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Abstract:    Yttria-stabilized tetragonal-zirconia polycrystals (Y-TZP) have been shown to have superplastic properties at high 
temperatures, opening a way for the manufacture of complex pieces for industrial applications by a variety of techniques. How-
ever, before that is possible, it is important to analyze the deformation and fracture mechanisms at a macroscopic level based on 
continuum theory. In this paper, an elastic-plastic material model with a theoretical large deformation is constructed to simulate 
the true stress-true strain relationships of superplastic ceramics. The simplified constitutive law used for the numerical simula-
tions is based on piecewise linear connections at the turning points of different deformation stages on the experimental stress-
strain curves. The finite element model (FEM) is applied to selected tensile tests on 3-mol%-Y-TZP (3Y-TZP) co-doped with 
germanium oxide and other oxides (titanium, magnesium, and calcium) to verify its applicability. The results show that the 
stress-strain characteristics and the final deformed shapes in the finite element analysis (FEA) agree well with the tensile test 
experiments. It can be seen that the FEM presented can simulate the mechanical behavior of superplastic co-doped 3Y-TZP ce-
ramics and that it offers a selective numerical simulation method for advanced development of superplastic ceramics. 
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1  Introduction 
 

Ceramics have several excellent properties that 
are unique among materials. They are extremely 
hard, have good resistance to fatigue, abrasion, and 
chemical corrosion, and are resistant to erosion at 
high temperatures. Hence, ceramics can be used in 
extreme environments, and their applications are 
extensive in both household and industrial products. 
However, they have a fatal weakness, brittleness, 
which means that they break at small levels of strain 
and cannot withstand extensive elongation under 
load. Thus, there has been a significant research ef-
fort to reduce the brittleness of ceramics. 

Through the tailoring of very refined particles, 
tetragonal-zirconia polycrystals (TZP) retain a meta-
stable tetragonal phase at room temperature and have 
been shown to have excellent plastic properties 
(Garvie et al., 1975). Wakai et al. (1986) demon-
strated that a 3% (mole concentration, the same 
meaning unless otherwise stated) Y2O3-stabilized 
TZP (3Y-TZP) with an average grain size smaller 
than 0.3 μm could be elongated superplastically  
to greater than 120% of the nominal strain under 
conditions of constant strain rates ranging from 
1.1×10−4 s−1 to 5.5×10−4 s−1 at a temperature of 
1450 °C. It was the research that first revealed the 
superplasticity of 3Y-TZP. Since then, much effort 
has been devoted to the development of ceramics 
with improved superplasticity. Jiménez-Melendo et 
al. (1998) analyzed extensive experimental data  
for fine-grained Y2O3-stabilized ZrO2 polycrystals  
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(Y-SZP) containing 2%–4% Y2O3. The analyses 
were performed as a function of stress, grain size, 
and material purity at temperatures between 1250 °C 
and 1450 °C. It was concluded that for high-purity 
Y-SZP (impurity content less than 10% in weight), 
the constitutive equation for superplastic flow in re-
gion II (the high-stress region) was similar to that for 
superplastic metallic materials. On the other hand, it 
was determined that the equation for region I (the 
low-stress region) should be formulated by incorpo-
rating a threshold stress approach. However, the 
stress-strain relationships for low-purity Y-SZP (im-
purity content greater than 0.10% in weight) were 
different from those of metallic systems (Jiménez-
Melendo et al., 1998; Jiménez-Melendo and 
Domínguez-Rodríguez 1999). It was not possible to 
model the behavior of ceramics with a highly vis-
cous liquid phase by using the metallic constitutive 
creep models relevant to a steady-state strain rate at 
high temperatures (Bieler et al., 1996). Wakai et al. 
(1999) noted that there existed no model that could 
explain all the experimental data on Y-TZP defor-
mation mechanisms. Currently, in a deep analysis of 
the multi-scale (macroscopic) nature of ceramic su-
perplasticity, one of the major goals that has to be 
fulfilled is correlation between the behavior of one 
individual grain under shear and normal stresses and 
their average collective behavior (Domínguez-
Rodríguez and Gómez-García, 2010). 

