
Zhan et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2015 16(10):805-819 805

 

 

 

 

Plane elasticity solutions for beams with fixed ends 
 

Chun-xiao ZHAN, Yi-hua LIU†‡ 
(School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China) 

†E-mail: liuyihua@hfut.edu.cn 

Received Mar. 7, 2015;  Revision accepted July 16, 2015;  Crosschecked Sept. 15, 2015 

 

Abstract:    The plane stress problem of beams is a typical one in elasticity theory. In this paper a new set of boundary condi-
tions for the fixed end is proposed to improve the accuracy of the plane elasticity solution for beams with fixed end(s). Plane 
elasticity solutions are then derived for the cantilever beam, propped cantilever beam, and fixed-fixed beam. The new set of 
boundary conditions is constructed by combining two conventional ones with a parameter. The parameters for different kinds of 
beams are determined by minimizing the square sum of the longitudinal displacements through the thickness of the fixed end. 
Comparison with the results obtained by the finite element method (FEM) shows the efficiency of the new type of boundary 
conditions. When the beam is a deep one, it is found that different boundary conditions yield different errors, and the elasticity 
solution obtained by the new boundary conditions best approaches the FEM results.  
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1  Introduction 
 

The beam is a fundamental and important com-
ponent in many engineering structures in civil engi-
neering, mechanical engineering, and aerospace en-
gineering. Many scientists and engineers have stud-
ied the mechanical properties of beams by using dif-
ferent simplified beam theories, including the Euler-
Bernoulli beam theory and the Timoshenko beam 
theory (Timoshenko, 1921; 1922). In the Timoshen-
ko beam theory, because of the defective assumption 
that the shear strain over the cross section is a con-
stant, a shear correction factor (Cowper, 1966) and 
the parabolic distribution of shear strain (Levinson, 
1981) were later proposed to avoid the contradiction 
between the shear strain and the corresponding shear 
stress. In addition, some special finite elements 
(Heyliger and Reddy, 1988; Kant and Gupta, 1988) 

were also constructed by considering normal strains 
and shear strains through the thickness of the beam. 
A similar assumption of the shear strain can be fur-
ther used to analyze the dynamic response of the 
curved beam (Bhimaraddi, 1988) and the static flex-
ure of thick isotropic beams (Ghugal and Sharma, 
2011). 

In elasticity theory, the plane stress problem of 
beams is a classic one and the Airy stress function 
method is often used to derive the stress and dis-
placement of beams. By that method, Timoshenko 
and Goodier (1970) investigated many cases of the 
isotropic beam and the corresponding anisotropic 
beams were studied by Lekhnitskii (1968). Recently, 
Ding et al. (2005; 2006) obtained a set of analytical 
solutions for isotropic cantilever, propped cantilever, 
and fixed-fixed beams, as well as for anisotropic 
fixed-fixed beams. With the wide application of 
functionally graded materials, some investigators 
focused on generally anisotropic beams with materi-
al properties varying arbitrarily in the thickness di-
rection (Ding et al., 2007) and functionally graded 
cantilever beams (Zhong and Yu, 2007). Assuming 
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Young’s modulus to be an arbitrary function of the 
thickness coordinate, Wang and Liu (2010) devel-
oped an analytical solution for a bi-material beam 
with a graded intermediate layer. Moreover, the 
functionally graded magneto-electro-elastic aniso-
tropic beam was analyzed by introducing the stress 
function, electric displacement function, and mag-
netic induction function (Huang et al., 2010). Be-
sides the stress function methodology, some other 
methods have also been applied in beam analysis. 
For example, Ahmed et al. (1996; 1998) researched 
the fixed-fixed and cantilever deep beams by using 
the finite difference technique; Jiang and Ding (2005) 
analyzed the orthotropic cantilever beam by using 
two harmonic displacement functions; Gao and 
Wang (2006) improved the theory of deep beams by 
using the Papkovich-Neuber solution and the Lur’e 
method; Zhao et al. (2012) presented a new assess-
ment of the Saint-Venant solutions for the beam with 
axially exponential Young’s modulus based on the 
state equation and a shift-Hamiltonian operator ma-
trix. In addition, by the displacement approach, Nie 
et al. (2013) discussed the plane stress problem of an 
orthotropic beam with arbitrarily graded material 
properties in the thickness direction.  

