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Abstract:    Ultrasonic guided waves have been successfully applied in nondestructive evaluation (NDE) and structural health 
monitoring (SHM) of pressure vessels and pipelines due to their advantages, such as long detection range and high inspection 
efficiency. Compared with other ultrasonic guided wave actuators, magnetostrictive transducers are more cost-effective, involve 
simpler fabrication process, and have higher possible transduction efficiency. The normal mode expansion (NME) method is 
adopted to analyze the forced response and perturbation analysis of elastic hollow cylinders with respect to magnetostrictive 
loadings, including partial loading, axial array loading, and circular array loading. The phase velocity and frequency spectra of 
axisymmetric/non-axisymmetric guided waves excited by magnetostrictive transducers are analyzed. The theoretically predicted 
trends are verified by finite element numerical simulations and experiments.  
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1  Introduction 
 

Ultrasonic guided waves have already been 
demonstrated by various research works to have 
great potential and a good prospect in online nonde-
structive evaluation (NDE) and long-term structural 
health monitoring (SHM) of pipelines of various 
industries (Rose, 2014) due to its various corre-
sponding advantages, such as single-point excitation, 
long detection range, high inspection efficiency, and 
100% cross-sectional detectability. The three main 
types of transducers that are currently in service for 
guided wave inspection of pipelines are piezoelectric 

transducers (Alleyne and Cawley, 1996; Marty, 2002), 
magnetostrictive transducers (Kwun and Bartels, 1998; 
Kim Y.Y. et al., 2005; Cho et al., 2006; Turcu, 2008; 
Lee et al., 2009; Kim Y.G. et al., 2011), and electro-
magnetic acoustic transducers (Ribichini, 2011). 
Magnetostrictive transducers are more cost-effective, 
involve relatively simpler fabrication process, and 
have higher transduction efficiency than other types 
of transducers. However, it is highly important to de-
velop a theoretical approach to consider the forced 
response and perturbation analysis of elastic pipes 
under magnetostrictive loadings, and the excitation of 
axisymmetric and non-axisymmetric guided waves in 
elastic hollow cylinders by finite size magnetostrictive 
transducers, with the unique feature of magneto-
striction taken into consideration. These topics are 
rarely reported in the literature, but further investiga-
tion can provide guidance for the further development 
of magnetostrictive guided wave transducers. 

Problems involving the forced response of a 
structure are typically solved using one of the  
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following two approaches (Rose, 2014): integral 
transform technique or normal mode expansion 
(NME) method. The integral transform technique 
solves the guided wave excitations through trans-
forms, such as Laplace, Fourier, Hankel, and Mellin. 
The NME method, on the other hand, analyzes the 
wave fields in the cylinder in the form of a sum of an 
infinite number of normal modes. Gazis (1959) 
showed that there exist an infinite number of normal 
modes in an elastic hollow cylinder, each with its 
own characteristics, such as phase velocity, group 
velocity, and wave structure profile. He obtained the 
general solution of harmonic waves propagating in 
an infinite long hollow cylinder, which has been 
very beneficial for long-range guided wave inspec-
tion on widely distributed pipelines. The forced re-
sponse problem in a hollow cylinder problem was 
first studied by Ditri and Rose (1992) using the 
NME method to obtain the amplitude factors of dif-
ferent guided wave modes. Li and Rose (2001a) in-
vestigated the field distribution of non-axisymmetric 
longitudinal waves. The angular profile was calcu-
lated by taking into account the amplitude factors of 
every excited mode. The NME method was also 
used by Luo (2005), Zhang (2005), Mu (2008), and 
Mu and Rose (2008) in their studies. Several results 
have been reported on the source influence analysis 
of hollow cylinders with respect to piezoelectric 
loadings. However, a comprehensive perturbation 
analysis on pipes with respect to magnetostrictive 
loadings, considering unique features of magneto-
striction, is essential for further development of 
guided wave magnetostrictive transducers and trans-
ducer arrays. 