Combining the superplastic properties of ce-
ramics with processing techniques, such as sheet 
formation, blowing, stamping, forging, and spinning, 
would support the industrial manufacture of complex 
ceramic pieces for applications in aerospace, de-
fense, and automobile manufacturing, among others 
(Domínguez-Rodríguez and Gómez-García, 2010). 
However, before that is practical, we must gain more 
understanding of superplastic ceramics in respect of 
mechanical stress distribution and fracture mecha-
nisms at a macroscopic level when the materials de-
form. So here we intend, by means of solid mechan-
ics or plasticity theory, to provide further analysis of 
the deformation progress of superplastic ceramics so 
that uses of this kind of material may be developed 
on the basis of safe designs. 

A great deal of research on the finite element 
analysis (FEA) of superplastic forming (SPF) pro-
cesses has been published. However, most of this 
research has been focused on metallic materials such 

as titanium-based, aluminum-based, zinc-based, 
copper-based, and magnesium-based alloys. These 
finite element models (FEMs) have included combi-
nations of several simulation conditions, which can 
generally be classified into different dimensions (2D 
or 3D) with different constitutive models (elastic-
plastic, rigid-plastic, elastic-viscoplastic, or rigid-
viscoplastic); some of these models have included 
the microstructure evolution of grain growth or void 
growth to regulate the stress-strain relationships of 
various materials, different elements, and the as-
sumption of isotropic or anisotropic material proper-
ties, among other considerations. For example, 
Wang and Budiansky (1978) and Hsu and Chu 
(1995) used membrane elements, and Hsu and Shien 
(1997) used shell elements in a 2D condition to sim-
ulate the sheet metal stamping process; in addition, 
their FEM contained an elastic-plastic constitutive 
model for which post-yield anisotropic material be-
havior was formulated by the flow rule associated 
with Hill’s quadratic yield criterion. Lee and Koba-
yash (1973) simulated superplastic metal formation 
problems by using 2D shell elements with a rigid-
plastic constitutive model which was related to the 
associated flow rule with the von Mises quadratic 
yield criterion for isotropic materials, or with Hill’s 
in the case of anisotropic materials. On the other 
hand, Zienkiewicz and Godbole (1974), Kim et al. 
(1996), El-Morsy et al. (2001), Liew et al. (2003), 
and Giuliano (2005; 2006) simulated superplastic 
alloys as non-Newtonian viscous flow materials with 
a rigid-viscoplastic constitutive model to study SPF 
problems. Among these, Liew et al. (2003) com-
bined both grain growth and void growth evolutions 
within the model to incorporate the effect of the 
strain rate. On the other hand, Kim et al. (1996) 
combined a strain rate controlling function in their 
model that could control the pressure to maintain the 
maximum strain rate near a target value during anal-
ysis and obtain the optimal pressure-time relation-
ships for the SPF process under the prerequisite that 
the material did not crack. Similarly, for research on 
SPF problems that simulate superplastic alloys as 
non-Newtonian viscous flow materials using an  
elastic-viscoplastic constitutive model, Chandra 
(1988) and Nazzal et al. (2011) incorporated grain 
growth evolution; Abu-Farha and Khraisheh (2007) 
incorporated both grain and void growth evolutions; 
Chen et al. (2001), Hassan et al. (2003), Li et al. 
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(2004), and Yenihayat et al. (2005) combined the 
strain rate controlling capability, and Ding et al., 
(1995), Huh et al. (1995), Lin (2003), Nazzal et al. 
(2004), Tao and Keavey (2004), and Nazzal and 
Khraisheh (2008) joined microstructure evolutions 
and the strain rate controlling capability together 
within their models.  