During research on the displacement of the can-
tilever beam using the Airy stress function, Timo-
shenko and Goodier (1970) provided two types of 
boundary conditions of the fixed end to determine 
unknown constants, i.e., at the centroid of the cross 
section, u=0, v=0, and ∂v/∂x=0 for one type and 
∂u/∂y=0 for the other type. x and y refer to the longi-
tudinal and transverse coordinates, and u and v de-
note the longitudinal and transverse displacements, 
respectively. By using the above two types of 
boundary conditions, Ding et al. (2005) studied 
fixed-fixed, propped cantilever, and cantilever beams 
subjected to a uniform load. Comparing the result for 
the fixed-fixed beam with the numerical one ob-
tained by Ahmed et al. (1996), it was found that the 
numerical result lies between the two analytical ones 
obtained by these two types of boundary conditions. 
The two types of boundary conditions were later 
adopted in the analyses for functionally graded 
beams with fixed ends (Ding et al., 2007; Zhong and 
Yu, 2007; Huang et al., 2010; Wang and Liu, 2010; 
Zhao et al., 2012; Nie et al., 2013). To improve the 
boundary conditions of the fixed end, Dai and Ji 

(2008) used u=0 at the top point of the fixed end in-
stead of ∂v/∂x=0 or ∂u/∂y=0, and subsequently ac-
quired a better analytical solution than that of Ding 
et al. (2005). From the aforementioned boundary 
conditions, it is noted that only a few points at the 
fixed end satisfy the constraint conditions. Hence, 
the analytical solutions obtained by such simplified 
boundary conditions have evident difference by 
comparison with the true ones, especially when the 
ratio of span to thickness is less than 5. The real 
boundary condition at the fixed end requires that the 
longitudinal and transverse displacements of each 
point at this cross section must be equal to zero, 
which means that the unknown constants in analyti-
cal solutions cannot be determined. Therefore, sim-
plified boundary conditions have to be applied to the 
practically fixed constraint, and the corresponding 
solution is inevitably an approximate one. More re-
cently, we note that similar simplified conditions 
have been applied to the 3D problem of beams, and 
the approximate elasticity solutions were discussed 
(Heyliger, 2013).  

From the above presentation, we believe that 
exact explicit solutions for beams with the fixed 
end(s) have not yet been obtained in elasticity theory. 
To decrease the difference between the elasticity 
solution and the true one as far as possible, we pro-
pose in this paper a new set of boundary conditions 
for the fixed end. In comparison with those of Timo-
shenko and Goodier (1970), v/x and u/y are both 
taken into account to eliminate the rotation. To veri-
fy the effectiveness, three kinds of beams with fixed 
ends are then examined. The plane elasticity solu-
tions of displacements and stresses are derived for 
each kind of beam, and subsequently the correspond-
ing numerical calculations are carried out by the fi-
nite element method (FEM) for comparison.  
 
 
2  Basic formulations 
 

In the absence of body forces, the stress com-
ponents x, y, and xy for the plane elasticity prob-
lem can be expressed by the Airy stress function  as 
follows: 
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where the stress function  should satisfy the follow-
ing bi-harmonic equation:  
 

4 4 4

4 2 2 4
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                   (2) 

 
For the plane stress problem, the relation be-

tween the displacement components u and v and the 
stress components is given by 
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where E and  are Young’s modulus and Poisson’s 
ratio, respectively. 
 
 

3  Analytic models 
 
In this study, we consider three kinds of beams 

with fixed end(s), which are the cantilever beam 
(Fig. 1), the propped cantilever beam (Fig. 2), and 
the fixed-fixed beam (Fig. 3). 

To uniformly analyze the above three kinds of 
beams, a general model of beams having a rectangu-
lar cross section of unit width is provided as shown 
in Fig. 4. The span of the beam is l and the thickness 
is h. The upper surface is subjected to a uniform load 
q. A longitudinal force T0, a transverse force F0, and 
a couple M0 act at the left end, while Tl, Fl, and Ml 
act at the right end.  

In the Cartesian coordinate system Oxy, the 
boundary conditions on the upper and lower surfaces 
can be written as  

 

,y q    0,xy      at / 2,y h                (4) 

0,y   0,xy      at / 2.y h                 (5) 

 
In Figs. 1–3, there are three types of ends, i.e., 

the free end, the roller support, and the fixed end. 
Their boundary conditions are 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

0,N   0 ,Q F   0 ,M M      at 0x          (6) 

 
for the free end (Fig. 1), where N, Q, and M are the 
axial force, shear force, and bending moment,  
respectively;  
 

0,N   0 ,M M      at 0,x   

0v      at the point (0, 0)                   (7) 

Fig. 1  Cantilever beam 
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Fig. 2  Propped cantilever beam 
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Fig. 3  Fixed-fixed beam 
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for the roller support (Fig. 2);  
 

0,u   0,v   0
v

x





                       (8) 

 
at the point (a, 0) or 
 

0,u   0,v   0
u

y





                       (9) 

 
at the point (a, 0) for the fixed end by Timoshenko 
and Goodier (1970), where a=0 (Fig. 3) or l  
(Figs. 1–3). 

