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Abstract:    Short-term load forecasting (STLF) plays a very important role in improving the economy and security of electricity 
system operations. In this paper, a hybrid STLF method is proposed based on the improved ensemble empirical mode decompo-
sition (IEEMD) and back propagation neural network (BPNN). To alleviate the mode mixing and end-effect problems in tradi-
tional empirical mode decomposition (EMD), an IEEMD is presented based on the degree of wave similarity. By applying the 
IEEMD method, the nonlinear and nonstationary original load series is decomposed into a finite number of stationary intrinsic 
mode functions (IMFs) and a residual. Among these components, the high frequency (namely IMF1) is always so small that it has 
little contribution to model fitting, while it sometimes has a great disturbance for the STLF. Therefore, the IMF1 is removed in the 
proposed hybrid method for denoising. The remaining IMFs and residual are forecast by BPNN, and then the forecasting results 
of each component are combined with BPNN to obtain the final predicted load series. Three groups of studies were done to 
evaluate the effectiveness of the proposed hybrid method. The results show that the proposed hybrid method outperforms other 
methods both mentioned in this paper and previous studies in terms of all the three standard statistical indicators considered in 
this study. 
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1  Introduction 

 
After liberalization of the electric power industry 

and launching of competitive electric markets, precise 
short-term load forecasting (STLF) has become much 
more important for both electricity system operators 
and market participants. Considering the fact that 
electricity load always suffers from various unstable 

factors, including weather conditions, social activi-
ties, and dynamic electricity prices, the load series 
often shows highly nonlinear and nonstationary 
characteristics that make forecasting very difficult. 
Inaccurate load forecasting may increase operating 
costs (Bunn, 2000). On the contrary, with an accurate 
electric load forecasting method, essential operating 
functions such as unit commitment, reliability analy-
sis, and unit maintenance can be operated more ef-
fectively (Senjyu et al., 2005). Thus, developing a 
method to improve the accuracy of electric load 
forecasting is essential.  

The STLF method can be broadly divided into 
two categories: traditional approaches and modern 

Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering) 

ISSN 1673-565X (Print); ISSN 1862-1775 (Online) 

www.zju.edu.cn/jzus; www.springerlink.com 

E-mail: jzus@zju.edu.cn 

 

‡ Corresponding author 

* Project supported by the Fundamental Research Funds for the Central 
Universities (No. 2013QNA4018), China 

 ORCID: Yun-luo YU, http://orcid.org/0000-0003-3717-5296; Wei 
LI, http://orcid.org/0000-0002-3893-0030 
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2016 



Yu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2016 17(2):101-114 102

intelligent approaches. The traditional approaches are 
mainly time series analysis methods based on 
mathematical statistics, such as regression analysis 
approach (Goia et al., 2010), Kalman filtering ap-
proach (Trudnowski et al., 2001), Box–Jenkins’ au-
toregressive integrated moving average (ARIMA) 
approach (Wang and Schulz, 2006), exponential 
smoothing (Wu et al., 2013), and so on. Although 
these methods have the advantage of a simple algo-
rithm, they are not suitable for forecasting the non-
linear and nonstationary electric load series, because 
they are based on linear analysis. Modern intelligent 
approaches such as expert system approach (Rahman 
and Bhatnagar, 1988), fuzzy logic-based approach 
(Che et al., 2012), and artificial neural networks 
(Hernandez et al., 2013) can improve the perfor-
mance of electric load forecasting efficiently. How-
ever, these methods cannot yield the desired accuracy 
in all forecasting problems. Just as Chatfield (1988) 
and Jenkins (1982) concluded, there is no single best 
prediction method that can be applied to any specific 
situation. As a result, many combination short-term 
forecasting methods that combine two or more mod-
els are proposed to enhance the performance and 
eliminate the limitations of existing individual models 
(Xiong et al., 2014; Chen et al., 2015; Liu et al., 2015; 
Sudheer and Suseelatha, 2015; Yang et al., 2015). 
Among these, hybrid models that integrate empirical 
mode decomposition (EMD) with other techniques 
have been widely used for STLF because the former 
considers the inherent characteristics of the data. Liu 
et al. (2015) combined EMD with an improved re-
cursive autoregressive integrated moving average 
model to the forecast of short-term wind speed. Yang 
et al. (2015) used EMD to decompose a rotor’s non-
linear response into a series of intrinsic mode func-
tions (IMFs) and further predicted the nonlinear re-
sponse of a cracked rotor by adding all the prediction 
results obtained based on the maximal local Lya-
punov exponent. However, Guo et al. (2012) and 
Huang et al. (2014) pointed out that the forecasting 
accuracy of the classical EMD-based hybrid model 
will be decreased without the denoising process be-
cause the electric load series have certain random 
volatility, which would introduce noises. To solve 
this problem, Guo et al. (2012) and Huang et al. 
(2014) removed the high frequency (namely IMF1) 
obtained through EMD, which is regarded as noise, 