To date, FEA on superplastic problems has 
been done almost exclusively for metallic alloys, and 
there has been comparatively little FEA on super-
plastic ceramics. Since the basic properties of chem-
ical bonding in metals and ceramics are different, the 
superplastic deformation mechanisms of these two 
kinds of materials are not the same. A total stress-
strain history of superplastic deformation includes 
the low-stress and high-stress regions of the sig-
moidal creep behavior as represented by a double 
logarithmic strain rate vs. stress axes, and therefore 
the constitutive characteristics of superplastic metals 
and ceramics are different from each other. Hence, a 
precise numerical simulation of a complete stress-
strain progress is very important for subsequent  
mechanically-based analysis, for example, the simu-
lation of fracture mechanisms and the development 
of safe design specifications. The aim of this study is 
to construct a numerical FEM to simulate the stress-
strain progress of co-doped 3Y-TZP ceramics based 
on the continuum theory of plasticity. The constitu-
tive model here embedded in the FEM is an elastic-
plastic model that formulates the elastic behavior 
using Hooke’s law and the subsequent work harden-
ing behavior by combining the associated von Mises 
flow rule with the isotropic hardening rule. 

 
 

2  Geometry of experimental samples 
 

The presented FEM was verified with the ten-
sile test experiments performed by Sasaki et al. 
(2001) on co-doped 3Y-TZP ceramics. In the exper-
iments, commercially available high-purity 3Y-TZP 
powders were used as the base material, and the do-
pants were germanium oxide, titanium oxide, calci-
um oxide, and magnesium oxide in the following 
compositions: 2% (mole concentration) Ge, 1% Mg 
(2Ge-1Mg); 2% Ge, 1% Ca (2Ge-1Ca); and 2% Ge, 
2% Ti (2Ge-2Ti). The mixed powders were manu-
factured into specimens of a theoretical density 
greater than 95% through processes of ball milling, 

drying, sieving, pressing, and sintering. Then the 
specimens were trimmed into the shape of a dog 
bone for the tensile test samples, whose middle 
gauge region had an approximate cross section of 
2 mm×2 mm and a length of 13.4 mm. The tensile 
tests were conducted at a temperature of 1400 °C 
under a quasi-static strain control condition. The 
stress-strain characteristics of the experimental re-
sults are shown in Fig. 1, and the corresponding final 
deformed shapes are depicted in Fig. 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The experiments showed the co-doped 3Y-TZP 

had excellent superplastic properties, with the largest 
nominal strain of 988% in the 2Ge-2Ti composition. 
Furthermore, as indicated from an inspection using 
scanning electron microscopy (SEM), all samples 
consisted of a homogeneous and equiaxed micro-
structure, and no amorphous phases were found (Sa-
saki et al., 2001). Hence, they could be regarded as 

Fig. 2  Photograph of deformed tensile samples for 3Y-
TZP and three co-doped materials  
Figs. 1 and 2 are reprinted from (Sasaki et al., 2001), Copy-
right 2001, with permission from John Wiley and Sons 

Fig. 1  Stress-strain characteristics of tensile tests for 3Y-
TZP and three co-doped materials (Sasaki et al., 2001) 



Hu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2016 17(12):989-999 992

homogeneous and isotropic materials at the macro-
scopic scale. The average grain sizes of the four 
compositions were: 3Y-TZP, 0.38 µm; 2Ge-1Mg, 
0.44 µm; 2Ge-1Ca, 0.55 µm; 2Ge-2Ti, 0.51 µm. 

 
 

3  Constitutive equations 
 
In this study, we assumed the superplastic co-

doped 3Y-TZP ceramics to be homogeneous and 
isotropic. The chosen constitutive model embedded 
in the present FEM was an elastic-plastic model. The 
elastic behavior was formulated using Hooke’s law, 
and the work hardening plastic stress-strain relation-
ships were derived by combining the flow rule asso-
ciated with the von Mises quadratic yield criterion 
with the isotropic hardening rule. According to the 
theory of plasticity, the relative equations of the  
elastic-plastic model can be derived as follows 
(Chen and Han, 2007). 