To have a more reasonable assumption for the 
fixed end, generally considering Eqs. (8) and (9), we 
propose a new set of boundary conditions as  

 

0,u   0,v   0
v u

x y
 

 
 

                (10) 

 
at the point (a, 0), where  is a parameter to be de-
termined. In the analytical solution, we know that it 
is impossible to let all longitudinal displacements at 
the fixed end be zero. However, their square sum at 
the total cross section can be minimized. Conse-
quently the parameter  can be determined from the 
following condition: 
 

 /2 2

 /2
d 0,

h

h
u y
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If =0 or →∞, Eq. (10) will degenerate into 

Eq. (8) or Eq. (9), respectively. On the other hand, if 
=1, the third equation in Eq. (10) implies that the 
rigid rotation is constrained at the centroid of the 
cross section of the fixed end.  

 
 

4  Stresses, internal forces, and displacements 
 

Based on the mechanics of materials (Timo-
shenko and Gere, 1972), we assume that the shear 
stress xy on the cross section x (Fig. 4) is  
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where I=h3/12 is the moment of inertia of the cross 
section of the beam and the shear force is 
 

0( ).Q qx F                              (13) 

 
Evidently, Eq. (12) satisfies the second equations in 
Eqs. (4) and (5). 

Substituting Eq. (12) into the third equation in 
Eq. (1), the stress function  is derived with two un-
known functions. The two unknown functions can be 
determined by the bi-harmonic equation (2). Eventu-
ally we have the stress function  as 
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where A1–A5 are integral constants to be determined 
by the boundary conditions.  

Inserting Eq. (14) into Eq. (1), the stresses can 
be obtained as follows: 
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Substituting the second equation in Eq. (15) into the 
first equations in Eqs. (4) and (5), the integral con-
stants A1, A2, and A3 can be determined as  
 

1 2 0,A A   3 .
4

q
A                        (16) 

 
Applying Eq. (16) into Eq. (15), the stresses are re-
written as 
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Eq. (17) shows that the stress component y is inde-
pendent of the boundary conditions at the two ends. 

The axial force N and the bending moment M 
on a cross section of the beam can be obtained by 
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Substituting the first equation in Eq. (17) into 
Eq. (18), we have 
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From Eq. (19) it can be found that the constants A4 
and A5 are related to the bending moment M and the 
axial force N, respectively. 

Substituting Eq. (17) into Eq. (3), we can obtain 
the displacements as  
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where u0, v0, and   are integral constants to be de-
termined by the end boundary conditions. 

5  Applications of boundary conditions at 
two ends 
 

Since the three kinds of beams (Figs. 1–3) are 
all fixed at the right hand end (x=l), in this section 
we first consider the same boundary conditions at 
that end for them, and next apply different boundary 
conditions of the left hand end to each kind of beam, 
respectively, and then the elasticity solution for each 
one will be presented accordingly. 

Inserting Eq. (20) into Eq. (10) and letting a=l, 
we obtain:  

 

0 5

1
2 ,

2

q
u A l

E

    
 

 

4 3 2 2
0 0

1 1 1 1
(1 )

8 3 8
v ql F l ql h

EI
   

 

2
4

3
2

2 2

I q
A l

h

       
 

2
0(1 )( ) ,

4(1 )
ql F lh

EI

 


  


 

3 2 2
0

1 1 1 1
(1 )

6 2 4
ql F l qlh

EI
     

 

43 2
2

q
I A l

h

       
 

2
0(1 )( ) .

4(1 )
ql F h

EI

 


  


             (21) 

 
Substituting Eq. (21) into Eq. (20), the displacements 
become 
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In Eqs. (17) and (22), the integral constants A4 

and A5 need to be determined, and F0 is also un-
known except for the cantilever beam with F0=0. In 
the following, we will determine these unknown 
constants for the three kinds of beams. 