In this studies, the classical NME method is 
adopted to study the excitation of axisymmetric and 
non-axisymmetric guided wave modes in linear elas-
tic hollow cylinders by magnetostrictive actuation. 
The phase velocity and frequency spectra of ax-
isymmetric and non-axisymmetric guided wave 
modes excited by magnetostrictive transducers are 
modeled with a large static bias magnetic field as-
sumption. The influence of load parameters is ana-
lyzed. Several novel results have been found about 
the source influence of different magnetostrictive 
loadings. The prediction of guided wave excitation 
by the NME method is verified by finite element 
numerical simulations and experiments.  

2  NME method 

2.1  Normal modes of a hollow cylinder 

The NME method solving the forced loading 
problem is analogous to the eigenfunction expansion 
method in the field of mathematics, and the normal 
modes of cylinders serve as the eigenfunctions. The 
main idea of the NME method is to assume that the 
sought function can be written in the form of a series 
of known functions, i.e., the normal modes, each 
with an unknown amplitude. The goal is then to find 
a general expression for the unknown amplitudes or 
a numerical estimate of them. Note that the efficien-
cy of NME method depends on two main considera-
tions: completeness and orthogonality of the normal 
modes (Rose, 2014). 

Consider a hollow cylinder in a cylindrical co-
ordinate system as shown in Fig. 1. There exists an 
infinite number of propagating modes in the hollow 
cylinder. The velocity field due to a normal mode 
with circumferential order N in the mth family can 
be written as (Ditri and Rose, 1992; Li and Rose, 
2001a): 
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where ω and k are the angular frequency and wave 
number, respectively. Functions R(r) and ϕ(Nθ) de-
note the radical and angular field distributions of the 
velocity component of the normal mode with cir-
cumferential order N in the mth family, respectively. 
The phase velocity dispersion curves of an elastic 
pipe with the parameters given in Table 1 solved 
using the semi-analytical finite element method 
(Marzani, 2008; Zhang et al., 2014) for the axisym-
metric and non-axisymmetric modes are shown in 
Fig. 2. Note that the curves in different colors denote 
modes with different circumferential orders. 

According to the NME method, the generated 
particle velocity can then be expanded as  
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where N
mA  is the NME amplitude of the mode with 

circumferential order N in the mth family containing 

wave component ie .
N
mk z  

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.2  Orthogonality of normal modes 

Before calculating the amplitude factor N
mA  by 

using the NME method, the orthogonality relation 
between the normal modes should be established. 
We start with the complex reciprocity relation (Auld, 
1990), which is described as 
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where v and T represent the particle velocity and 
stress field of a solution to the linear elastic wave 
propagation equation, respectively. Let v1 and T1, v2 
and T2 denote different normal modes of the cylinder: 
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After substituting Eq. (4) into Eq. (3), we obtain 
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where D is the cross section and MN
nmP  is defined as 
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For two different waveguide modes, the or-
thogonality relation can then be written as 
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2.3  NME amplitude 

In the complex reciprocity relation equation (3), 
let v1 represents the actual particle velocity field in 
the cylinder and v2 denotes the particle velocity field 
of a normal mode, which is given as 
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Using Eqs. (3), (7), and (8), after some interme-
diary transformations, one obtains 
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Table 1  Dimensions and material properties of a steel pipe 

Dimension Material property 

Outer diameter, Do (mm) Thickness, h (mm) Density, ρ (kg/m3) Young’s modulus, E (GPa) Poisson’s ratio, υ

140 4.5 7800 210 0.28 

Fig. 2  Phase velocity dispersion curves for L(0, m), T(0,
m), and F(N, m) modes in a steel pipe. Note: for interpre-
tation of the references to color in this figure, the reader 
is referred to the web version of this article 

Fig. 1  Stress-free hollow cylinder in a cylindrical coordi-
nate system 
Ri and Ro are the inner and outer radii, and ∂1D and ∂2D are 
the inner and outer boundaries, respectively 
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where T·n1 and T·n2 are the loading conditions on 
the inner and outer boundaries, ∂1D and ∂2D, respec-
tively, of the cylinder. Considering the traction-free 
condition on the inner and outer boundaries of the 
hollow cylinder (Fig. 1), Eq. (9) can be integrated 
with the result, that is, the general form of the for-
ward normal mode amplitude:  
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Only source condition on the outer boundary will be 
considered in this study. 

