarly, the scattering relation for the OCCS 

at Node Line 2 is presented as 
 

2 2 2 ,d S a                                (88) 

 
where d2=d21=[d1

21 d2
21 d3

21 d4
21]T and a2=a21=[a1

21 
a2

21 a3
21 a4

21]T are amplitude vectors of the departing 
wave and the arriving wave at Node Line 2. In the 
same manner as the scattering matrix for Node Line 
1 is derived, the scattering matrix at Node Line 2 can 
be obtained as S2=−I4 for a simply supported edge, 
S2=−Df

−1Af for a free edge, and S2=−Dd
−1Ad for a 

clamped edge. 
Assembling both of the local scattering equa-

tions at Node Line 1 and Node Line 2 by stacking d1 
and d2, a1 and a2 into two column vectors d and a, 
the global scattering equation is obtained: 

 
,d Sa                                      (89) 
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where d=[(d1)T (d2)T]T and a=[(a1)T (a2)T]T are global 
amplitude vectors of the departing wave and the ar-
riving wave, and S=diag(S1 S2) is the global scatter-
ing matrix. 

2.6.2  Phase and permutation matrices 

The phase relations of harmonic waves in the 
dual coordinate system of MRRM provide additional 
equations for solving the unknown amplitude vectors. 
Note that the departing wave from Node Line 1 is 
exactly the arriving wave to Node Line 2, and vice 
versa. Therefore, the amplitudes of the departing 
wave and the arriving wave differ with each other by 
a phase factor. 

With the employment of the solutions of the 
OCCS with simply supported curved edges, the rela-
tions between the amplitudes of the departing wave 
and the arriving wave are presented as 

 

1 0 2 0

3 0 4 0

i i12 21 12 21
1 1 2 2

i i12 21 12 21
3 3 4 4

e , e ,
e , e ,

k k

k k
a d a d
a d a d

 

 

 

 

 

 
    
    

          (90) 

1 0 2 0

3 0 4 0

i i21 12 21 12
1 1 2 2

i i21 12 21 12
3 3 4 4

e , e ,
e , e ,

k k

k k
a d a d
a d a d

 

 

 

 

 

 
    
    

          (91) 

 

which are rewritten in matrix form as 
 

1 2
h 0( ) ,  a P d                        (92) 

2 1
h 0( ) .  a P d                         (93) 

 
Assembling both the local phase equations de-

fined by Eqs. (92) and (93) results in the global 
phase equation 
 

*,a Pd                                  (94) 

 
where a is defined in Eq. (89). However, d*=[(d2)T 
(d1)T]T is a rearranged global amplitude vector of the 
departing wave, and P=−diag(Ph(−θ0) Ph(−θ0)) is the 
global phase matrix. 

A comparison of the global amplitude vectors 
of the departing waves d and d* indicates that the 
two amplitude vectors contain the same scalar state 
variables arranged in different sequential orders. The 
relation between d and d* is 
 

* ,d Ud                                 (95) 

where U=[04 I4; I4 04] is the permutation matrix from 
d to d*, in which 04 and I4 are respectively the zero 
matrix and the unit matrix of fourth-order. 

2.6.3  Equation for natural frequencies 

Substitution of Eqs. (94) and (95) into Eq. (89) 
yields 

 
( ) ,  0I R d                            (96) 

 
where R=SPU is defined as the reverberation-ray 
matrix. 

To obtain a nontrivial solution of the global 
amplitude vector of the departing wave d, the deter-
minant of (I−R) must be zero: 
 

det( ) 0, I R                           (97) 

 
which is the equation of natural frequencies of the 
OCCS. 

2.7  Searching algorithm for natural frequencies 

As the equation of natural frequencies of the 
OCCS is obtained, the problem at hand is to solve 
the equation for the natural frequencies. It is obvious 
that the left hand side of Eq. (97) represents a func-
tion of frequency, and the natural frequencies are 
zero points of the function. Unfortunately, for most 
values of the frequency, the left hand side of Eq. (97) 
are complex numbers. Therefore, finding the zero 
points of the function needs to search the common 
zero points of the real part and the imaginary part of 
the function. A good idea is to search the zero points 
or the minimal values of the absolute value of the 
function. This simple approach is adopted in this 
paper and the golden section search algorithm 
(GSSA) (Press et al., 1992; Vajda, 2007) is intro-
duced to determine the natural frequencies of the 
OCCS. The procedure for determining natural fre-
quencies of the OCCS, which is shown in Fig. 4, is 
presented in detail as follows. 

Firstly, for a trial value of frequency ω1 and a 
given frequency step Δω, choose both of the end-
points of the interval (ω1, ω1+Δω) and the points 
with the distance of golden ratio of the interval 
length from the endpoints as observation frequencies 
and calculate the absolute values of the determinant 
of (I−R) for the observation frequencies. 
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Secondly, compare the absolute values of the 
determinant for the two frequencies at the left hand 
side and for the two frequencies at the right hand 
side of the interval to determine whether there is a 
zero point or minimal value in the interval. If the 
answer is yes, the golden section search algorithm is 
employed to find the zero point or minimal value; if 
not, the trial frequency will increase by a frequency 
step, and the above-mentioned process will be re-
peated until the answer becomes yes. 

Thirdly, calculate the absolute value of the de-
terminant for the minimal value obtained in the pre-
ceding step to check whether the calculation result is 
less than the predefined tolerance. If the answer is no, 
the minimal value will be ignored and the trial fre-
quency will increase by a frequency step, and the 
above-mentioned process will be repeated until the 
answer becomes yes. While if the answer is yes, the 
minimal value is one of the natural frequencies and 
then the trial frequency will increase by a frequency 
step, and the above-mentioned process will be re-
peated to find the next natural frequency. The proce-
dure will be terminated when enough natural fre-
quencies are obtained. 

2.8  Mode shapes for the OCCS 

Substituting one of the natural frequencies de-
termined in the preceding subsection into Eq. (96), 

the global amplitude vector of the departing wave d 
is obtained. By normalization, the global amplitude 
vector of the departing wave is determinate. Subse-
quently, by substituting the global amplitude vector 
of the departing wave into Eqs. (94) and (95), the 
global amplitude vector of the arriving wave a is 
determined. 