5.1  Cantilever beam 

Substituting Eq. (19) into the first and third 
equations in Eq. (6), we obtain 

 

2
4 0

1 1
,

120 6
A qh M

I I
    5 0.A             (23) 

 
The second equation in Eq. (6) is satisfied automati-
cally by Eq. (13). 

From Eq. (23), the constants A4 and A5 are 
shown to be independent of the parameter , which 
means that the stresses x, y, and xy in the cantile-
ver beam are also independent of . If we insert 
Eq. (23) into Eqs. (17) and (22), the elasticity solu-
tions of stresses and displacements are obtained for 
the cantilever beam. We also found that the elasticity 
solutions obtained are in good agreement with the 
results of Timoshenko and Goodier (1970) and Ding 
et al. (2005). 

5.2  Propped cantilever beam 

Substitution of Eqs. (19) and (22) into Eq. (7) 
yields 
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where T=5ql3/24−M0l/2+(8+5)qlh2/80. 

Inserting Eq. (24) into Eqs. (17) and (22), the 
elasticity solutions of stresses and displacements are 
presented for the propped cantilever beam. If we let 
M0=0 and =0, the elasticity solutions obtained are 
degenerated into the ones developed by Ding et al. 
(2005). 

5.3  Fixed-fixed beam 

Substituting Eq. (22) into Eq. (10) and letting 
a=0, we can obtain 
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Inserting Eq. (25) into Eqs. (17) and (22), the 

elasticity solutions of stresses and displacements are 
gained for the fixed-fixed beam, consistent with the 
ones provided by Ding et al. (2005) with =0 or 
→∞ and Dai and Ji (2008) with =(4+5)/(2+). 
Note that F0 is independent of the parameter  and 
thus, by the third equation in Eq. (17), the shear 
stress xy remains invariant for different values of . 

5.4  Determination of the parameter  

In Eqs. (22), (24), and (25), the parameter  
needs to be determined. For the cantilever and fixed-
fixed beams, substituting Eq. (23) or (25) into the 
first equation in Eq. (22), then into Eq. (11), and let-
ting a=l, we can obtain the parameter  as follows: 

 
8 9

.
2








                             (26) 

 
For the propped cantilever beam, substituting 

Eq. (24) into the first equation in Eq. (22), then into 
Eq. (11), and letting a=l, we have 

 

2

8 9 8(1 )
,

2 56 32 37

 
  

 
 

  
              (27) 

 
where =l/h is the ratio of span to thickness. 

From Eq. (26) we find that the parameter  var-
ies only with Poisson’s ratio for the cantilever and 
fixed-fixed beams. Eq. (27) shows that  depends 
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not only on Poisson’s ratio but also on the ratio of 
span to thickness for the propped cantilever beam. 
As →∞, Eq. (27) approaches Eq. (26). In contrast, 
as =0, the maximum error between Eqs. (27) and 
(26) is reached. As the maximum error is essentially 
small (e.g., only 3.86% for =0.3), for simplicity 
Eq. (26) can be used to calculate the stresses and 
displacements of the three kinds of beams. 

 
 

6  Results and discussion 
 
In this section, let BC1, BC2, BC3, and BC4 

denote the elasticity solutions for the four types of 
boundary conditions for fixed ends. BC1 is the solu-
tion with  given by Eq. (26), and BC2, BC3, and 
BC4 are the solutions with  being equal to 1, 0, and 
, respectively.  

The stresses and displacements in the three 
kinds of beams (Figs. 1–3) are calculated by Eqs. (17) 
and (22) and ANSYS codes, respectively, and four 
ratios of span to thickness (=10, 5, 3, 2) are consid-
ered for each calculation model. We take the thick-
ness of beams h=1, the uniform load q=1 MPa, 
Young’s modulus E=210 GPa, Poisson’s ratio =0.3, 
the transverse force F0=0 and the couple M0=0 for 
the cantilever beam, and the couple M0=0 for the 
propped cantilever beam. In the FEM model, the 
boundary conditions are, respectively, u=v=0 at x=l 
and –h/2≤y≤h/2 for the right fixed end, v=0 at the 
point (0, 0) for the roller support, and u=v=0 at x=0 
and –h/2≤y≤h/2 for the left fixed end in the fixed-
fixed beam. The elasticity solutions of the displace-
ments and stresses are compared with the FEM re-
sults below.  