 
 

3  Modeling of magnetostrictive transducers 
 
Typical magnetostrictive transducers are mod-

eled in this study (Hirao and Ogi, 2003; Ribichini et 
al., 2010; 2011; 2012). Ferromagnetic materials have 
the property that when placed in a magnetic field, 
they are mechanically deformed. This property is 
called the magnetostrictive effect. The reverse phe-
nomenon in which the magnetic induction of the 
material changes when it is mechanically deformed 
is called inverse magnetostrictive effect. The magne-
tostrictive phenomenon and its inverse effect can be 
utilized for the generation and detection of ultrasonic 
guided waves. Magnetostrictive guided wave trans-
ducers, including longitudinal wave transducer based 
on Joule effect and its inverse effect and torsional 
wave transducer based on Wiedemann effect and its 
inverse effect, can produce axial and circumferential 
loading, respectively. 

The magnetostrictive effect relating the magnet-
ic and mechanical material states can be assumed to 
take a similar form as that for the piezoelectricity 
(Hirao and Ogi, 2003; Ribichini et al., 2010): 
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where S and T are strain and stress, while H and B 
are magnetic field and magnetic induction, respec-
tively, s is the elastic compliance matrix, μ is the 
magnetic permeability matrix, and d=∂S/∂H is the 
piezomagnetic coupling matrix.  

Eq. (11) assumes a linear S–H relation, but it is 
experimentally known that ferromagnetic materials 
exhibit a highly nonlinear magnetostriction curve. In 
the case of magnetostrictive guided wave transduc-

ers, a small dynamic magnetic field H  is superim-
posed on a much larger static bias magnetic field 

;H  therefore, the linear assumption is locally valid. 

When the small dynamic magnetic field H  is su-
perimposed on a larger static bias magnetic field 

,H  the resulting strain can be decomposed into a 

static component S  and a dynamic component S  

(Ribichini et al., 2010): 
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Here only the dynamic components of the con-

stitutive equations are considered: 
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where the dynamic magnetostriction matrix d de-
pends on the direction of the magnetization. Note 
that the linearized equations are valid in the large 
static bias magnetic field assumption, even when 
static component of linear constitutive equations is 
invalid. The first equation of Eq. (13) accounts for 
the direct magnetostrictive effect used in the genera-
tion of elastic waves, while the second equation de-
scribes the inverse magnetostriction used in the de-
tection process. 

Both the static bias magnetic field H0z and 
small dynamic magnetic field Hz of longitudinal 
wave transducers are applied along the z direction, 
as is shown in Fig. 3. When Hz is much smaller 
than H0z, the coupling matrix can be approximated 
as 
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where γ=∂S3/∂Hz is the slope of magnetostriction 
curve and St is the total magnetostrictive strain. Note 
that the S3 strain component is solely responsible for 
the generation of longitudinal waves, so the constitu-
tive equations for longitudinal wave transducers can 
be simplified and given as  
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For torsional wave transducers, the static bias 

magnetic field is applied along the θ direction, while 
the small dynamic magnetic field is applied along 
the z direction, as is shown in Fig. 4. Under the large 
static bias magnetic field assumption, the coupling 
matrix for torsional wave transducers can also be 
approximated as  
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Since only the S4 shear strain component is re-
sponsible for generation of torsional waves, the con-
stitutive equations for torsional wave transducers can 
also be simplified as  
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Note that thin magnetostrictive patches such as 

nickel and ferrocobalt strips are often used to gener-
ate and measure elastic waves. The magnetostrictive 
longitudinal and torsional wave transducers de-
scribed above can be modeled using commercial 
finite element software packages, such as COMSOL 
Multiphysics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4  Perturbation analysis of cylinders under 
magnetostrictive loadings 