Finally, substituting the global amplitude vector 
of the departing wave and the arriving wave into the 
expressions of the displacement components of the 
OCCS, the mode shape corresponding to the natural 
frequency is obtained. 

 
 

3  Results and discussion 
 

The MRRM and the golden section search algo-
rithm are applied in this section to obtain the exact 
natural frequencies for the OCCS. To begin with, the 
natural frequencies for the OCCS with all four edges 
simply supported are calculated and compared with 
the results obtained by FEM and the method of Leis-
sa. Then, natural frequencies for the OCCS of differ-
ent length, radius, thickness, and included angle are 
obtained and the effects of these parameters on the 
natural frequencies are analyzed. Finally, natural 
frequencies for the OCCS with different boundary 
conditions are calculated and the effects of boundary 
conditions on the natural frequencies are also  
analyzed. 

3.1  Verification of the method 

The basic parameters of the OCCS are defined 
in Table 1. For such an OCCS with all four edges 
simply supported, a comparison study, with the cal-
culation results shown in Table 2, is carried out by 
the MRRM presented in this paper, FEM, and the 
method of Leissa. In addition, some mode shapes 
obtained by FEM and MRRM are presented in Fig. 5. 

 
  

 
 
 
 
 

Table 1  Basic parameters of the OCCS 

Parameter Value Parameter Value 

E (Pa) 2.1×1011 R (m) 5 

μ 0.3 L (m) 10 

ρ (kg/m3) 7800 θ0 30° 

h (mm) 6  

2 1 ,    

10 1 0.618 ,    

20 2 0.618    

1 20 10 2, , ,A A A A

1 20 10 2&A A A A 

0

GSSA




1A trial frequency 

frequency step 

,

0

1 20 10 2, , ,   
  1 1abs det ( ) ,A  I R

  10 10abs det ( ) ,A  I R

  20 20abs det ( )A  I R

  2 2abs det ( ) ,A  I R

  0 0abs det ( )A  I R

0A 

Y

Y

N

N

1 1   

Next

Fig. 4  Calculation procedure for natural frequencies of 
the OCCS (Guo, 2008) 
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The results by FEM in Table 2 and Fig. 5 are 

obtained with the common program software AN-
SYS, in which the geometry and material properties  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

of the open circular cylindrical shell are defined ac-
cording to Table 1 and a 250×66 finite element mesh 
(element edge length 0.04 m) of SHELL181  

Table 2  Comparison of natural frequencies obtained by FEM, Leissa’s method (LM), and MRRM  

n Method 
f (Hz) 