6.1  Cantilever beam 

Fig. 5 plots the dimensionless transverse dis-
placement v/h as a function of the dimensionless 
longitudinal coordinate x/l for cantilever beams with 
the ratios of span to thickness =10, 5, 3, and 2. 
When =10, all the elasticity solutions of the trans-
verse displacement for the four types of boundary 
conditions agree well with the FEM results (Fig. 5a). 
With the decreasing ratio of span to thickness, the 
differences between the elasticity solutions and the 
FEM results become larger and larger. However, the 

errors between BC1 and the FEM results are always 
the smallest. The dimensionless longitudinal dis-
placement u/h varying with the dimensionless trans-
verse coordinate y/h is presented in Fig. 6. Similar to 
Fig. 5, the differences between the elasticity solu-
tions and the FEM results become larger and larger 
as the ratio of span to thickness decreases. In com-
parison with the FEM results, BC1 should be the 
most accurate solution for each ratio of span to 
thickness. Interestingly, the longitudinal displace-
ment is found from Fig. 6 to be almost linear with 
respect to the transverse coordinate y. 

Figs. 5 and 6 show that, for a cantilever beam, 
BC1 is the best elasticity solution and is always in 
good agreement with the corresponding FEM results. 
The maximum error of the transverse displacement 
between BC1 and the FEM results is at the point 
(0, 0) for =2, which is only about 3.0%. 

6.2  Propped cantilever beam 

Fig. 7 (p.813) gives the distribution of the di-
mensionless transverse displacement v/h with the 
dimensionless longitudinal coordinate x/l for the 
propped cantilever beam. In Figs. 8–10 (p.813-814), 
the variations of the dimensionless longitudinal dis-
placement u/h, the dimensionless normal stress x/q, 
and the dimensionless shear stress xy/q with the di-
mensionless transverse coordinate y/h are presented 
for the propped cantilever beam, respectively. Simi-
larly, the difference between the elasticity solution 
and the FEM results becomes larger and larger as the 
ratio of span to thickness  decreases. Note that the 
longitudinal displacement is no longer almost linear 
when  is less than 5.  

As shown in Fig. 7, when the beam is a shallow 
one, the elasticity solutions agree well with the FEM 
results. However, for a propped deep cantilever 
beam the difference of the transverse displacement 
between the elasticity solution and the FEM results 
is great when x/l is less than 0.5. This difference is 
due to the different conditions at the left hand end, 
x=0, in the analytic and FEM models. In the analytic 
model, the left end condition is given in Eq. (7). In 
contrast, the stress x=0 is satisfied at each point at 
that end in the FEM model. When the beam is a deep 
one, the influence of the end condition on the elastic-
ity solution is great, and a difference between the  
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 Fig. 10  Variation of xy/q in a propped cantilever beam with y/h at x/l=0.7 for (a) =10; (b) =5; (c) =3; (d) =2 
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elasticity solution and the FEM results occurs. When 
x/l is more than 0.5, BC1 agrees with the FEM re-
sults well. In Fig. 8, for the longitudinal displace-
ment BC4 is the best elasticity solution and agrees 
well with the FEM results. For the stresses x and xy, 
it is observed in Figs. 9 and 10 that BC1 is the best 
of all the elasticity solutions. When =2, the error of 
the stress x between BC1 and the FEM results is 
about 12.7% at point (l/2, h/2) and the error of the 
stress xy is about 3.8% at point (0.7l, 0).  

6.3  Fixed-fixed beam 

The dimensionless transverse displacement v/h 
for a fixed-fixed beam varying with the dimension-
less longitudinal coordinate x/l is plotted in Fig. 11. 
It can be found that BC1 is the best elasticity solu-
tion. The maximum error of the transverse displace-
ment between BC1 and the FEM results is about 
9.6% and at the point (l/2, 0) for =2. Similar to that 
in the propped cantilever beam, as shown in Fig. 12, 
the longitudinal displacement in a fixed-fixed beam 
does not remain linear any longer with respect to the 
transverse coordinate with the decreasing ratio of  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

span to thickness. Fig. 13 presents the variation of 
the dimensionless normal stress x/q with the dimen-
sionless transverse coordinate y/h. BC1 is also the 
best elasticity solution. When =2, the maximum 
error of the dimensionless normal stress x/q be-
tween BC1 and the FEM results is about 5.3% at the 
point (l/2, h/2). 

When =2, the errors of the displacements be-
tween the elasticity solutions and the FEM results on 
the different types of fixed boundary conditions for 
three kinds of beams are compared in Table 1 (p.817), 
and the errors of the stresses for two kinds of beams 
are compared in Table 2 (p.817).  