and predicted each remaining component respectively 
to achieve the final forecasting results. However, the 
IMF1 obtained in traditional EMD is always a mixture 
of the real intrinsic mode and noise under the influ-
ence of the mode mixing problem; thus, removing  
it directly would result in the loss of useful infor-
mation, which will lead to the decrease of forecasting 
accuracy. 

To alleviate the mode mixing problem of EMD, 
the ensemble empirical mode decomposition (EEMD) 
was presented by Wu and Huang (2009) recently. 
EEMD is a noise-assisted data analysis method that 
has been widely applied in many areas, such as fore-
casting (Wang et al., 2015), fault diagnosis (Yang and 
Wu, 2015), and signal denoising (Mariyappa et al., 
2015). However, in the EEMD process, the two ends 
of the signals disperse, which is termed as the end 
effect, and this would “empoison” the whole time 
series, gradually causing distortion in the results. As a 
result, severe distortion would occur on the two sides 
of the predicted electric load series, which render the 
predicted results unreliable. To eliminate the end- 
effect problem in the traditional EEMD, an improved 
EEMD (IEEMD) is proposed in this study based on 
the degree of wave similarity.  

Considering the simplicity and the ability to ex-
tract useful information from samples of back prop-
agation neural networks (BPNNs), which are suc-
cessfully used in forecasting applications, such as 
forecasting time series (Wang et al., 2015), electric 
load (Wang et al., 2014), and traffic flow (Li et al., 
2013), a hybrid STLF model that integrates IEEMD 
with BPNN is proposed in this study. In the hybrid 
model, the original load data are first decomposed 
into a finite and often small number of stationary 
IMFs and a residual using the IEEMD to reduce its 
instability. Next, the high frequency (namely IMF1) 
obtained through IEEMD, which is the major source 
of noise and has little contribution to model fitting, is 
removed for denoising. Then, the remaining IMFs 
and residual are forecast by BPNN. Finally, the elec-
tric load is forecast by combining the predicted values 
of each subseries through BPNN. 

In this paper, the fundamental principles of 
IEEMD and BPNN are illustrated first, and a hybrid 
STLF model for an electricity system is constructed 
based on the IEEMD and BPNN, then experiments 
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are carried out to evaluate our forecasting model and 
the experimental results are discussed.  

 
 

2  Analyzing techniques 

2.1  IEEMD 

EMD is a direct, a posteriori, and self-adaptive 
method for signal decomposition, first proposed by 
Huang et al. (1998). It is developed from the simple 
assumption that any signal consists of different sim-
ple intrinsic modes of oscillations. Any signal can be 
decomposed into a finite number of IMFs, each of 
which must satisfy the following definition: (1) in the 
whole data set, the number of extrema and the number 
of zero-crossings must either be equal or differ at the 
most by one; (2) at any point, the mean value of the 
envelope defined by the local maxima and the enve-
lope defined by the local minima is zero. After EMD 
decomposition, the original signal x(t) can be repre-
sented as  

 

1

( ) ( ) ( ).
n

i n
i

x t c t r t


                           (1) 

 
Thus, we can achieve a decomposition of the 

signal into IMFs c1(t), c2(t), …, cn(t), and a residual 
rn(t), which is the mean trend of x(t). However, there 
are still limitations in this algorithm. One of the most 
crucial problems is mode mixing. Mode mixing is the 
phenomenon of disparate frequencies existing in a 
single IMF. The occurrence of mode mixing is mostly 
caused by signal intermittency and may be interpreted 
incorrectly as a different physical meaning repre-
sented by this mode. 