m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 

1 

FEM 10.704 34.971 62.339 85.755 103.823 117.321 127.288 134.768 140.495 144.995 

LM 10.683442 35.112306 62.316851 85.708706 103.795915 117.260737 127.239727 134.726258 140.462083 144.974008

MRRM1 10.683442 35.112306 62.316851 85.708706 103.795915 117.260737 127.239727 134.726258 140.462083 144.974008

MRRM2 10.683442 35.112306 62.316851 85.708706 103.795915 117.260737 127.239727 134.726258 140.462083 144.974008

2 

FEM 9.245 14.052 24.183 37.104 50.937 64.442 76.948 88.190 98.172 106.914 

LM 9.182095 13.997569 24.121208 37.061445 50.864659 64.336077 76.826046 88.060313 97.997932 106.725825

MRRM1 9.182095 13.997569 24.121208 37.061445 50.864659 64.336077 76.826046 88.060313 97.997932 106.725825

MRRM2 9.182095 13.997569 24.121208 37.061445 50.864659 64.336077 76.826046 88.060313 97.997932 106.725825

3 

FEM 19.712 20.693 23.368 28.291 35.164 43.364 52.293 61.447 70.528 79.351 

LM 19.589616 20.577955 23.272018 28.184010 35.052102 43.239370 52.131339 61.261467 70.311352 79.082207

MRRM1 19.589616 20.577955 23.272018 28.184010 35.052102 43.239370 52.131339 61.261467 70.311352 79.082207

MRRM2 19.589616 20.577955 23.272018 28.184010 35.052102 43.239370 52.131339 61.261467 70.311352 79.082207

4 

FEM 34.895 35.585 36.585 38.599 41.626 45.754 50.850 56.766 63.268 70.165 

LM 34.671416 35.217166 36.365375 38.368545 41.409543 45.529062 50.627393 56.518955 62.993151 69.855024

MRRM1 34.671416 35.217166 36.365375 38.368545 41.409543 45.529062 50.627393 56.518955 62.993151 69.855024

MRRM2 34.671416 35.217166 36.365375 38.368545 41.409543 45.529062 50.627393 56.518955 62.993151 69.855024

5 

FEM 54.536 55.015 55.846 57.172 59.042 61.516 64.666 68.463 72.878 77.822 

LM 54.098700 54.569540 55.421826 56.739317 58.608406 61.096957 64.239020 68.029361 72.427699 77.369168

MRRM1 54.098700 54.569540 55.421826 56.739317 58.608406 61.096957 64.239020 68.029361 72.427699 77.369168

MRRM2 54.098700 54.569540 55.421826 56.739317 58.608406 61.096957 64.239020 68.029361 72.427699 77.369168

6 

FEM 78.672 79.141 79.922 81.022 82.561 84.511 86.917 89.811 93.149 96.988 

LM 77.848269 78.301104 79.079317 80.213978 81.741024 83.695373 86.105431 88.988979 92.351044 96.183863

MRRM1 77.848269 78.301104 79.079317 80.213978 81.741024 83.695373 86.105431 88.988979 92.351044 96.183863

MRRM2 77.848269 78.301104 79.079317 80.213978 81.741024 83.695373 86.105431 88.988979 92.351044 96.183863

7 

FEM 107.366 107.859 108.614 109.685 111.097 112.822 114.959 117.468 120.370 123.670 

LM 105.917005 106.364359 107.119472 108.195392 109.608088 111.374545 113.510793 116.030143 118.941828 122.250189

MRRM1 105.917005 106.364359 107.119472 108.195392 109.608088 111.374545 113.510793 116.030143 118.941828 122.250189

MRRM2 105.917005 106.364359 107.119472 108.195392 109.608088 111.374545 113.510793 116.030143 118.941828 122.250189

8 

FEM 140.590 141.252 142.001 143.047 144.404 146.082 148.089 150.436 153.129 156.174 

LM 138.304293 138.749680 139.496327 140.550307 141.919306 143.611918 145.636879 148.002310 150.715052 153.780149

MRRM1 138.304293 138.749680 139.496327 140.550307 141.919306 143.611918 145.636879 148.002310 150.715052 153.780149

MRRM2 138.304293 138.749680 139.496327 140.550307 141.919306 143.611918 145.636879 148.002310 150.715052 153.780149

9 

FEM 179.384 179.427 180.181 181.217 182.552 184.192 186.144 188.414 191.006 193.925 

LM 175.009975 175.454567 176.197714 177.242486 178.592856 180.253411 182.229022 184.524509 187.144318 190.092241

MRRM1 175.009975 175.454567 176.197714 177.242486 178.592856 180.253411 182.229022 184.524509 187.144318 190.092241

MRRM2 175.009975 175.454567 176.197714 177.242486 178.592856 180.253411 182.229022 184.524509 187.144318 190.092241

10 

FEM 222.285 222.501 223.277 224.310 225.633 227.254 229.176 231.405 233.942 236.792 

LM 216.034005 216.478246 217.219805 218.260343 219.602041 221.247476 223.199463 225.460902 228.034611 230.923182

MRRM1 216.034005 216.478246 217.219805 218.260343 219.602041 221.247476 223.199463 225.460902 228.034611 230.923182

MRRM2 216.034005 216.478246 217.219805 218.260343 219.602041 221.247476 223.199463 225.460902 228.034611 230.923182
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elements is used during the calculation. 
The integer numbers m and n in Table 2 denote 

the half-wave numbers of the vibration mode in the 
axial and circumferential directions. MRRM1 and 
MRRM2 represent the results calculated by MRRM 
with the solutions for simply supported curved edges 
derived in Section 2.3 and with the solutions for 
simply supported straight edges derived in Section 
2.4. 

It is observed from Table 2 that an excellent 
agreement is achieved between the results obtained 
by MRRM based on both of the two solutions and 
the results obtained by the method of Leissa. There-
fore, the comparison study confirms the validity of 
MRRM for vibration analysis of OCCSs. The results 
obtained by FEM are quite close to those obtained 
by MRRM. 

Fig. 5 shows that the mode shapes obtained by 
FEM and MRRM are almost the same as each other, 
which further indicates that MRRM is suitable for 
free vibration analysis of OCCSs. 

Table 2 also shows that the natural frequencies 
of the OCCS increase with the increase of the axial 
mode number. However, as the circumferential mode 
number increases, the natural frequencies of the 
OCCS firstly decrease to a minimal value at a certain 
mode number, for example n=2 for m=1, 2, n=3 for 
m=3–6, and n=4 for m=7–10, and then gradually 
increase all the way up. Table 2 also shows that the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

natural frequencies of the OCCS increase with the 
increase of the circumferential mode number more 
rapidly than they do with the increase of the axial 
mode number. 

3.2  Effect of shell length on natural frequencies 

The effect of shell length on natural frequencies 
of the OCCS with all four edges simply supported is 
investigated in this subsection. The shell length is set 
to be 6 m, 8 m, 10 m, and 12 m, respectively. The 
other parameters of the OCCS are defined in Table 1. 
The comparison results are presented in Table 3, in 
which all the natural frequencies are normalized by 
the results presented in Table 2. Since all the normal-
ized natural frequencies corresponding to shell 
length of 10 m turn out to be unit one, they are  
omitted in this table. The same manner is used for 
Table 4–8, and it will not be mentioned in the next 
subsections. 

Table 3 shows that, for an arbitrary pair of 
mode numbers, the natural frequencies of the OCCS 
decrease with the increase of the shell length. 

For an arbitrary axial mode number, the differ-
ence of natural frequencies corresponding to differ-
ent shell lengths decreases with the increase of the 
circumferential mode number. However, for an arbi-
trary circumferential mode number, the difference of 
natural frequencies corresponding to different shell 
lengths increases with the increase of the axial mode 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 5  Comparison of some selected mode shapes calculated by FEM and MRRM 

(a) FEM, (m, n)=(1, 1); (b) FEM, (m, n)=(3, 2); (c) FEM, (m, n)=(5, 2); (d) FEM, (m, n)=(8, 3); (e) MRRM, (m, n)=(1, 1); 
(f) MRRM, (m, n)=(3, 2); (g) MRRM, (m, n)=(5, 2); (h) MRRM, (m, n)=(8, 3) 
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number, which indicates that the effect of shell 
length on natural frequencies of the OCCS increases 
with axial mode number while it decreases with the 
circumferential mode number. 

3.3  Effect of shell radius on natural frequencies 

The effects of shell radius on natural frequen-
cies of the OCCS with all four edges simply sup-
ported are investigated in this subsection. The shell 
radii are taken as 3 m, 4 m, 5 m, and 6 m. The other  
 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

parameters of the OCCS are defined in Table 1. The 
calculation results are presented in Table 4. 

It can be found from Table 4 that, for most but 
not all of the mode numbers (except for (m, n)= 
(1–5, 1) and (4–9, 2)), the natural frequencies of the 
OCCS decrease with the increase of the shell radius. 
The effect of shell radius on natural frequencies of 
the OCCS decreases with axial mode number  
while it increases with circumferential mode  
number. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Effect of shell length on the normalized natural frequencies 

n L (m) 
f  

m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 

1 

6 2.446645  2.013127  1.665616  1.449494 1.317999 1.236339 1.184627 1.151977  1.132400  1.122560 

8 1.489498  1.393654  1.289484  1.211031 1.156493 1.119236 1.093686 1.076063  1.063967  1.055900 

12 0.723040  0.744428  0.785251  0.824718 0.858290 0.885172 0.906077 0.922123  0.934362  0.943637 

2 

6 1.275481  2.017254  2.108711  1.964163 1.799176 1.658880 1.548817 1.465509  1.404142  1.360527 

8 1.069796  1.325123  1.396452  1.372441 1.328358 1.283988 1.244783 1.211963  1.185320  1.164205 