If take the parameter =(4+5)/(2+), Eq. (10) 
is the same as that provided by Dai and Ji (2008). 
When =0.3, the value of this parameter  is about 
2.39. On the other hand, we can obtain =4.65 by 
Eq. (26). Fig. 14 (p.817) presents the variations of the 
dimensionless longitudinal displacement EIu/(qlh3) 
through the thickness at the fixed end x=l, which 
shows the degree of constraint of the longitudinal 
displacement at the fixed end due to different fixed 
boundary conditions.  
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Fig. 11  Variation of v/h in a fixed-fixed beam with x/l at y=0 for (a) =10; (b) =5; (c) =3; (d) =2 



Zhan et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2015 16(10):805-819 816

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 13  Variation of x/q in a fixed-fixed beam with y/h at x/l=0.5 for (a) =10; (b) =5; (c) =3; (d) =2
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7  Conclusions 
 

In this paper, to improve the accuracy of the 
elasticity solution for beams with fixed end(s), a new 
set of boundary conditions for the fixed end is  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
proposed. In comparison with those given by Timo-
shenko and Goodier (1970), two factors to eliminate 
the rotation are both taken into account and com-
bined with a parameter in a new set of fixed bounda-
ry conditions. By minimizing the square sum of the  

Table 1  Errors of displacements on different types of fixed boundary conditions for three kinds of beams 

Beam Solution 
u v 

Location, (x, y) Error (%) Location, (x, y) Error (%) 

Cantilever BC1 (0, h/2) 0.79 (0, 0) 2.98 

 BC2  −14.96  −13.69 

 BC3  −39.37  −39.48 

 BC4  9.45  12.10 

Propped cantilever BC1 (0.7l, h/2) −27.21 (0.7l, 0) 1.82 

 BC2  −71.26  −20.85 

 BC3  −153.06  −62.84 

 BC4  −5.44  12.90 

Fixed-fixed BC1 (0.7l, h/2) 5.70 (l/2, 0) 9.60 

 BC2  −56.58  −23.20 

 BC3  −152.85  −73.97 

 BC4  39.90  27.56 

 

Table 2  Errors of stresses on different types of fixed boundary conditions for two kinds of beams 

Beam Solution 
x xy 

Location, (x, y) Error (%) Location, (x, y) Error (%) 

Propped cantilever BC1 (l/2, h/2) 12.65 (0.7l, 0) −3.79 

 BC2  −14.69  9.93 

 BC3  −65.49  34.96 

 BC4  26.32  −10.54 

Fixed-fixed BC1 (l/2, h/2) 5.26   

 BC2  −48.65   

 BC3  −132.09   

 BC4  35.22   

Fig. 14  Distribution of the dimensionless longitudinal displacement EIu/(qlh3) through the thickness at the fixed end for
three kinds of beams: (a) cantilever beam; (b) propped cantilever beam; (c) fixed-fixed beam 
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longitudinal displacements at the fixed end, the pa-
rameters are obtained for the cantilever beam, 
propped cantilever beam, and fixed-fixed beam. The 
elasticity solutions for these beams are developed 
subsequently.  

The FEM results show the efficiency of the new 
type of fixed boundary conditions. When the beam is 
a shallow one, the elasticity solutions obtained by 
the new boundary conditions and other conventional 
ones are all in close agreement with the FEM results. 
However, with the increasing thickness of beams, we 
found that different boundary conditions yield 
different errors and the elasticity solution obtained 
by the present boundary conditions best approaches 
the FEM results. 
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中文概要 
 

题 目：含固支端梁的弹性力学解 

目 的：在用应力函数法求含固支端梁的应力和位移

时，对固支端只能采用简化的固支边界条件。

为此，拟提出一种更好的简化固支边界条件。 

创新点：在已有固支边界条件的基础上，提出新的固支

边界条件，由此得到的含固支端梁的弹性力学

解的精度有很大提高。 

方 法：1. 综合 Timoshenko 和 Goodier 提出的两种固支

边界条件，构造出一种新的固支边界条件，并

应用 Airy 应力函数法推导出三种含固支端梁的

解析解；2. 对由不同固支边界条件得到的解析

解与有限元解进行比较。 

结 论：1. 与已有的固支边界条件相比，本文提出的固

支边界条件更佳，尤其是对短梁；2. 理论与数

值结果均表明，对超静定短梁，位移 u 不再保

持线性分布，经典梁理论中的平截面假设不再

适用。 

关键词：梁；固支端；边界条件；平面应力；弹性力学解 

 