To alleviate the problem of mode mixing in-
herent in the use of EMD, Wu and Huang (2009) 
proposed an effective EEMD method. The principle 
of EEMD is simple: adding white noise to the data, 
which becomes distributed uniformly in the whole 
time–frequency space; the bits of signals of different 
scales can be automatically designed onto proper 
scales of reference established by the white noise. The 
procedures of EEMD are as follows: 

1. Add a random white noise signal nj(t) to x(t): 
 

( ) ( ) ( )j jx t x t n t  ,                           (2) 

where xj(t) is the noise-added signal, j=1, 2, …, M, 
and M is the number of trials. 

2. Decompose xj(t) into a series of IMFs ci, j uti-
lizing EMD as follows: 
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where ci, j denotes the ith IMF of the jth trial, 
jnr  de-

notes the residue of the jth trial, and Nj is the number 
of IMFs of the jth trial. 

3. If j<M, then repeat steps 1 and 2, and add 
different random white noise signals each time. 

4. Obtain I=min(N1, N2, …, NM) and calculate 
the ensemble means of corresponding IMFs of the 
decompositions as the final result: 
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where ci (i=1, 2, …, I) is the ensemble mean of the 
corresponding IMF of the decompositions.  

EEMD is a fully data-adaptive method, which 
provides an efficient analysis method for nonstation-
ary and nonlinear signals. However, the two ends of 
the signals become dispersed while the series is de-
composed by the EEMD, and this dispersion, termed 
as the end effect, would “empoison” the whole time 
series, gradually causing distortion in the results. To 
restrain the end effect in traditional EEMD, an 
IEEMD is proposed to restrain the end-effect issue, 
and the process is detailed as follows: 

1. Take the left end processing procedure for 
instance. The left end point (t0) of the original signal 
is set as the starting point of the wave (ω) to be 
matched. Then, the n pieces of data t1 after t0 are set as 

the terminal point of ω. In this study, 
1440

n
T

  is 

used, where T (min) is the sampled time. 
2. According to Eq. (5), the degree (ρ) of wave 

similarity between ω and all the sub waves (ωi) in the 
original signal are calculated and compared to 
achieve the most similar sub wave (ωmatch) that has the 
biggest ρ. 
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where cov(ω, ωi) is the covariance of the two waves, 
and σ(ω) and σ(ωi) are the variances of ω and ωi, 
respectively. 

3. According to Eq. (6), the data correlation 
between ω and ωmatch is calculated through the linear 
regression method. 

 
,a b Y X                               (6) 

 
where X and Y are the amplitude vectors of ω and 
ωmatch, respectively, and a and b are the correlation 
coefficients.  

4. The left end point (t′0) of ωmatch is set as the 
starting point of the wave (ωmatch-left) used for exten-
sion, and then, the n pieces of data t′1 after t′0 are set as 
the terminal point of ωmatch-left. 

5. The left end of the signal is extended with a 
wave (ωextension), which can be calculated according to 
Eq. (7). Then, the right end of the signal is extended in 
the same way. 

 

match-left
extension .

b
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
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6. The EEMD method is applied for decompos-

ing the signal after extension. After decomposition, 
the extended data on both sides of the obtained IMFs 
and residual are removed. The remaining data section 
of the IMFs and residual are the decomposition results 
of the original data set obtained through the IEEMD. 

2.2  BPNN  

The BPNN is one of the most widely used arti-
ficial neural networks and it has infinite potential in 
the load forecasting area due to its strong nonlinear 
processing ability and approaching capability. A 
typical BPNN is a multilevel hierarchical feedback 
structure, which is used to adjust the network weights 
through the back propagation algorithm, including 
input layer, hidden layer, and output layer. There are 
full internet connections between the upper and lower 
layer, and no connections among neurons in the same 
layer. Connection weights of each layer can be ad-
justed by learning. When the network obtains a 

learning sample, neural activation values are trans-
mitted from the input layer to the output layer through 
the hidden layer, and the input response of the net-
work is received in the output layer. If the output 
value cannot be as desired, an error signal should 
return along the original connection path in the back 
propagation process. The error of the output layer 
node should transmit reversely to the input layer to 
adjust the connection weights and thresholds to adapt 
the requirements of mapping. The model structure of 
BPNN is given in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3  A Hybrid STLF model  
 

To reduce the instability of the original load se-
ries, IEEMD is used to decompose the original load 
series into a finite and often small number of IMFs 
and one residual. Then these components are forecast 
by BPNN respectively, such that the tendencies of 
these components can be predicted. Finally, aggrega-
tion of the prediction results of all components 
through BPNN produces the final forecasting result 
for the original electric load series (this model can be 
denoted by IEEMD–BPNN). 