The total strain increment is decomposed into 
two parts, 

 
e pd d d ,ij ij ij ε ε ε                            (1) 

 

where the elastic strain increment, ed ijε , is related to 

the stress increment, d ,ijσ  by Hooke’s law as  

 
ed = ,dij ijkl klεσ C                               (2) 

 
where Cijkl is the tensor of elastic modulus. For a 
linear-elastic isotropic material, Cijkl can be ex-
pressed in terms of the two elastic constants, shear 
modulus G and Poisson’s ratio ν: 

 

2 ,
1 2ijkl ik jl ij kl

v
G

v
    
δ δ δ δC                (3) 

 
where δij is the Kronecker delta. 

The plastic strain increment, pd ,ijε  can be gen-

erally expressed by a non-associated flow rule in the 
form of  

 

pd =d ,ij
ij

g 


ε
σ

                              (4) 

where dλ is a positive scalar factor of proportionality, 
which is non-zero only when plastic deformations 
occur, and g is known as the plastic potential func-

tion. The equation p( , , ) constantij ijg k =σ ε  defines a 

surface of plastic potential in a 9D stress space. 
When the yield function and the plastic potential 
function coincide, f=g, the plastic flow equations can 
be expressed as  

 

pd d .ij
ij

f 



ε

σ
                             (5) 

 
Eq. (5) is called the associated flow rule be-

cause the plastic flow is associated with the yield 
criterion. The loading surface, which defines the 
boundary of the current elastic region, is the subse-
quent yield surface for an elastoplastically deformed 
material under combined states of stress, and it can 
generally be written as 

 
p p 2

p( , , ) ( , ) ( )=0.ij ij ij ijf k F k  σ ε σ ε           (6) 

 
The size of the yield surface is governed by the 

hardening parameter k2 expressed as a function of εp, 
called the effective strain. Hence, the parameter k2 
depends upon the plastic strain history. The function 

p( , )ij ijF σ ε  defines the shape of the yield surface. 

Moreover, for a work-hardening material, the hard-
ening rule is necessary to describe the rule for the 
evolution of the loading surface. Since we assumed 
the analyzed material to be isotropic, we took the 
von Mises yield function as the plastic potential and 
the isotropic hardening rule, which expanded the 
initial yield surface uniformly without distortion and 
translation, as the evolution of the loading surface. 
When the von Mises yield criterion is used, we can 
obtain 

 
p

2( , ) ,ij ijF Jσ ε                             (7) 

 
with J2 expressed in the following as the invariant of 
the stress deviator tensor: 

 

2

1
,

2 ij ijJ = s s                                 (8) 

 

where sij denotes the stress deviator tensor defined 
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by subtracting the spherical state of stress from the 
actual state of stress.  

 
1

.
3ij ij kk ij s σ σ δ                          (9) 

 
Then Eq. (6) becomes 
 

p 2
p

1
( , , ) ( ) 0.

2ij ij ij ijf k k   σ ε s s              (10) 

 
For practical use of the work-hardening theory 

of plasticity, the hardening parameters in the loading 
function have to be related to the experimental uni-
axial stress-strain curve. To this end, the stress vari-
able σe, called the effective stress, and the strain var-
iable εp, called the effective strain, are introduced. 
Since the effective stress should reduce to the stress 
σl in the uniaxial test, it follows that the loading 

function F(σij) can be expressed as e( ) ,n
ijF Cσσ  

where C and n are constants. For a von Mises mate-

rial, p
2( , )ij ijF Jσ ε , then 

 

2 e ,nJ =Cσ                                 (11) 

 
and for the uniaxial test, σe=σ1 and σ2=σ3=0, where 
σ1, σ2, and σ3 are principal stresses. Therefore, n=2, 
C=1/3, and 

 

e 2

3
3 .

2 ij ijJ   s s                       (12) 

 
To replace the hardening parameter k with σe, 

we substitute Eq. (12) into Eq. (10) and rewrite it as 
 

p 2
e p

3
( , , ) ( ) 0.