 
As described in Section 3, magnetostrictive 

transducers are capable of providing circumferential 
and axial loadings (T=s−1(S−dH)) on the surface of a 
hollow cylinder. Therefore, only circumferential and 
axial magnetostrictive loadings on the outer bounda-
ry of the cylinder are considered in this study, which 
can be written as  
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where p1(θ) and p2(z) are circumferential and axial 
loading functions, and L and α are axial and circum-
ferential extent of the loading area, respectively. 

Fig. 3  Schematic of longitudinal wave transducers on the 
outer surface of a pipe 

z

r

H0z HHz

Longitudinal wavesθ

Fig. 4  Schematic of torsional wave transducers on the 
outer surface of a pipe 
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Substituting Eqs. (18) and (19) into Eq. (10) 
gives 
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where 1, ( )N p   and i
2 ( ), e

N
mk zp z  are the cir-

cumferential and axial amplitude factors, respective-
ly, which are defined as  
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4.1  Magnetostrictive partial loading 

A magnetostrictive partial loading is non-
axisymmetric and only covers a portion of the pipe 
surface over some circumferential angle, as is shown 
in Fig. 5. The loading distribution functions p1(θ) 
and p2(z) are given as (Shin and Rose, 1999) 
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Substituting Eqs. (23) and (24) into Eqs. (21) 

and (22), the source functions can be obtained: 
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According to Eq. (25), the circumferential am-

plitude factor Hθ is a function of circumferential or-
der N and loading angle α, but is independent of 
phase velocity and frequency. There is a linear rela-
tion between the axisymmetric circumferential am-
plitude factor and loading angle α, while the non-
axisymmetric circumferential amplitude factor fol-
lows a sinusoidal trend as a function of the loading 
angle α for a certain circumferential order N. Also, 
Hθ=0 (N≥1) when 2α=2π, which indicates that only 
axisymmetric modes will be excited if the magneto-
strictive load is axisymmetric. If Nα=pπ, p=0, 1, 
2, …, then Hθ=0 (N≥1), which implies that normal 
modes with circumferential order N will not be ex-
cited. The relative circumferential amplitude factors 
for different loading angles of 45°, 90°, 180°, and 
360° are shown in Fig. 6. It is evident that the ampli-
tude of non-axisymmetric flexural modes decreases, 
while the loading angles of magnetostrictive partial 
loading increase. The flexural modes are completely 
suppressed when the loading angle approaches 360°. 

According to Eq. (26), the axial amplitude fac-
tor Hz is a function of loading length 2L and wave-

number N
mk  of mode with circumferential order N in 

the mth family. Furthermore, Hz will reach the max-

imum when N
mk L =(2p+1)π/2, p=0, 1, 2, …; thus, 

2 (2 1) /2,N
mL p    p=0, 1, 2, …, are efficient load-

ing lengths for a mode at a particular frequency. The 
axial amplitude factor can be rewritten as a function 

of frequency f, phase velocity ,N
mCp  and loading 

length 2L such that 
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The phase velocity spectra (f=32 kHz) of Hz 

with different loading lengths 2L are shown in Fig. 7. 
It can be observed that Hz has a very broad phase  

Fig. 5  A hollow cylinder with partial loading of a trans-
ducer with 2L width and 2α circumferential coverage 
angle 
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velocity bandwidth, which means it has poor phase 
velocity selectivity. The frequency spectra of Hz for 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

axisymmetric modes T(0, 1) and L(0, 2) are shown  
in Fig. 8, which indicates that the axial amplitude  