Our studies showed that the high frequency 
(namely IMF1) of IEEMD results is always so small 
that it has little contribution to model fitting, while it 
sometimes proves to be a great disturbance for the 
forecasting precision of an electric load. The reason is 
that after IEEMD decomposition, the real intrinsic 
mode and noise of the original signal are separated as 
a result of eliminating the mode mixing problem. 
Therefore, the obtained IMF1 contains almost no 
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Fig. 1  Structural diagram of BPNN 
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useful information and is the main source of noise. 
Considering the insignificance of IMF1, it is removed 
in the IEEMD–BPNN to improve the forecasting 
precision of a disordered electric load series. 

In other words, this study proposes a novel hy-
brid model that integrates IEEMD with BPNN to 
provide a quick and accurate way for STLF. The 
specific process of the proposed model is described 
below, and the flowchart is shown in Fig. 2. 

Step 1: Non-stability reduction. Decompose the 
electric load series with IEEMD to obtain a series of 
IMFs and a residual. 

Step 2: Noise reduction. Remove the IMF1 ob-
tained in Step 1, which is the main source of noise and 
contains limited useful information. 

Step 3: BPNN forecasting. Input each remaining 
component obtained in Steps 1 and 2 to the BPNN to 
achieve its future values respectively. Here, multi- 
input and mono-output method is taken to construct 
the input and output matrices of time series to build 
the training samples of the BPNN model. The struc-
ture of the training samples is shown in Table 1. In 
Table 1, [x(i), x(i+1), x(i+2), …, x(i+k−1)] is the input 
vector, while [x(i+k)] is the output vector; k is the 
embedding dimension of the input vector. If k is too 
small, the forecasting accuracy of BPNN would de-
cline. If k is too large, the convergence speed of 
BPNN would decrease. In this study, the embedding 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

dimension (k) of the input vector was set as six 
through the neural network simulation.  

 
 
 
 
 
 
 
 

 
Step 4: Gain the final forecasts. Use the BPNN to 

combine these forecasting results of each component 
to achieve the final results. 

 
 
4  Experimental analyses  

4.1  Statistical measures of forecasting performance 

In this study, the following three criteria were 
used to evaluate the STLF methods. They are the root 
mean square error (RMSE), mean absolute error 
(MAE), and mean absolute percentage error (MAPE), 
which are calculated as follows: 
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N 
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Table 1  Input and output vectors of BPNN 

Sample Input  Output 

The 1st sample x(1), x(2), …, x(k) x(k+1) 

The 2nd sample x(2), x(3), …, x(k+1) x(k+2) 

   
The ith sample x(i), x(i+1), …, x(k+i−1)  x(k+i) 

Fig. 2  Overall process of the proposed IEEMD–BPNN model 
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……

Step 1: non-stability reduction

Step 3: BPNN forecasting

Step 4: gain the final forecasts

Step 2: noise reduction
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where xi represents the actual value, ix  represents the 

forecast value, and N is the number of test samples for 
the prediction model. Clearly, the above criteria rep-
resent three types of deviation between the forecasts 
and the actual values: the smaller they are, the better 
the forecasting accuracy is. 

4.2  Study 1: examination of the IEEMD–BPNN 
model 

First, the URL (http://neuron.tuke.sk) of the web 
site is entered to download the electric load data of the 
Eastern Slovakian Electricity Corporation (ESEC) 
from 1997 to 1998. The load data include the readings 
for 30 min per sampling point. The feasible data used 
in this study are the data from April 8, 1998 to April 
26, 1998 (19 days in all). Among these data, the 
electric load data from April 8, 1998 to April 19, 1998 
are used for model fitting and training, and then the 
constructed models are applied to forecast the electric 
load from April 20, 1998 to April 26, 1998. The 
electric loads of the ESEC from April 8, 1998 to April 
19, 1998 are outlined in Fig. 3. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rolling forecasting process is undertaken in this 
study. For example, the data from April 8, 1998 to 
April 19, 1998 are used to forecast the electric data of 
April 20, 1998; the data from April 9, 1998 to April 
20, 1998, together with the forecast electric data of 
April 20, 1998, are used to forecast the electric data 
for April 21, 1998. Then, in the same way, 12 days’ 
electric load data are used to forecast the next day’s 
electric load data. 