2ij ij ij ijf k    σ ε s s             (13) 

 
From the definition of the associated flow rule, 

g=f, the derivatives of g and f are found as 
 

3 .ij
ij ij

f g 
 

 
s

σ σ
                        (14) 

 

Then Eq. (5) becomes pd d (3 ),ij ijε s  where dλ 

is a scalar function to be determined by the con-

sistency condition df=0 as 
 

1 1
d ,d dijkl kl kl kl

ij

f

h h
 
 


C ε H ε

σ
             (15) 

with 
2

p e4(3 ) ,h G H                           (16) 

 
where the second-order tensor Hkl associated with 
the yield function f is defined as 

 

6 .kl ijkl kl
ij

f
G


 


H C s
σ

                     (17) 

 
The parameter Hp is a plastic modulus associated 
with the rate of expansion of the loading surface, and 
it can be defined as the slope of the uniaxial stress-
plastic strain curve at the current value of σe: 

 

e
p

p

d
.

d

σ
H


                               (18) 

 
For the F(J2, J3) material, such as the von Mises 

material, which is pressure independent when plastic 
flow occurs, the effective plastic strain increment is 
defined as  

 

p p
p

2
d d .

3
d ij ij  ε ε                           (19) 

 
The strain history for the material is the record 

of the length of the effective plastic strain path:  
 

e
p p

p e

d
= = .d

( )H


 

                        (20) 

 
From the above equations, when the plastic 

flow occurs, the constitutive law of stress-strain rela-
tionships can be derived as  

 
e pd = d = (d d

d d

1
= d

)

d

ij ijkl kl ijkl kl kl

ijkl kl
kl

ijkl kl mnst st
mn kl

f

f f

h





 







  


 


 






σ C ε C ε ε

C ε
σ

C ε C ε
σ σ
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1
= d

1
= d

1
= d .

ijkl sk tl mnst st
mn kl

ijst mnst ijkl st
mn kl

ijst st ij st

f f

h

f f

h

h

  
   

 








   
 
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 

C δ δ C ε
σ σ

C C C ε
σ σ

C H H ε

 

 
Hence, 
 

ep p

2

d = d =( + )d

1
= d

36
,= d

ij ijkl kl ijkl ijkl kl

ijkl ij kl kl

ijkl ij kl kl

h

G

h

 
 
 
 
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




σ C ε C C ε

C H H ε

C s s ε

                 (21) 

and 
ep p= ,+ijkl ijkl ijklC C C                           (22) 

with 
2

p .
1 36

= =ijkl ij kl ij kl

G

h h
 C H H s s                (23) 

 
In conclusion, the complete stress-strain rela-

tionships for an elastic-plastic work-hardening mate-
rial can be expressed as follows: 

1. When p( , , ) 0ij ijf k =σ ε  with dλ>0, the materi-

al is in a plastic loading state. We have epd d ,ij ijkl kl=σ C ε  

where ep
ijklC  is given in Eqs. (22) and (23). 

2. When p( , , ) 0ij ijf k σ ε  or p( , , ) 0ij ijf k σ ε  

with dλ≤0, the material is in an unloading or neutral 
loading state. We have d = dij ijkl klσ C ε , where Cijkl is 

given in Eq. (3). 
 
 

4  Finite element analysis 
 

Calculations were carried out by means of the 
finite element (FE) method in this study, and the 
results were verified by the uniaxial tensile experi-
ments conducted by Sasaki et al. (2001) on 3Y-TZP, 
2Ge-1Mg, 2Ge-1Ca, and 2Ge-2Ti superplastic ce-
ramics. The FE simulation was performed using a 
commercial FE package, Abaqus (Dassault Systèmes 
Corporation, 2014). The elastic-plastic constitutive 