12 0.971580  0.836687  0.768971  0.761888 0.773472 0.790609 0.808931 0.826646  0.842944  0.857472 

3 

6 1.026277  1.198463  1.506191  1.742872 1.834383 1.828940 1.780379 1.719556  1.660960  1.610634 

8 1.007084  1.052629  1.149522  1.243688 1.295707 1.311067 1.305722 1.290896  1.272818  1.254710 

12 0.996659  0.976986  0.930772  0.875032 0.833283 0.810652 0.802031 0.801827  0.806267  0.813065 

4 

6 1.008919  1.048541  1.138708  1.272647 1.415676 1.534295 1.614428 1.658727  1.676978  1.679375 

8 1.002689  1.013705  1.038776  1.079258 1.128198 1.174792 1.211422 1.235957  1.249922  1.256120 

12 0.998592  0.993284  0.981698  0.962420 0.936988 0.909519 0.884312 0.863951  0.849095  0.839202 

5 

6 1.005086  1.022638  1.057497  1.112431 1.184655 1.266334 1.348105 1.422505  1.485494  1.536214 

8 1.001586  1.006845  1.016954  1.032942 1.054810 1.081150 1.109518 1.137291  1.162425  1.183796 

12 0.999147  0.996414  0.991362  0.983531 0.972734 0.959269 0.943932 0.927814  0.912012  0.897395 

6 

6 1.003430  1.014241  1.033659  1.062784 1.101731 1.149214 1.202747 1.259284  1.315920  1.370376 

8 1.001080  1.004427  1.010314  1.019037 1.030746 1.045307 1.062255 1.080851  1.100230  1.119546 

12 0.999416  0.997627  0.994543  0.990054 0.984087 0.976649 0.967868 0.957985  0.947335  0.936297 

7 

6 1.002498  1.010129  1.023232  1.042158 1.067045 1.097649 1.133296 1.172954  1.215396  1.259374 

8 1.000789  1.003181  1.007244  1.013057 1.020667 1.030055 1.041106 1.053607  1.067260  1.081713 

12 0.999572  0.998282  0.996109  0.993034 0.989042 0.984139 0.978364 0.971788  0.964521  0.956700 

8 

6 1.001907  1.007665  1.017369  1.031121 1.048960 1.070804 1.096415 1.125403  1.157246  1.191348 

8 1.000603  1.002417  1.005457  1.009740 1.015272 1.022036 1.029986 1.039039  1.049074  1.059941 

12 0.999673  0.998690  0.997051  0.994755 0.991806 0.988214 0.984002 0.979204  0.973868  0.968055 

9 

6 1.001505  1.006028  1.013593  1.024219 1.037900 1.054583 1.074154 1.096428  1.121156  1.148037 

8 1.000476  1.001904  1.004286  1.007619 1.011897 1.017104 1.023211 1.030173  1.037931  1.046408 

12 0.999742  0.998967  0.997678  0.995880 0.993580 0.990788 0.987521 0.983800  0.979653  0.975114 

10 

6 1.001218  1.004874  1.010967  1.019491 1.030427 1.043733 1.059335 1.077130  1.096980  1.118715 

8 1.000385  1.001541  1.003463  1.006147 1.009584 1.013758 1.018648 1.024227  1.030458  1.037296 

12 0.999791  0.999164  0.998122  0.996669 0.994813 0.992563 0.989931 0.986932  0.983585  0.979910 
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3.4  Effect of shell thickness on natural frequencies 

 
Table 5 presents the natural frequencies of the 

OCCS with all four edges simply supported as the 
shell thickness varies from 4 mm, by every 2 mm, to 
10 mm. The rest parameters of the OCCS are defined 
in Table 1. The calculation results are presented in 
Table 5. 

It is observed from Table 5 that the natural fre-
quencies of the OCCS increase with the increase of  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
the shell thickness for all mode numbers. The effect 
of shell thickness on natural frequencies of the 
OCCS decreases with axial mode number while it 
increases with the circumferential mode number. 

For small circumferential mode numbers n=1 
and 2, the natural frequencies corresponding to dif-
ferent shell thickness are very close to each other. 
However, for large circumferential mode numbers n 
≥7, the natural frequencies vary linearly with the 
shell thickness. 

Table 4  Effect of shell radius on the normalized natural frequencies 

n R (m) 
f 

m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 

1 

3 0.834182  0.717963  0.799013  0.901277 1.003349 1.096833 1.178429 1.247630  1.305318  1.352900 

4 0.863821  0.871513  0.927372  0.983799 1.032973 1.073129 1.104913 1.129740  1.149053  1.164064 

6 1.150122  1.095293  1.029006  0.977504 0.940855 0.915305 0.897392 0.884657  0.875480  0.868818 

2 

3 2.626110  1.812428  1.204825  0.971491 0.901613 0.897741 0.922262 0.959452  1.001888  1.045665 

4 1.500395  1.177597  0.980631  0.931605 0.932930 0.950797 0.974075 0.998405  1.021851  1.043522 

6 0.757714  0.997116  1.076325  1.071229 1.046475 1.018935 0.993429 0.971283  0.952621  0.937144 

3 

3 2.759039  2.651723  2.389903  2.037619 1.718029 1.483523 1.328362 1.231819  1.175411  1.145805 

4 1.555939  1.514070  1.409740  1.274385 1.161459 1.088668 1.048678 1.030192  1.024757  1.034343 

6 0.699488  0.738802  0.828148  0.919363 0.975305 0.999000 1.003476 0.998168  0.988423  0.977086 

4 

3 2.769661  2.739711  2.675109  2.566300 2.417161 2.245269 2.072229 1.914256  1.779337  1.669104 

4 1.559867  1.549493  1.525738  1.484511 1.427787 1.363514 1.301034 1.246836  1.203535  1.162635 

6 0.696028  0.703713  0.723562  0.758081 0.801947 0.845603 0.881757 0.907810  0.924485  0.933811 

5 

3 2.772829  2.757095  2.728308  2.683906 2.622421 2.544574 2.453527 2.354189  2.252001  2.151818 

4 1.560923  1.555788  1.546060  1.530560 1.508595 1.480447 1.447471 1.411773  1.375641  1.341049 