From Fig. 3, we can see that the actual electric 
load time series has certain random volatility, due to 
which denoising is necessary. Decomposing the load 
series shown in Fig. 3 is achieved using IEEMD. 
After removing IMF1, the reconstructed denoised 
signal is shown in Fig. 4. Compared with Fig. 3, it can 
be seen that the denoised data is a little smoother than 
the original data. Hence, instead of using all the 
components, the IEEMD–BPNN removes the IMF1 
and uses the remaining components for model fitting 
and training. 

Prediction results of all IMFs and the residual 
component of Fig. 4 are illustrated in Fig. 5. These 
IMF components, IMF2–IMF8 (IMF1 is removed), are 
the decomposed results whose frequency bands range 
from high to low respectively, while the residual 
component maintains the original shape of the curve 
of the whole electric load data. It is obvious that the 
prediction accuracy is improved gradually with the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Electric load data of the ESEC from April 8, 1998 to April 19, 1998 
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Fig. 4  Reconstructed denoised electric load signal
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decreasing of IMF frequency although the forecast 
result of IMF2 is not perfect. 

After combining these forecasting results of each 
remaining component with BPNN, the final fore-
casting result of electric load on April 20, 1998 can be 
acquired, as shown in Fig. 6a. The electric load data 
from April 21, 1998 to April 26, 1998 are forecast in 
the same way, and the results are shown in 
Figs. 6b–6g. It is clear that the predicted load data 
obtained through the IEEMD–BPNN are in good 
agreement with the actual load data for a whole week. 
The proposed IEEMD–BPNN has good performance 
for the STLF of electricity systems. 

To highlight the advantage of the proposed 
IEEMD–BPNN, it is compared with the other three  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

methods, i.e., basic BPNN, EMD–BPNN, and 
EEMD–BPNN. All the three methods used the BPNN 
to predict; while the basic BPNN simulated the orig-
inal data directly, the EMD–BPNN simulated the data 
decomposed with traditional EMD and the 
EEMD–BPNN simulated the data decomposed with 
traditional EEMD. The RMSE, MAE, and MAPE of 
the four methods were calculated and listed in  
Table 2. It can be observed from Table 2 that the basic 
BPNN has the worst performance compared with  
the other three methods. The EMD–BPNN and 
EEMD–BPNN both have good performances com-
pared with basic BPNN. However, among all the 
methods, it is the IEEMD–BPNN that has the best 
performance and it outperforms the other three  

Fig. 5  Predicted load curves of IMFs and the residual component 
Figs. 5a–5g represent the predicted load curves of IMF2–IMF8, respectively; Fig. 5h represents the predicted load curve of the
residual 
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Table 2  Three statistical measures of the four forecasting methods 

Date 
RMSE (MW) MAE (MW) MAPE (%) 

BPNN 
EMD– 
BPNN 

EEMD– 
BPNN 

IEEMD–
BPNN 

BPNN
EMD–
BPNN

EEMD–
BPNN

IEEMD–
BPNN

BPNN
EMD– 
BPNN 

EEMD– 
BPNN 

IEEMD–
BPNN

Apr. 20 20.38 9.41  12.40 8.08 16.76 7.87 9.93 6.73 2.81 1.34 1.67 1.13 

Apr. 21 26.48 9.12  9.42  8.33 18.07 7.61 7.05 6.81 3.13 1.30 1.19 1.15 

Apr. 22 18.25 8.18  7.21  7.01 13.97 6.64 6.04 5.57 2.48 1.19 1.07 0.99 

Apr. 23 18.02 27.98 24.79 8.63 12.76 22.78 22.57 6.44 2.33 4.35 4.14 1.17 

Apr. 24 20.36 29.12 13.67 9.94 16.71 24.25 10.49 7.97 3.09 4.53 1.92 1.46 

Apr. 25 21.09 14.02 13.49 8.27 15.53 9.44 10.90 7.05 3.01 1.84 2.11 1.36 

Apr. 26 25.57 11.78 10.01 6.68 21.13 8.28 7.29 5.26 4.43 1.71 1.50 1.09 
Average 

value 
21.45 15.66 13.00 8.13 16.42 12.41 10.61 6.55 3.04 2.32 1.94 1.19 
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Fig. 6 The actual and predicted electric load data for
April 20–26 ((a)–(g), respectively), 1998 obtained by the
IEEMD–BPNN method 
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methods in terms of all the three standard statistical 
indicators. 