model used in this study was an Abaqus built-in 
metal plasticity material model, in which the iso-
tropic hardening rule could be included. The experi-
mental constitutive stress-strain hardening data could 
be defined in tabular form as the input for the metal 
plasticity material model in Abaqus. When the anal-
ysis begins, Abaqus connects the data points with 
piecewise linear line segments to approximate the 
nonlinear stress-strain relationships of materials. It is 
unnecessary to input all of the experimental stress-
strain data because if a simplified material constitu-
tive law is used in an FEM, which can simulate the 
major stages of deformation without losing the accu-
racy between the FEA and the experimental results, 
then it can be regarded as a practical one for the pur-
pose of applications. Therefore, in this study, a sim-
plified constitutive law was created based on the 
following rule: the turning points for different de-
formation stages of the experimental stress-strain 
curves have piecewise linear connections. According 
to this rule, there were three to four data points cho-
sen for every studied composition, and the simplified 
constitutive laws used in Abaqus for the FE simula-
tions are shown in Fig. 3. Although these input data 
seem to simplify by following the complete experi-
mental stress-strain characteristics, the FEA of su-
perplastic deformation problems may be aborted 
before reaching the experimental ultimate fracture 
strain as it will lead to numerical errors for various 
reasons. For instance, (1) extreme superplastic de-
formation will lead to an increase of element aspect 
ratios which usually are accompanied by cumulative 
numerical errors and distortion of the mesh; (2) sud-
denly changed material properties or geometric 
shapes at some regions exhibiting stress concentra-
tions may result in singular points, which will in-
crease the difficulty of numerical convergence or 
lead to severe local deformation in a few elements; 
(3) strain-hardening or strain-softening material 
properties will also result in FE calculations becom-
ing more difficult to converge. Therefore, in this 
study, we incorporate the above-mentioned simpli-
fied constitutive laws with the following adequate 
FE model, and thus expect to maintain accuracy be-
tween numerical and experimental results at any de-
formation stage until reaching the experimental ulti-
mate fracture strain, without aborting due to numeri-
cal errors or local distortions occurring in the model. 
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Note that the curves in Fig. 3 are recorded as 
true stresses vs. nominal strains (or engineering 
strains) from experimental data. In order to simulate 
the large deformation of the superplastic materials 
for FEA, those true stress-nominal strain curves are 
transformed into true stress-true strain curves and 
input to the Abaqus program. Let εnom be the nomi-
nal strain and εtrue be the true strain. The transfor-
mation equation between these two strains can be 
written as 

 

true nomln(1 ).                          (24) 

 
In the present analyses, the stress concentration 

caused the greatest elongation to occur at only a few 
elements on the junction of the outside clamping 
region and the middle gauge region of the bone sam-
ples. To avoid this, the geometry of the studied cases 
introduced in Section 2 is schematized in Fig. 4, 
which only includes a gauge region with a cross sec-
tion of 2 mm×2 mm and a length of 13.4 mm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The analyses were conducted with a 3D simula-
tion with the advantage of being able to clearly ex-
amine the stress and deformation conditions in the 
model. For the purpose of simulating the uniaxial 
tensile test with a strain control technique, the 
boundary and loading conditions are shown in Fig. 5 
and are described as follows: ux=0 is applied to the 
PQRS plane; uy=0 is applied to the PQ and TU line 
segments; uz=0 is applied to the P and T points; a 
uniform deformation ux=0.15 m is applied to the 
TUVW plane. The element used in the analysis is the 
3D solid (continuum) element, C3D20, which has 20 
nodes with three degrees of freedom per node (dis-
placements in the x, y, and z directions). The finite 
element mesh of the specimen is shown in Fig. 6. 
The cases studied here addressed the problem of a 
homogeneous and isotropic material experiencing 
uniform uniaxial loading on its uniform cross sec-
tion. According to the theory of continuum mechan-
ics, the internal axial stresses and strains existing in 
elements throughout the model should be uniformly 
distributed; thus, there is no need to perform a con-
vergent analysis on the element numbers of the mod-
el. However, we observed that the aspect ratio of 
elements should be less than a maximum value of 4 
to avoid a numerical error in the FE calculation. By 
arranging the numbers of the elements equal to 7, 1,  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Simplified constitutive laws of 3Y-TZP and three 
co-doped materials 

Fig. 5  Boundary conditions of the FEM  

uy=0 

uy=0 

ux=0.15 m

uz=0 

uz=0 

Fig. 6  Element distribution of the FEM  Fig. 4  Geometry of the FEM 
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and 1 corresponding to the x, y, and z directions, re-
spectively, the aspect ratio of the elements in the 
model was 1.04. 