6 0.695327  0.698481  0.705151  0.716597 0.733251 0.754263 0.777719 0.801355  0.823261  0.842247 

6 

3 2.774380  2.764015  2.746228  2.720456 2.686262 2.643568 2.592827 2.535053  2.471746  2.404697 

4 1.561422  1.558106  1.552326  1.543800 1.532288 1.517706 1.500199 1.480159  1.458189  1.435016 

6 0.695036  0.696925  0.700410  0.705859 0.713548 0.723528 0.735559 0.749135  0.763584  0.778206 

7 

3 2.775289  2.767792  2.755203  2.737424 2.714390 2.686128 2.652802 2.614741  2.572446  2.526566 

4 1.561712  1.559329  1.555300  1.549560 1.542052 1.532751 1.521690 1.508974  1.494779  1.479347 

6 0.694874  0.696195  0.698488  0.701863 0.706420 0.712211 0.719216 0.727328  0.736362  0.746072 

8 

3 2.775874  2.770163  2.760644  2.747326 2.730241 2.709456 2.685090 2.657319  2.626385  2.592593 

4 1.561897  1.560087  1.557059  1.552804 1.547318 1.540608 1.532699 1.523641  1.513509  1.502407 

6 0.694772  0.695765  0.697447  0.699851 0.703008 0.706940 0.711644 0.717090  0.723219  0.729941 

9 

3 2.776274  2.771769  2.764279  2.753833 2.740480 2.724287 2.705346 2.683778  2.659732  2.633386 

4 1.562024  1.560597  1.558221  1.554900 1.550642 1.545464 1.539387 1.532445  1.524683  1.516158 

6 0.694703  0.695482  0.696787  0.698629 0.701014 0.703949 0.707427 0.711437  0.715950  0.720929 

10 

3 2.776560  2.772912  2.766852  2.758409 2.747625 2.734557 2.719277 2.701871  2.682443  2.661113 

4 1.562115  1.560960  1.559040  1.556361 1.552935 1.548775 1.543902 1.538341  1.532121  1.525280 

6 0.694654  0.695283  0.696332  0.697804 0.699698 0.702012 0.704742 0.707877  0.711402  0.715296 
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3.5  Effect of included angle on natural  
frequencies 

 
The effect of the included angle on the natural 

frequencies of the OCCS with all four edges simply 
supported is investigated in this subsection. The in-
cluded angles are taken as 10°, 20°, 30°, and 40°. The 
other parameters of the OCCSs are defined in Table 1. 
The calculation results are presented in Table 6. 

Table 6 shows that the included angle exerts a 
significant influence on the natural frequencies of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the OCCS. For most but not all mode numbers, the 
natural frequencies of the OCCS decrease as the in-
cluded angle increases. 

For mode numbers n≤4, the natural frequencies 
of the OCCS vary complicatedly with the included 
angle. Specifically, for n=1, the natural frequencies 
of the OCCS increase with increase of the included 
angle with an exception for m=1. While for mode 
numbers of (m, n)=(1, 1), (3–5, 2), and (8–10, 3), the 
highest and the lowest natural frequencies are corre-
sponding to the included angles of 10° and 20°. For 

Table 5  Effect of shell thickness on the normalized natural frequencies 

n h (mm) 
f 

m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 

1 

4 0.987342  0.998344  0.999150 0.999239 0.999126 0.998877 0.998488 0.997936  0.997187  0.996200 

8 1.017457  1.002314  1.001189 1.001064 1.001222 1.001570 1.002112 1.002882  1.003925  1.005296 

10 1.039470  1.005281  1.002716 1.002431 1.002792 1.003586 1.004822 1.006575  1.008949  1.012063 

2 

4 0.703630  0.871957  0.951759 0.975393 0.983643 0.986911 0.990347 0.988240  0.987669  0.967049 

8 1.306471  1.155668  1.063869 1.033467 1.022461 1.018042 1.016406 1.016236  1.017012  1.018520 

10 1.617311  1.329290  1.140744 1.074965 1.050634 1.040779 1.037119 1.036736  1.038476  1.041848 

3 

4 0.668351  0.689651  0.747790 0.817768 0.871135 0.904681 0.924618 0.936328  0.943068  0.946666 

8 1.332152  1.316865  1.271666 1.209859 1.156535 1.119898 1.096866 1.082869  1.074649  1.070211 

10 1.664506  1.636465  1.552608 1.435276 1.331012 1.257365 1.210067 1.180901  1.163611  1.154224 

4 

4 0.666838  0.669258  0.678386 0.697653 0.725938 0.758091 0.788705 0.814658  0.835105  0.850455 

8 1.333213  1.331515  1.325032 1.310951 1.289271 1.263098 1.236576 1.212792  1.193163  1.177886 

10 1.666447  1.663340  1.651464 1.625576 1.585448 1.536539 1.486412 1.440924  1.402967  1.373143 

5 

4 0.666696  0.667115  0.668806 0.672865 0.680129 0.690772 0.704192 0.719247  0.734657  0.749341 

8 1.333313  1.333019  1.331832 1.328967 1.323781 1.316043 1.306047 1.294510  1.282338  1.270387 

10 1.666629  1.666092  1.663921 1.658677 1.649169 1.634952 1.616527 1.595176  1.572544  1.550213 

6 

4 0.666673  0.666772  0.667182 0.668207 0.670166 0.673304 0.677728 0.683375  0.690027  0.697360 

8 1.333329  1.333259  1.332972 1.332253 1.330875 1.328656 1.325503 1.321438  1.316589  1.311169 

10 1.666658  1.666531  1.666007 1.664691 1.662169 1.658106 1.652329 1.644870  1.635958  1.625978 

7 

4 0.666669  0.666698  0.666820 0.667132 0.667745 0.668768 0.668773 0.672339  0.674931  0.678015 

8 1.333332  1.333312  1.333226 1.333008 1.332577 1.331859 1.330792 1.329340  1.327499  1.325298 

10 1.666664  1.666627  1.666471 1.666071 1.665284 1.663970 1.662017 1.659359  1.655988  1.651952 

8 

4 0.666667  0.666677  0.666720 0.666830 0.667050 0.667425 0.667997 0.668797  0.669846  0.684687 