To clearly illustrate the forecast value, the actual 
and predicted electric load values obtained by the four 
methods for April 20, 1998 are shown in Fig. 7. It can 
be seen that the predicted data obtained through the 
basic BPNN has the maximum error with the original 
data, compared with the other three methods; this is 
because the original electric load data have certain 
random volatility, which makes it difficult for the 
BPNN to predict directly. EMD–BPNN has better 
performance than basic BPNN, but there is still a 
certain error in the predicted data due to its limited 
denoising ability; EEMD–BPNN has better perfor-
mance than both basic BPNN and EMD–BPNN due 
to its strong denoising ability, but it is influenced by 
the end effect severely, which leads to a large error in 
the ends of the predicted data; IEEMD–BPNN is 
more consistent with the original data than the other 
three methods; furthermore, it has a small error in the 
ends of the predicted data, because it eliminates the 
end effect in traditional EEMD effectively. Therefore, 
the proposed IEEMD can eliminate the end effect in 
traditional EEMD effectively, and the proposed  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IEEMD–BPNN is the most accurate forecasting 
method compared with the other three methods. 

4.3  Study 2: comparison with a seasonal ARIMA– 
BPNN model 

In this section, the electric load demand data of 
the South Australia (SA) state of Australia (AEMO, 
2007) are applied to compare the efficiency of the 
proposed IEEMD–BPNN model with the seasonal 
ARIMA–BPNN (SARIMA–BPNN) model presented 
by Yang et al. (2013). Thus, the results of this method 
are compared with the results of Yang et al. (2013) to 
forecast the load on July 14, 2007. For this purpose, 
the same training and testing samples of Yang et al. 
(2013) are used in this study. Namely, the load de-
mand data of SA on June 23, June 30, and July 7 are 
used to forecast the load demand of SA on July 14 
through IEEMD–BPNN. The load demand data in-
clude the readings for 30 min per sampling point. 

The results of the STLF for July 14, 2007 ob-
tained through IEEMD–BPNN are shown in Fig. 8 
and compared with the method presented by Yang et 
al. (2013) in Table 3. In the IEEMD–BPNN, the 
MAPE and RMSE values obtained for July 14, 2007  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7  Actual and predicted load values for April 20, 1998 obtained by basic BPNN (a), EMD–BPNN (b), EEMD–BPNN
(c), and IEEMD–BPNN (d) 
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are 0.548% and 15.401 MW, respectively. These 
measures are approximately 89.32% and 83.28% less 
than those in literature (Yang et al., 2013), respec-
tively. Therefore, it can be concluded that the forecast 
accuracy of the proposed method is significantly 
better than that presented by Yang et al. (2013). 

4.4  Study 3: comparison with other well-known 
hybrid models 

To further examine the proposed IEEMD– 
BPNN forecasting model, the electric load data of 
New York networks (NYISO, 2004) are used. The 
load data include the readings for 1 h per sampling 
point. The results of the proposed IEEMD–BPNN are 
compared with the results of other well-known hybrid 
models, WTNNEA and WGMIPSO presented by 
Amjady and Keynia (2009) and Bahrami et al. (2014), 
respectively, to forecast the load on July 1, 2004. For 
this purpose, the load data of the previous 10 d are 
used to forecast the electric load on July 1, 2004. 

The forecast results of the IEEMD–BPNN and 
the methods in the literature (Amjady and Keynia, 
2009; Bahrami et al., 2014) for July 1, 2004 are 
shown in Fig. 9, while the values of the forecast load,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the actual load, and the error of load forecasting of the 
three methods are presented in Table 4. According to 
Table 4, the error of the load forecasting method 
proposed by Amjady and Keynia (2009) is more than 
100 MW in 18 h. In the method proposed by Bahrami 
et al. (2014), the value of the error is less than 60 MW 
in 14 h. However, in the proposed IEEMD–BPNN, 
the value of the error is less than 55 MW in 16 h. 
Obviously, the proposed IEEMD–BPNN enjoys 
higher accuracy for load forecasting. 