 
 

5  Results and discussion 
 
The comparison of true stress vs. nominal strain 

relationships between the experimental results and 
numerical analysis for the four studied compositions 
is presented in Fig. 7. Regardless of whether the brit-
tle 3Y-TZP or the comparatively superplastic 2Ge-
1Mg, 2Ge-1Ca, and 2Ge-2Ti ceramics were exam-
ined, this figure shows that the experimental stress-
strain relationships were in good agreement with the 
FEA results for any stage of deformation: elastic 
loading, horizontal plastic stretch, strain hardening, 
and strain softening until ultimate fracture. The orig-
inal undeformed and the final deformed shapes of 
the FEA for the four compositions are depicted in 
Fig. 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
By comparing Fig. 8 with the corresponding 

experimental results in Fig. 2, the errors of the max-
imum nominal strain between the FEA and tensile 
tests can be calculated as: 3Y-TZP, 0.26%; 2Ge-
1Mg, 0.46%; 2Ge-1Ca, 0.64%; 2Ge-2Ti, 0.93%. It 
can be seen that all of the errors are small enough to 

obtain accuracy. Moreover, the final deformed 
shapes, length, width, and thickness of the gauge 
section in the experimental samples agree well with 
the results of the FE simulation. These results show 
that the presented FEM is a suitable method by 
which to simulate the mechanical behavior of super-
plastic co-doped 3Y-TZP ceramics. 

 
 
 
 
 
 
 
 
 
 
 
 
The axial true stress contour defined by differ-

ent colors and the values of nominal strain at differ-
ent stages of deformation for 3Y-TZP, 2Ge-1Mg, 
2Ge-1Ca, and 2Ge-2Ti compositions are shown in 
Figs. 9–12, respectively, and they represent the de-
formation stages from the beginning of the analysis 
to the end. In these figures, the grade of axial true 
stress contour in Pascal (Pa) is represented by differ-
ent colors at the lower left corner. Using Fig. 12, for 
example, to explain other features, there are five 
samples in the figure, and the undeformed sample on 
the top indicates the initial condition of the analysis, 
in which the axial nominal strain and the axial true 
stress are both equal to zero, and the zero stress is 
located at the contour range from −5.256×102 Pa to 
1.344×106 Pa. The second sample from the top of 
Fig. 12 indicates that the analysis is in the stage of 
plastic stretch with an axial nominal strain of 
127.98%, and the axial true stress of 5.5 MPa can be 
determined by corresponding to the 2Ge-2Ti stress-
strain relationships for the FEA results shown in 
Fig. 7, and the stress locates at a contour range from 
5.376×106 Pa to 6.720×106 Pa. Similarly, the third, 
the fourth, and the fifth samples from the top of 
Fig. 12 reveal that the specimens are experiencing 
corresponding strain hardening deformation condi-
tion (the axial true stress is 7.75 MPa, and the axial 
nominal strain is 570.76%), the maximum ultimate  

Fig. 8  Final deformed shapes in the FEA for 3Y-TZP 
and three co-doped compositions 

Fig. 7  Comparison between the FEA and experimental 
results for the stress-strain characteristics of 3Y-TZP and 
three co-doped materials 
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stress state (the axial true stress is 13.44 MPa, and 
the axial nominal strain is 984.14%), and the ulti-
mate fracture strain state (the axial true stress is 
0 MPa, and the axial nominal strain is 997.18%), 
respectively. One can interpret Figs. 9–11 in the 
same way corresponding to the results of 3Y-TZP, 
2Ge-1Mg, and 2Ge-1Ca, respectively. Figs. 9–12 
reveal that the axial stresses and strains are distribut-
ed uniformly in the model at every deformation 
stage. The reason for this was mentioned in Section 
4 in which we described the problem type analyzed 
in the FEM as a uniform uniaxial loading acted on a 
uniform cross section of homogeneous and isotropic 
materials. Hence, the studied models became uni-
formly longer and thinner until the analysis stopped 
at a strain near the experimental ultimate fracture 
strain, and the axial stress varied with the axial 
strain, as shown in the relationships illustrated in 
Fig. 7. These results confirmed the reliability of the 
presented FEM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
6  Conclusions 
 