8 1.333333  1.333326  1.333296 1.333219 1.333065 1.332802 1.332401 1.331839  1.331101  1.330183 

10 1.666666  1.666653  1.666598 1.666458 1.666175 1.665694 1.664961 1.663933  1.662583  1.660902 

9 

4 0.666667  0.666671  0.666688 0.666731 0.666820 0.666972 0.667209 0.667547  0.668000  0.668578 

8 1.333333  1.333330  1.333319 1.333288 1.333226 1.333119 1.332954 1.332717  1.332399  1.331993 

10 1.666666  1.666661  1.666640 1.666584 1.666471 1.666275 1.665972 1.665539  1.664957  1.664215 

10 

4 0.666667  0.666669  0.666676 0.666695 0.666734 0.666801 0.666907 0.667061  0.667271  0.667543 

8 1.333333  1.333332  1.333327 1.333314 1.333286 1.333239 1.333165 1.333057  1.332910  1.332719 

10 1.666666  1.666664  1.666655 1.666631 1.666581 1.666494 1.666358 1.666161  1.665892  1.665544 
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mode numbers of (m, n)=(2, 2), (4–7, 3), and (7–10, 
4), the highest and the lowest natural frequencies are 
corresponding to the included angles of 10° and 30°. 
For mode numbers of (m, n)=(6–10, 2), the highest 
and the lowest natural frequencies are corresponding 
to the included angles of 40° and 20°. 

3.6  Effect of boundary conditions on natural  
frequencies 

Based on the solutions derived in Sections 2.3 
and 2.4, the MRRM is employed to calculate the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

natural frequencies of the OCCS with the two curved 
edges or the two straight edges simply supported, 
and the two remaining edges supported by an arbi-
trary combination of SSE, CE, and FE, such as SSE-
SSE, SSE-CE, SSE-FE, CE-CE, CE-FE, and FE-FE. 
However, for simplicity, cases of the two remaining 
edges with the same boundary conditions are chosen 
as calculation examples to investigate the effect of 
the boundary conditions on the natural frequencies. 
The basic parameters are defined in Table 1. The 
boundary conditions of the two remaining edges 

Table 6  Effect of included angle on the normalized natural frequencies 

n θ0 
f 

m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 

1 

10° 1.833643  0.586061  0.373447  0.328835 0.337702 0.368746 0.409710 0.454711  0.500572  0.545492 

20° 0.650374  0.530346  0.574977  0.633181 0.689290 0.738765 0.780580 0.815210  0.843671  0.867061 

40° 1.639736  1.505554  1.364258  1.261729 1.191768 1.144187 1.111222 1.087784  1.070660  1.057822 

2 

10° 8.478269  5.593907  3.278414  2.164351 1.607030 1.300909 1.120784 1.010546  0.942377  0.901224 

20° 2.133458  1.470109  0.964795  0.760467 0.689125 0.672086 0.678563 0.695676  0.717478  0.740985 

40° 0.756716  1.330352  1.485445  1.464301 1.406585 1.346494 1.292801 1.247216  1.209248  1.177796 

3 

10° 8.933813  8.526336  7.571226  6.288760 5.095068 4.168734 3.495575 3.012081  2.661652  2.403730 

20° 2.238140  2.154675  1.945955  1.661616 1.400923 1.206963 1.075853 0.991410  0.939108  0.908472 

40° 0.575038  0.693358  0.930898  1.141649 1.258824 1.303366 1.307601 1.292369  1.268813  1.242576 

4 

10° 8.970993  8.844580  8.585679  8.164468 7.597134 6.945620 6.284364 5.668810  5.126453  4.663528 

20° 2.245315  2.223379  2.174577  2.090618 1.973966 1.838285 1.700768 1.574498  1.466049  1.376907 

40° 0.565008  0.584316  0.639950  0.734560 0.846474 0.949709 1.029706 1.083910  1.116175  1.132090 

5 

10° 8.982268  8.912902  8.789190  8.603366 8.351733 8.038224 7.675043 7.280104  6.872813  6.470295 

20° 2.247205  2.235991  2.215136  2.182426 2.136475 2.077632 2.008218 1.932000  1.853236  1.775768 

40° 0.563625  0.569627  0.584828  0.613441 0.656148 0.709202 0.766318 0.821361  0.870024  0.910176 

6 

10° 8.987816  8.941506  8.862870  8.750416 8.603241 8.421803 8.208431 7.967408  7.704612  7.426851 

20° 2.248091  2.240767  2.228114  2.209621 2.184862 2.153684 2.116348 2.073566  2.026445  1.976342 

40° 0.563202  0.566260  0.572669  0.583826 0.600743 0.623551 0.651360 0.682503  0.714988  0.746944 

7 

10° 8.991074  8.957433  8.901197  8.822255 8.720700 8.597002 8.452159 8.287773  8.106045  7.909685 

20° 2.248604  2.243322  2.234427  2.221813 2.205395 2.185150 2.161161 2.133639  2.102929  2.069498 

40° 0.562998  0.564993  0.568705  0.574595 0.583094 0.594461 0.608688 0.625474  0.644268  0.664369 

8 

10° 8.993172  8.967503  8.924809  8.865253 8.789120 8.696867 8.589154 8.466878  8.331175  8.183407 

20° 2.248933  2.244914  2.238205  2.228802 2.216709 2.201959 2.184618 2.164799  2.142662  2.118419 

40° 0.562877  0.564334  0.566892  0.570714 0.575968 0.582788 0.591234 0.601268  0.612753  0.625463 

9 

10° 8.994606  8.974345  8.940693  8.893836 8.834045 8.761694 8.677262 8.581347  8.474661  8.358029 

20° 2.249157  2.245988  2.240716  2.233356 2.223935 2.212494 2.199090 2.183802  2.166729  2.147993 

40° 0.562796  0.563925  0.565853  0.568642 0.572358 0.577060 0.582782 0.589529  0.597263  0.605908 

10 

10° 8.567290  8.647176  8.776958  8.914042 8.865645 8.807068 8.738665 8.660859  8.574141  8.479065 

20° 2.249317  2.246752  2.242489  2.236545 2.228949 2.219736 2.208954 2.196659  2.182923  2.167826 

40° 0.562739  0.563645  0.565174  0.567347 0.570192 0.573733 0.577985 0.582951  0.588619  0.594959 
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SSE-SSE, CE-CE, and FE-FE are respectively de-
noted as SSEs, CEs, and FEs in the following  
discussion. 