Fig. 6  Relative circumferential amplitude factors for 
axisymmetric and non-axisymmetric modes at loading 
angles of 2α=45° (a), 90° (b), 180° (c), and 360° (d) 
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Fig. 7  Phase velocity spectra of the axial amplitude fac-
tor at different parameters: (a) 2L=12.7 mm; (b) 2L=
25.4 mm; (c) 2L=50.8 mm; (d) 2L=101.6 mm 
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factor has different frequency sensitivities for differ-
ent loading lengths with the extreme point corre-

sponding to the condition 2 (2 1) /2,N
mL p    p=0,  

1, 2, …. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Substituting Eqs. (25) and (26) into Eq. (20), 
the amplitude of normal mode with circumferential 
order N in the mth family of an elastic hollow cylin-
der under magnetostrictive partial loading is ob-
tained. A sample calculation of amplitude factor is 
carried out and shown in Fig. 9 for T(0, 1) and F(N, 
2) modes generated by a 45° circumferential loading 
at 128 kHz in an elastic pipe with the parameters 
given in Table 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2  Magnetostrictive axial array loading 

Consider the case of axial array loading in a 
comb transducer (Ditri et al., 1993; Rose et al., 1998; 
Hay and Rose, 2002; Philtron and Rose, 2014), as is 
shown in Fig. 10, where η magnetostrictive elements 
are equally spaced along the axial direction of a cyl-
inder. Here, 2β is the element width and 2δ is the 
spacing. The loading distribution functions p1(θ) and 
p2(z) (without time delay) can be written as  
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Substituting Eqs. (21) and (22) into Eqs. (14) 

and (15), the source functions are obtained as: 

Fig. 8  Frequency spectra of the axial amplitude factor at 
different parameters: (a) T(0, 1), 2L=25.4 mm; (b) T(0, 
1), 2L=50.8 mm; (c) L(0, 2), 2L=25.4 mm; (d) L(0, 2), 
2L=50.8 mm 
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Fig. 9  Amplitude factors for T(0, 1) and F(N, 2) modes 
generated by a 45° magnetostrictive circumferential load-
ing at 128 kHz in an elastic pipe 
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 where the element distance 2D=2β+2δ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

According to Eq. (31), the axial amplitude fac-
tor depends on the element width 2β (Hβ), the ele-
ment distance 2D, and the number of elements η 
(HD). The extremum conditions of Hβ and HD are 

tan( )=N N
m mk k   and tan( )= tan( ),N N

m mk D k D    

respectively, where π/ ,N
mk p D  p=0, 1, 2, …, and 

2 / ,N
m D p   p=0, 1, 2, …. 

The phase velocity spectra (f=64 kHz) of axial 
amplitude factor at different values of 2β, 2D, and η 
are shown in Fig. 11. It is obvious that magnetostric-
tive axial array loading has good phase velocity se-
lectivity. Furthermore, it can be seen from Figs. 11a 
and 11b that the center phase velocity is mainly de-
pendent on element distance 2D; a larger element 
distance corresponds to a higher phase velocity. 
From Figs. 11a and 11c, a conclusion can be drawn 
that the phase velocity bandwidth is mainly depend-
ent on the number of elements η. Moreover, it can be 
seen from Figs. 11b and 11d that the element width 
2β makes a contribution to the amplitude of Hz at the 
center phase velocity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The frequency spectra of Hz for axisymmetric 
modes T(0, 1) and L(0, 2) are shown in Fig. 12. The 

Fig. 11  Phase velocity spectra of axial amplitude factor 
for axial array loading at different parameters: (a) η=4, 
2D=40 mm, 2β=25.4 mm; (b) η=4, 2D=60 mm, 2β=
25.4 mm; (c) η=8, 2D=40 mm, 2β=25.4 mm; (d) η=4, 2D=
60 mm, 2β=12.7 mm 
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Fig. 10  Schematic of elastic hollow cylinders under mag-
netostrictive axial array loading 
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influence of array parameters 2β, 2D, and η on the 
frequency spectrum is similar to that on the phase 
velocity spectrum. Furthermore, if time delay e−iω(ξ·td) 
is applied to each element, the comb-type 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

magnetostrictive transducer will provide even better 
phase velocity, frequency selectivity, and guided 
wave mode controllability. 