The results of the electric load forecasting for 
July 1, 2004 are compared with the proposed meth-
ods in the literature (Amjady and Keynia, 2009; 
Bahrami et al., 2014) in Table 5 (p.112). In the 
method proposed by Amjady and Keynia (2009), the 
MAPE, MAE, and RMSE values obtained for July 1, 
2004 are 1.931%, 132.11 MW, and 145.19 MW, 
respectively, which are approximately 64.68%, 
64.71%, and 63.01% less than those of Bahrami et al. 
(2014), respectively. However, among these meth-
ods, it is the IEEMD–BPNN that has the lowest 
MAPE, MAE, and RMSE values, which are ap-
proximately 72.40%, 71.82%, and 68.47% less than 
those of Amjady and Keynia (2009). The maximum 
and the minimum errors occurred at 7:00 pm and 
1:00 pm, respectively. The maximum and the mini-
mum absolute errors are equal to 83.76 MW (at 7:00 
pm) and 0.75 MW (at 1:00 pm), respectively. Finally, 
it can be concluded that the forecast accuracy of the 
proposed IEEMD–BPNN is significantly better than 
that of the other models presented in the literature 
(Amjady and Keynia, 2009; Bahrami et al., 2014).  

Fig. 8  Predicted load demand results obtained by IEEMD–BPNN for July 14, 2007 
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Table 3  Comparing the results of STLF for July 14, 2007

Type of forecast 
MAPE  

(%) 
RMSE 
(MW) 

MAE 
(MW) 

IEEMD–BPNN 0.55 15.401 9.199 
SARIMA–BPNN  
(Yang et al., 2013) 

5.13 92.137 − 
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Table 4  Actual load, forecast load, and forecast error for the power system of New York for July 1, 2004 

Time 
(h) 

Actual 
load 

(MW) 

Forecast load (MW) Forecast error (MW) 

WTNNEA 
(Amjady and 
Keynia, 2009) 

WGMIPSO 
(Bahrami et 
al., 2014) 

IEEMD– 
BPNN 

WTNNEA 
(Amjady and 
Keynia, 2009) 

WGMIPSO 
(Bahrami et 
al., 2014) 

IEEMD– 
BPNN 

1 5650 5766.45 5585.08 5664.30 −116.45 64.92 14.30 

2 5439 5681.63 5362.49 5419.90 −242.63 76.51 −19.09 

3 5325 5210.55 5256.19 5297.08 114.45 68.81 −27.91 

4 5315 5508.26 5247.90 5319.93 −193.26 67.10 4.93 

5 5505 5675.96 5423.21 5586.41 −170.96 81.79 81.41 

6 6044 6282.63 6039.49 6109.32 −238.63 4.51 65.32 

7 6840 7077.63 6884.31 6783.96 −237.63 −44.31 −56.03 

8 7505 7396.55 7565.75 7450.97 108.45 −60.75 −54.02 

9 7988 7879.55 8047.90 7960.99 108.45 −59.90 −27.00 

10 8268 8160.55 8279.92 8281.18 107.45 −11.92 13.18 

11 8461 8389.21 8462.96 8453.26 71.78 −1.96 −7.73 

12 8554 8448.55 8578.10 8548.84 105.45 −24.10 −5.16 

13 8645 8876.63 8684.34 8645.75 −231.63 −39.34 0.75 

14 8705 8601.55 8745.89 8723.82 103.45 −40.89 18.82 

15 8743 8640.55 8793.68 8759.71 102.45 −50.68 16.71 

16 8735 8633.55 8797.86 8705.03 101.45 −62.86 −29.97 

17 8562 8461.55 8655.77 8498.52 100.45 −93.77 −63.47 

18 8105 8005.55 8173.87 8158.56 99.45 −68.87 53.56 

19 7780 7887.26 7824.22 7863.76 −107.26 −44.22 83.76 

20 7627 7529.55 7623.56 7662.93 97.45 3.44 35.93 

21 7526 7489.07 7523.02 7464.21 36.92 2.98 −61.78 

22 7192 7096.55 7164.08 7120.25 95.45 27.92 −71.74 

23 6691 6912.63 6645.03 6699.60 −221.63 45.97 8.60 

24 6175 6232.63 6103.53 6247.14 −57.63 71.47 72.14 

Fig. 9  Actual and predicted electric load values obtained by the three methods for July 1, 2004 
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5  Conclusions 

 
STLF is an important issue when operating an 

electricity system reliably and economically. In this 
paper, a hybrid forecasting model based on IEEMD 
and BPNN is constructed. The IEEMD method is 
used to decompose the original load series into sev-
eral IMFs and one residual component. This can re-
duce the nonstationarity of the original load series and 
enhance the prediction accuracy. Here, IEEMD is an 
improvement of EEMD proposed in this study. In the 
IEEMD, end-points continuation based on the degree 
of wave similarity is used to restrain the end effect in 
traditional EEMD. After removing the high- 
frequency component (namely IMF1) obtained 
through IEEMD, the remaining IMFs and the residual 
are forecast by BPNN. The final forecasting result for 
electric load is produced by combining all the fore-
casting results obtained through BPNN. 