The effects of boundary conditions on natural 
frequencies of the shell with simply supported 
curved edges and simply supported straight edges 
are respectively presented in Tables 7 and 8. In addi-
tion, some mode shapes obtained by MRRM are pre-
sented in Fig. 6. 

It can be observed from Table 7 that, as the two 
curved edges are simply supported, the natural fre-
quencies corresponding to the three kinds of bounda-
ry conditions of the remaining two edges decrease in 
the order of CEs, SSEs, and FEs for most but not all 
mode numbers. For mode numbers (m, n)=(1–10, 1) 
and (5–10, 2), the natural frequencies of the OCCS 
with the two remaining edges supported by SSEs, 
CEs, and FEs decrease in sequence. 

Table 8 shows that, as the two straight edges are 
simply supported, the boundary conditions of the 
remaining two edges have little effect on the natural 
frequencies of the OCCS. For circumferential mode 
numbers no more than 5, the natural frequencies 
with the two remaining edges supported by CEs, 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SSEs, and FEs decrease in sequence. However, as 
the circumferential mode number becomes larger 
than 5, the natural frequencies of the remaining two 
edges decrease in the order of FEs, CEs, and SSEs. 

 
 

4  Conclusions 
 

This paper presents analytical solutions and ex-
act natural frequencies for the OCCS with either the 
two curved edges or the two straight edges simply 
supported. Based on the DMV thin shell theory, the 
solutions of the unidirectional traveling wave form 
for the OCCS with two opposite simply supported 
edges are obtained. Subsequently, MRRM is applied 
to derive the equation of natural frequencies of the 
OCCS, and the golden section search algorithm is 
employed to obtain the exact natural frequencies. 
Then, the proposed procedure is verified by the com-
parison of the present results with those obtained by 
FEM and MRRM. Finally, the effects of shell length, 
shell radius, shell thickness, included angle, and the 
boundary conditions on natural frequencies of the 
OCCS are investigated. It can be concluded as follows: 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7  Effect of boundary conditions (BCs) on normalized natural frequencies of the OCCS with simply sup-
ported curved edges 

n BCs 
f 

m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 

1 
CEs 0.650209  0.396872  0.335770 0.325678 0.336265 0.357262 0.384180 0.414717  0.447551  0.481844 

FEs 0.132677  0.134774  0.118332 0.122015 0.135258 0.149735 0.165784 0.185119  0.206725  0.230002 

2 
CEs 2.236561  2.216614  1.555305 1.137218 0.922816 0.813728 0.759557 0.735621  0.729131  0.733066 

FEs 0.365351  0.372434  0.352469 0.310532 0.282759 0.276181 0.280297 0.288188  0.299694  0.314395 

3 
CEs 1.251485  1.302330  1.369184 1.377907 1.327416 1.250683 1.171769 1.103327  1.050076  1.011764 

FEs 0.317305  0.744775  0.862625 1.018234 1.023109 0.961361 0.930360 0.918448  0.917112  0.913004 

4 
CEs 1.298686  1.444120  1.701758 1.906069 1.965036 1.912282 1.810122 1.697644  1.592963  1.502596 

FEs 0.396526  0.528519  0.792104 0.824395 0.957390 1.121704 1.113582 1.080289  1.053374  1.042975 

5 
CEs 1.166778  1.171053  1.181569 1.198809 1.222570 1.251317 1.280532 1.303517  1.315256  1.314679 

FEs 0.492336  0.502621  0.688657 0.832719 0.847081 0.872209 0.994828 1.108522  1.140859  1.124804 

6 
CEs 1.175744  1.187143  1.210558 1.252169 1.310458 1.367722 1.408114 1.427904  1.429759  1.417899 

FEs 0.563720  0.568074  0.576205 0.744270 0.857595 0.865915 0.874963 0.884681  0.932900  0.997603 

7 
CEs 1.111433  1.112086  1.113178 1.114673 1.116495 1.118501 1.120460 1.122037  1.122802  1.122272 

FEs 0.527413  0.620668  0.625151 0.632039 0.733061 0.877860 0.883211 0.889104  0.895390  0.901910 

8 
CEs 1.128719  1.130418  1.133154 1.136688 1.139468 1.127263 1.113835 1.099160  1.083350  1.066620 

FEs 0.473360  0.662329  0.665153 0.669162 0.674380 0.681254 0.768099 0.829467  0.870224  0.894843 

9 
CEs 1.137716  1.134904  1.132595 1.130707 1.128947 1.127137 1.125185 1.123039  1.120672  1.118070 

FEs 0.522095  0.695960  0.697908 0.700642 0.704159 0.708449 0.713491 0.719262  0.725766  0.733215 

10 
CEs 1.102108  1.102442  1.102900 1.103340 1.103617 1.103618 1.103283 1.102599  1.101577  1.100244 

FEs 0.562856  0.723601  0.725010 0.726976 0.729490 0.732539 0.736101 0.740149  0.744650  0.749563 
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Table 8  Effect of boundary conditions (BCs) on normalized natural frequencies of the OCCS with simply sup-
ported straight edges 

n BCs 
f 

m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 

1 
CEs 1.747624  1.165110  1.043241 1.011418 1.003505 1.001733 1.001527 1.001687  1.001914  1.002145 

FEs 0.209645  0.661458  0.828184 0.912831 0.953015 0.973321 0.983870 0.989704  0.993003  0.994939 

2 
CEs 1.148320  1.240040  1.157162 1.086803 1.046977 1.026024 1.015300 1.009901  1.007235  1.005968 

FEs 0.947912  0.790859  0.788696 0.842988 0.888826 0.921530 0.944078 0.959539  0.970171  0.977523 

3 
CEs 1.009118  1.036024  1.064225 1.072524 1.063742 1.049794 1.037216 1.027726  1.021112  1.016692 

FEs 0.993815  0.977108  0.945324 0.920605 0.914808 0.921559 0.932739 0.944111  0.954108  0.962366 