4.3  Magnetostrictive circular array loading 

Consider the circular array loading case (Li and 
Rose, 2001b; 2002), as is shown in Fig. 13, where η 
equally sized (2L×2α) magnetostrictive elements are 
equally spaced along the circumferential direction of 
a cylinder with their circumferential position at θ= 
(2ξ−1)π/η, ξ=1, 2, …, η. The loading distribution 
functions p1(θ) and p2(z) can be written as  
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Substituting Eqs. (32) and (33) into Eqs. (21) 

and (22), the source functions are obtained as  
follows: 
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Fig. 13  Schematic of elastic hollow cylinders under mag-
netostrictive circular array loading 

Fig. 12  Frequency spectra of axial amplitude factor for 
axial array loading at different parameters: (a) T(0, 1), 
2D=25.4 mm; (b) T(0, 1), 2D=50.8 mm; (c) L(0, 2), 2D=
25.4  mm; (d) L(0, 2), 2D=50.8 mm 
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Eq. (35) is the same as Eq. (26), and thus, the 

conclusions are not repeated here. According to 
Eq. (34), only modes with circumferential order 
N=pη, p=0, 1, 2, … can be excited in a hollow cylin-
der with a magnetostrictive circular array loading. 
The relative circumferential amplitude factor with 
respect to that of axisymmetric modes can be defined 
as  

 

0

sin( ) sin( π)
= ,

π

NH p p

p pH
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 

                (36) 

 
where Δ=η(2α)/2π, Δ[0, 1] is the loading area ratio.  

As can be seen from Fig. 14, the relative ampli-
tude of higher harmonics decreases as the loading 
area ratio Δ increases and the relative amplitude de-
creases at a faster rate for higher circumferential or-
ders, which indicates that magnetostrictive circular 
array loading can be designed to generate a specific 
circumferential order of the guided wave modes. In 
addition, beam steering (Wilcox, 2003) and beam 
focusing (Hayashi et al., 2005; Sun et al., 2005) can 
be achieved when time delays are applied to the ar-
ray elements.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5  Numerical simulation and experiment 
 
In this section, summarized finite element nu-

merical evaluations (Zhu, 2001; Drozdz, 2008; Mo-

reau et al., 2012) and experiments demonstrate the 
generation of axisymmetric and non-axisymmetric 
guided wave modes in elastic hollow cylinders under 
magnetostrictive loadings. A steel pipe, with pa-
rameters given in Table 1, is considered in this study 
with the corresponding phase velocity dispersion 
curves shown in Fig. 2. 

5.1  Magnetostrictive partial loading 

5.1.1  Axial partial loading simulation 

The first numerical evaluation involves the axi-
al partial loading at f=128 kHz, with a loading area 
of axial length 50.8 mm and a circumferential angle 
45°. According to the NME method, the angular pro-
file for L(0, 2) and F(N, 3) modes at 1.5 m from the 
source was calculated and is shown in Fig. 15. 
Meanwhile, a model with the same parameters is 
established and calculated by using the finite ele-
ment software Abaqus/Explicit. The axial displace-
ments (Uz) of nodes at z=1.5 m are recorded, and 
their axial displacement angular distribution is plot-
ted, which is shown in Fig. 15. The results demon-
strated that these two models are in good agreement. 