The IEEMD–BPNN model is compared with the 
basic BPNN, EMD–BPNN, and EEMD–BPNN 
models. The comparison results show that the basic 
BPNN has the worst performance compared with the 
other models. The EMD–BPNN and EEMD–BPNN 
both have a better performance compared with the 
basic BPNN: the EMD–BPNN reduces the average 
RMSE, average MAE, and average MAPE by 
26.99%, 24.42%, and 23.68%, respectively, com-
pared with the basic BPNN, and the EEMD–BPNN 
reduces the average RMSE, average MAE, and av-
erage MAPE by 39.39%, 35.38%, and 36.18%, re-
spectively, compared with the basic BPNN. Among 
all the models, the IEEMD–BPNN model has the best 
performance and it outperforms the basic BPNN, 
EMD–BPNN, and EEMD–BPNN models in terms of 
all the standard statistical measures, acquiring the 
average RMSE, average MAE, and average MAPE 
statistics of 8.13 MW, 6.55 MW, and 6.19%,  

 
 
 
 
 
 
 
 
 
respectively; these RMSE, MAE, and MAPE values 
are reduced by 62.10%, 60.11%, and 60.86%, re-
spectively, compared with the basic BPNN. In addi-
tion, considering the three parameters RMSE, MAE, 
and MAPE, the IEEMD–BPNN model performs the 
best with the lowest RMSE, MAE, and MAPE for all 
days of the week. To further examine the 
IEEMD–BPNN model, three models proposed in 
other studies, i.e., SARIMA–BPNN (Yang et al., 
2013), WTNNEA (Amjady and Keynia, 2009), and 
WGMIPSO (Bahrami et al., 2014), are used for 
comparison. Similarly, the forecasting results show 
that the IEEMD–BPNN has the best performance 
compared with the SARIMA–BPNN, WTNNEA, and 
WGMIPSO models in terms of all the three standard 
statistical indicators (RMSE, MAE, and MAPE). 
Therefore, this study concludes that the IEEMD– 
BPNN model can obviously improve the electric load 
forecasting accuracy and can provide a very powerful 
tool for market players and regulators to control and 
arrange their electricity supply. 

In addition to electricity load, the proposed 
IEEMD–BPNN model might be used for other non-
linear and nonstationary time series forecasting task 
in the energy market such as wind power, which re-
quires further evidence. Furthermore, this study de-
votes attention exclusively to STLF, whereas middle- 
term and long-term load forecasting procedures are of 
greater value than STLF to decision-makers in the 
energy market. We will look into these issues in fu-
ture research.  
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中文概要 
 

题 目：一种基于改进总体经验模态分解与反向传播神经

网络的短期负荷预测方法 

目 的：短期电力负荷预测是电力系统安全调度、经济运

行的重要依据。研究处理非线性、非稳态电力负

荷信号的新方法，建立短期负荷预测的混合模

型，提高短期负荷预测的精确度。 
创新点：1. 提出一种改进总体经验模态分解（EEMD）方

法，抑制传统 EEMD 方法中的端点效应问题； 

2. 提出一种基于改进 EEMD 和反向传播神经网

络（BPNN）的短期负荷预测方法。 

方 法：1. 使用改进的 EEMD 方法将非稳态、非线性的电

力负荷信号分解为一系列的内禀模态函数和一

个趋势余量；2. 移除所得的高频内禀模态函数；

3. 使用BPNN分别预测各内禀模态函数及趋势余

量；4. 使用 BPNN 组合各内禀模态函数及趋势余

量预测结果，即为最终负荷预测结果。 

结 论：1.所提出的改进 EEMD 方法能有效抑制传统

EEMD方法中的端点效应问题；2. 在相同条件下，

所提出的基于改进 EEMD 和 BPNN 的短期负荷

预测方法较 BPNN、EMD-BPNN、EEMD-BPNN、

SARIMA-BPNN、WTNNEA 和 WGMIPSO 预测

方法有更高的精确度。 

关键词：集合经验模态分解；内禀模态函数；反向传播神

经网络；短期负荷预测 

 
 