4 
CEs 1.001433  1.005825  1.012727 1.020354 1.026346 1.029308 1.029379 1.027571  1.024946  1.022232 

FEs 0.996149  0.994489  0.989684 0.982263 0.974072 0.967459 0.963736 0.962857  0.964043  0.966422 

5 
CEs 1.000404  1.001607  1.003545 1.006035 1.008765 1.011363 1.013513 1.015044  1.015941  1.016304 

FEs 0.996607  0.996793  0.995804 0.994163 0.991906 0.989263 0.986592 0.984251  0.982479  0.981363 

6 
CEs 1.000158  1.000626  1.001383 1.002389 1.003581 1.004880 1.006197 1.007451  1.008579  1.009543 

FEs 1.003336  1.007122  1.011012 1.014972 1.018913 1.022706 1.026215 1.029320  1.031935  1.034017 

7 
CEs 1.000077  1.000305  1.000678 1.001180 1.001794 1.002496 1.003257 1.004049  1.004845  1.005619 

FEs 1.002175  1.004878  1.007600 1.010317 1.012999 1.015607 1.018096 1.020420  1.022538  1.024417 

8 
CEs 1.000044  1.000174  1.000388 1.000679 1.001041 1.001463 1.001936 1.002448  1.002985  1.003537 

FEs 1.001483  1.003513  1.005562 1.007593 1.009590 1.011536 1.013412 1.015200  1.016879  1.018434 

9 
CEs 1.000028  1.000110  1.000246 1.000433 1.000667 1.000945 1.001260 1.001608  1.001982  1.002377 

FEs 1.001048  1.002619  1.004224 1.005817 1.007384 1.008913 1.010396 1.011822  1.013182  1.014468 

10 
CEs 1.000019  1.000075  1.000169 1.000297 1.000459 1.000653 1.000875 1.001123  1.001394  1.001683 

FEs 1.000762  1.002003  1.003294 1.004582 1.005851 1.007094 1.008304 1.009475  1.010602  1.011678 

 
(m, n)=(1, 3) (m, n)=(1, 3) (m, n)=(3, 1) (m, n)=(3, 1) 

   

(m, n)=(2, 2) (m, n)=(2, 2) (m, n)=(2, 2) (m, n)=(2, 2) 

 
(m, n)=(4, 3) (m, n)=(4, 3) (m, n)=(4, 3) (m, n)=(4, 3) 

(a) (b) (c) (d) 
 

Fig. 6 Mode shapes obtained by MRRM for different boundary conditions 
(a) SSE-CE-SSE-CE; (b) SSE-FE-SSE-FE; (c) CE-SSE-CE-SSE; (d) FE-SSE-FE-SSE 
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1. MRRM is validated and of high precision for 
vibration analysis of OCCSs. 

2. The natural frequencies of the OCCS de-
crease with the increase of the shell length. 

3. The natural frequencies of the OCCS de-
crease with the increase of the shell radius for most 
mode numbers. 

4. The natural frequencies of the OCCS in-
crease with the increase of the shell thickness. The 
natural frequencies corresponding to different shell 
thickness are very close to each other for mode 
numbers n=1 and 2, while they vary linearly with the 
shell thickness for mode numbers n≥7. 

5. The natural frequencies of the OCCS de-
crease rapidly as the included angle increases for 
most mode numbers. 

6. As the two curved edges are simply support-
ed, the natural frequencies corresponding to the three 
kinds of boundary conditions of the remaining two 
edges decrease in the order of CEs, SSEs, and FEs 
for most of the mode numbers. 

7. As the two straight edges are simply support-
ed, the boundary conditions of the remaining two 
edges have little effect on the natural frequencies of 
the OCCS. 

Finally, the exact natural frequencies of the 
OCCS for various parameters and different boundary 
conditions are presented in tabular form for easy 
reference as benchmark values for researchers to 
verify their numerical methods and for convenient 
consulting for engineers in practical design. 
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中文概要 
 

题 目：开口圆柱壳的回传射线矩阵法精确自由振动 

分析 

目 的：开口圆柱壳作为板壳组合结构的组成部分被广

泛应用于工程实践中。本文探讨开口圆柱壳结

构参数（长度、半径、厚度和夹角等）和边界

条件对其振动特性的影响，这对工程结构的减

振设计具有重要意义。通过推导开口圆柱壳的

解析解及其求解过程，建立加筋开口圆柱壳和

板−壳耦合模型振动分析的理论基础。 

创新点：1. 推导行波与驻波结合形式的解析解；2. 建立

回传射线矩阵法分析开口圆柱壳结构振动的流

程；3. 分析得到大模态数下开口圆柱壳固有频

率随壳厚线性变化；直边简支时，曲边边界条

件对固有频率影响不大。 

方 法：1. 基于 Donnell-Mushtari-Vlasov （DMV）薄壳

理论，推导两对边简支的开口圆柱壳行波与驻

波结合形式的解析解；2. 基于回传射线矩阵法

原理，推导出开口圆柱壳的固有频率方程；3. 

采用黄金分割法求解开口圆柱壳的固有频率方

程，得到精确的固有频率；4. 分析开口圆柱壳

不同结构参数和边界条件对固有频率的影响。 

结 论：1. 回传射线矩阵法适用于开口圆柱壳的振动分

析且具有很高的精度；2. 开口圆柱壳的固有频

率随其长度的增加而减小；3. 对于绝大部分模

态数，开口圆柱壳的固有频率随其半径的增加

而减小；4. 开口圆柱壳的固有频率随壳厚的增

加而增加，当周向模态数 n=1 和 2 时，不同壳

厚的开口圆柱壳固有频率相差很小，当周向模

态数 n≥7 时，开口圆柱壳的固有频率随壳厚线

性变化；5. 对于绝大多数模态数，开口圆柱壳

的固有频率随夹角的增大而快速减小；6. 对于

两曲边简支的开口圆柱壳，其固有频率从高到

低对应两直边的边界条件为固支、简支和自

由；7. 对于两直边简支的开口圆柱壳，两曲边

的边界条件对其固有频率的影响不大。 

关键词：开口圆柱壳；回传射线矩阵法；自由振动分

析；DMV 薄壳理论；解析波动形式解 