This paper presented a numerical FEM based 
on the theory of plasticity to simulate the uniaxial 
stress-strain progress of co-doped 3Y-TZP. The ma-
terial model embedded in the FEM was an elastic-
plastic model, which simulated the elastic response 
using Hooke’s law and the plastic strain hardening 
response using the flow rule associated with the von 
Mises yield criterion combined with the isotropic 
hardening rule. The simplified constitutive law used 
for the numerical simulations in Abaqus is based on 
piecewise linear connections at the turning points of 
different deformation stages on the experimental 
stress-strain curves. The presented FEM was verified 
with the tensile test experiments on superplastic 3Y-
TZP, 2Ge-1Mg, 2Ge-1Ca, and 2Ge-2Ti ceramics 
performed by Sasaki et al. (2001).  

During the analysis, in order to avoid the analy-
sis aborting before reaching the experimental ulti-
mate strain due to stress concentration and also to 

Fig. 9  Stress and strain history of the FEA at different 
stages of deformation for 3Y-TZP 

Fig. 10  Stress and strain history of the FEA at different 
stages of deformation for 2Ge-1Mg 

Fig. 11  Stress and strain history of the FEA at different 
stages of deformation for 2Ge-1Ca 

Fig. 12  Stress and strain history of the FEA at different 
stages of deformation for 2Ge-2Ti 
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avoid an unreasonable peak elongation occurring at 
only a few elements on the junction of the outside 
clamping region and the middle gauge region of the 
bone samples, a geometry was constructed in the 
numerical FEM that only included the gauge region. 
The results showed that the stress-strain relationships 
analyzed by the presented FEM agreed well with the 
experimental data, and the errors for the maximum 
stress and strain were all less than 1% for the four 
compositions studied. Furthermore, the final de-
formed shapes (i.e., width and thickness) of the FEA 
were consistent with the results of tensile tests. 
These verifications confirm the reliability of the pre-
sented FEM, which can be used to analyze the me-
chanical behavior of materials such as superplastic 
co-doped 3Y-TZP ceramics. This paper gives a fea-
sible model for simulating the constitutive character-
istics of superplastic ceramics and to some degree 
makes up for the lack of numerical analysis available 
for this kind of material. In addition, this paper of-
fers a model for analyzing applications related to the 
development of manufacturing process improve-
ments, mechanical analyses, fracture predictions, and 
safe design specifications for superplastic ceramics. 
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中文概要 
 

题 目：超塑性 Y-TZP 基陶瓷之有限元分析 

目 的：通过调整非常精细的颗粒，四方晶氧化锆多晶

（TZP）在室温下保持稳态四方相，并且具有优

异的塑性。然而，当材料变形时，我们必须对

超塑性陶瓷在机械应力分布和断裂机制方面有

更多的理解。 

创新点：1. 通过材料弹塑性模型；2. 使用胡克定律、塑

性应变硬化及 von Mises 降伏准则；3. 结合等向

性硬化规则及相关联的流动规则。 

方 法：1. 开发一个高温超塑性材料在不同应变率拉伸

条件下具备不同应力-应变关系的组成律模型及

有限元分析模型；2. 通过有限元法仿真模拟与

实验结果比对；3. 验证所提方法的可行性和精

确性。 

结 论：1. 有限元仿真模拟的应力-应变关系与实验数据

吻合较好，对于所研究的四种组合物，最大应

力和应变的误差均小于 1%。2. 有限元仿真模拟

的最终变形形状（宽度和厚度）与拉伸试验的

结果一致；这些验证证实了所提有限元分析模

型的可靠性。 

关键词：有限元分析；Y-TZP 基陶瓷；超塑性 

 
 

 