 
 
 
 
 
 
 
 
 
 
 
 
 

5.1.2  Circumferential partial loading experiment 

The experiment setup is shown in Fig. 16, 
where a small magnetostrictive transducer with a 
width of 50.8 mm is bonded on the surface of the 
pipe as a transmitter that covers an angle of 45° 
along the circumference of the pipe. The central 
transmitting frequency is f=250 kHz. Thirty-two 
receivers were placed around the circumference of 
the pipe at a distance of 1.6 m from the transmitter. 
The theoretical and experimental results of angular 

Fig. 14  Relative amplitudes of higher harmonics for cir-
cular array loading 
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Fig. 15  Angular profiles of L(0, 2) and F(N, 3) modes 
generated by 45° magnetostrictive axial loading at 
128 kHz in an elastic pipe: (a) theoretical prediction;
(b) numerical simulation result 
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profiles for the T(0, 1) and F(N, 2) modes at the fre-
quency of 250 kHz are shown in Fig. 17, which are 
in good agreement. Since both theoretical and exper-
imental results are in good agreement, the earlier 
described method involving magnetostrictive partial 
loading was verified by numerical evaluation and 
experiment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

5.2  Magnetostrictive axial array loading 

Another numerical evaluation involved an axial 
array loading at f=128 kHz. Two sets of array pa-
rameters were designed for the purpose of L(0, 1) 
excitation and L(0, 2) excitation, respectively: (1) 
2β=12 mm, 2δ=4 mm and (2) 2β=15 mm, 2δ=6 mm. 
Finite element models were established and calculat-
ed. Fig. 18 shows the snapshot for wave propagation 
of L(0, 1) mode and L(0, 2) mode. The L(0, 1) mode 
is dominant on the condition of parameter (1) and 
L(0, 2) mode is dominant on the condition of param-
eter (2), which demonstrates the mode controllability 
of magnetostrictive axial array load. 

The wave structures of L(0, 1) and L(0, 2) at 
f=128 kHz are shown in Fig. 19. It can be observed 
that radial displacement (Ur) plays a dominant role 
for L(0, 1) mode, whereas the axial displacement (Uz) 
for L(0, 2) mode at f=128 kHz. Both r-component 
and z-component of the displacement field on the 
external surface of the pipe at the distance of 0.7 m 
from the source are recorded and converted into vid-
eo signals, which are shown in Fig. 20. The above 
observation is confirmed once again, but it also 
shows that the modes, especially L(0, 1), are not as 
pure as expected, as radial displacement is dominant 
for L(0, 1) while the external load is in the axial di-
rection. Therefore, radial load, which the magneto-
strictive transducer cannot provide, may have the 
best chance to excite pure L(0, 1) mode. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18  Snapshot of the wave propagation of L(0, 1) (a)
and L(0, 2) (b) modes in the steel pipes 
(a) Parameter (1): 2β=12 mm, 2δ=4 mm; (b) Parameter (2):
2β=15 mm, 2δ=6 mm 

Fig. 16  A setup of circumferential partial loading 
experiment 

Fig. 17  Angular profiles of T(0, 1) and F(N, 2) modes 
generated by 45° magnetostrictive circumferential load-
ing at 250 kHz in an elastic pipe: (a) theoretical predic-
tion; (b) experimental result 

Fig. 19  Wave structure of L(0, 1) (a) and L(0, 2) (b)
modes at 128 kHz in the steel pipe 
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5.3  Magnetostrictive circular array loading 

5.3.1  Circular array axial load simulation 

The last numerical evaluation involves circular 
array axial load at f=64 kHz, where the number of 
elements η=2 and the loading area ratio Δ=0.5. The 
finite element model is established and used for cal-
culation. Displacements of all the nodes at the dis-
tance of 1.5 m from the source are recorded. The 
received signals form a 2D time-circumference data 
matrix. A Fourier transformation is performed on the 
data matrix in the circumferential direction, and the 
circumferential order of the excited modes is extract-
ed. Fig. 21 shows that only modes with circumferen-
tial order N=2p, p=1, 2, … are excited, which is in 
accordance with the theoretical prediction. 

5.3.2  Circular array circumferential load experiment 

A two-element magnetostrictive transducer is 
bonded around the circumference of the pipe with 
the loading area ratio Δ=0.5 and the excitation fre-

quency f=250 kHz. Thirty-two receivers are placed 
around the circumference of the pipe at a distance of 
1.6 m from the transmitter. The received signals 
from 32 receivers form a 2D data matrix. A 2D Fou-
rier transformation is performed on the data matrix, 
and the circumferential order of excited modes is 
extracted. Fig. 22 verifies the theoretical prediction 
once again. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6  Conclusions 
 
This paper has adopted and developed the clas-

sical NME method to analyze forced response and 
perturbation analysis of a hollow cylinder consider-
ing the finite size magnetostrictive loadings, includ-
ing partial loading, axial array loading, and circular 
array loading, with the unique feature of magneto-
striction taken into consideration. The phase velocity 
and frequency spectra of guided wave amplitude 

Fig. 21  Circumferential orders of excited modes for cir-
cular array axial load numerical simulation 

Fig. 22  Circumferential orders of excited modes for cir-
cular array circumferential load experiment 

Fig. 20  Video signals extracted from the excitation of 
L(0, 1) and L(0, 2) modes  
(a) Parameter (1): 2β=12 mm, 2δ=4 mm; (b) Parameter (2): 
2β=15 mm, 2δ=6 mm 
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excited by magnetostrictive loading are analyzed in 
detail, and some basic conclusions have been 
reached. 

Some novel results of a comprehensive pertur-
bation analysis on elastic hollow cylinders under 
magnetostrictive loadings are summarized as follows. 
Magnetostrictive partial loading is able to excite 
guided wave modes of the same family, but has poor 
phase velocity and frequency selectivity. Axisym-
metric loading excites axisymmetric modes only. 
Angular profiles in a hollow cylinder are sensitive to 
the circumferential loading length. Magnetostrictive 
axial array loading has good phase velocity and fre-
quency selectivity and guided wave mode controlla-
bility. According to phase velocity and frequency 
spectra, center phase velocity and center frequency 
are mainly determined by element distance. Magne-
tostrictive circular array load only excites guided 
wave modes whose circumferential order is integer 
multiple of the number of elements. 
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中文概要 
 

题 目：弹性空心圆柱体中对称与非对称导波的磁致伸

缩换能器激励 

目 的：超声导波是一种有潜力的无损检测方法，磁致

伸缩换能器是一种重要的导波换能器。利用经

典的简正模态展开法分析弹性空心圆柱体在磁

致伸缩载荷下的激励响应，包括磁致伸缩局部

载荷、轴向阵列载荷和圆周阵列载荷。空心圆

柱体在磁致伸缩载荷作用下的扰动分析将为磁

致伸缩换能器以及换能器阵的进一步发展提供

理论依据。 

创新点：1. 利用简正模态展开方法，讨论弹性空心圆柱

体在磁致伸缩载荷作用下的扰动分析和激励响

应；2. 通过数值仿真和试验研究，验证空心圆

柱体在磁致伸缩局部载荷、轴向阵列载荷和圆

周阵列载荷作用下不同的激励响应，得到有效

的结论。 

方 法：1. 通过理论推导，构建典型磁致伸缩换能器数

学模型（公式（15）和（17））；2. 通过理论

推导，建立弹性空心圆柱体在磁致伸缩局部载

荷、轴向阵列载荷和圆周阵列载荷作用下的波

源分析模型（公式（25~26）、（30~31）和

（34~35）），求解得到典型载荷形式下的激励

响应（图 6~8 和 11~13）；3. 通过仿真模拟和试

验研究，对空心圆柱体在不同磁致伸缩载荷作

用下的激励响应进行验证（图 14~21）。 

结 论：1. 磁致伸缩局部载荷能够激励产生同一族的导

波模态，但是不具有良好的频率选择性和相速

度选择性，轴对称载荷仅能激励轴对称模态；

2. 磁致伸缩轴向阵列载荷具有良好的频率选择

性和相速度选择性，中心频率和中心相速度取

决于阵列单元间距，对导波模态控制非常有

益；3. 磁致伸缩圆周阵列载荷能够激励周向阶

次为阵列单元数整数倍的导波模态。 

关键词：导波；空心圆柱体；简正模态展开；磁致伸缩 


