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Abstract: A good understanding of the mechanical behavior of functionally graded material (FGM) cylindrical shells is neces-
sary for designers and researchers. However, the 3D transient response of FGM cylindrical shells under various boundary condi-
tions has not yet been analyzed. In this paper, the problem is addressed by proposing an approach integrating the state space
method, differential quadrature method, and Durbin’s numerical inversion method of Laplace transform. The laminate model is
used to obtain the transient solution in the radial direction. At the edges, four kinds of boundary conditions are considered:
Clamped-Clamped, Clamped-Simply supported, Clamped-Free, and Simply supported-Simply supported. The results of the
proposed method and finite element (FE) method agree with each other excellently. Convergence studies show that the proposed
method has a fast convergence rate. The natural frequencies obtained by the proposed method, experiment, and other theoretical
methods are in close agreement with each other. The effects of the load frequency and duration, length/outer radius ratio, and the
(outer radius—inner radius)/outer radius ratio on the transient response of FGM shells are investigated. Two laws of variation of
material properties along the radial direction are considered: the first has material properties varying according to an exponential
law along the radial direction, while the second has material properties varying according to a power law. The effect of a func-
tionally graded index on the transient response of FGM shells is investigated in both cases. The results obtained in this paper can
serve as benchmark data for further research.
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1 Introduction caused by large inter-laminar stresses, and the initia-
tion and propagation of cracks are avoided in FGMs

Functionally graded material (FGM) has me- (Carrera and Soave, 2011; Abbasnejad et al., 2013).
chanical properties and volume fractions that vary =~ Well tailored FGMs have much superiority over
gradually in one or two directions. Delamination conventional composites (Wen e7 al., 2011; Liang et
al., 2014). Recently, FGMs have gained a lot of
popularity and been widely applied in various engi-
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et al., 2012). Owing to their superior properties, cy-
lindrical shells have been used in many engineering
branches, such as aerospace, marine, civil, and nu-
clear engineering (Shadmehri et al., 2014). Therefore,
a good understanding of the mechanical behavior of
FGM cylindrical shells is necessary for designers
and researchers.

The static and dynamic behavior of FGM cylin-
drical shells has been studied by employing many
shell theories. Khdeir and Aldraihem (2011) devel-
oped analytical solutions for the static behavior of
crossply smart laminated shells with extension piezo-
electric laminae based on the rigorous first-order
shell theory. Liew et al. (2012) studied the postbuck-
ling of cylindrical shells under axial compression and
thermal loads using the element-free kp-Ritz method
and first-order shear deformation theory (FSDT). By
employing a high order shear deformation shell theo-
ry, Shen and Wang (2013) carried out thermal buck-
ling analysis on fiber reinforced cylindrical shells.
Torki et al. (2014) studied the flutter of FGM cylin-
drical shells under distributed axial follower forces
using FSDT. However, some displacement or stress
variables are assumed to be zero in these shell theo-
ries, and the assumptions lead to numerical errors.

Some research has been devoted to 3D solu-
tions which have no simplification in the thickness
direction. For example, Neves et al. (2013) studied
the free vibration behavior of FGM shells by radial
basis functions collocation. They used the equations
of motion and the boundary conditions obtained by
Carrera’s Unified Formulation based on the principle
of virtual work and further interpolated by colloca-
tion with radial basis functions. The state space
method (SSM) satisfies all of the fundamental equa-
tions (Ying and Wang, 2009; Ying et al., 2009), and
has been widely used for static and dynamic analyses
of FGM cylindrical shells. Chen et al. (2004) studied
the free vibration of an FGM cylinder filled with
fluid. Hasheminejad and Rajabi (2008) performed an
exact analysis for 3D scattering of a time-harmonic
plane-progressive sound wave obliquely incident
upon an arbitrarily thick bilaminated circular hollow
cylinder of infinite extent. Tarn et al. (2009) carried
out an exact analysis of a deformation and stress
field in a finite circular elastic cylinder under its own
weight. Alibeigloo and Liew (2014) presented an
exact 3D free vibration solution for sandwich cylin-
drical panels with an FGM core.

The differential quadrature method (DQM) is
an efficient numerical technique for initial and
boundary problems (Bellman and Casti, 1971; Bert
and Malik, 1996). Chen et al. (2003) integrated SSM
and DQM for solving a free vibration problem. Lii et
al. (2007) gave semi-analytical elasticity solutions
for the bending of angle-ply laminates in cylindrical
bending. Akbari Alashti and Khorsand (2012) per-
formed 3D thermo-elastic analysis of FGM cylindri-
cal shells with piezoelectric layers.

Research on the transient response of FGM
structures have also been carried out (Wang et al.,
2013a). Wang et al. (2007) developed a thermoelas-
tic dynamic solution of a multilayered hollow cylin-
der in the state of axisymmetric plane strain, by em-
ploying the method of superposition. Some research-
ers carried out transient analysis on FGM rectangular
plates, by employing SSM and Laplace transform
(Wen et al., 2011; Zhou et al., 2011; Hasheminejad
and Gheshlaghi, 2012; Wang et al., 2013b; Liang et
al., 2015a). Wang (2013) developed a quasi-static
approach for the transient thermal analysis of an
FGM hollow cylinder using SSM and initial parame-
ter method. Liang et al. (2015b) proposed a semi-
analytical method for the transient response of FGM
rectangular plates by integrating SSM, DQM, and
Laplace transform.

A comprehensive overview of the analytical
method for the statics and dynamics of FGM cylin-
drical shells is carried out. To our knowledge, 3D
analytical and semi-analytical methods for the tran-
sient response of FGM cylindrical shells with arbi-
trary boundary conditions have not been reported yet.
In this paper, the problem is addressed by develop-
ing an approach that integrates the SSM, DQM, and
Durbin (1974)’s numerical inversion method of La-
place transform. For the purpose of validation, the
results obtained by the developed method and by the
finite element (FE) method are compared. Conver-
gence studies for different numbers of sampling
points along the length direction and for different
numbers of layers along the radial direction are car-
ried out. Natural frequency studies are performed.
The effects of the load frequency and duration, func-
tionally graded index, length/outer radius ratio, and
the (outer radius—inner radius)/outer radius ratio on
the transient response of FGM cylindrical shells are
investigated.
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2 Problem description

Consider a linear elastic FGM cylindrical shell
of length /, inner radius b, and outer radius a. The
problem geometry and the coordinate system are
depicted in Fig. 1, where the (r, 6, z) frame is as-
sumed to be located on the left surface of the shell. »
and @ are in the radial and circumferential directions
of the shell, respectively. z is perpendicular to the
surface (7, 6). The mechanical properties are as-
sumed to vary along the radial direction of the shell
in an arbitrary fashion. It is assumed that the shell
consists of K homogeneous layers of equal thickness.

Assuming every layer is orthotropic, the stress-
displacement relationships for an arbitrary layer can
be expressed as

o, G, G, G 0 0 0 e
Oy C, Cp Gy 0 0 0 |e
o | Gy G G 0 0 0]e 1)
T, 0 0 0 C, 0 0|7,/
T, 0 0 0 0 Cy5 0|y,
1Z6)] LO 0 0 0 0 Cgllr,

where

e =0u, & =W +0u,)/r, s =0u,

7/rz :azur + aruz’ (2’)
Vo = (Ogt, —1y) [ 7+ 0,uy,

V.0=0.u,+0,u_/r,

Cy (i, j=1, 2, ..., 6) represents the material elastic
stiffness coefficients, o,, oy, and o, are the radial
stress components, 7.y, 7,., and 7,4 are the shear stress
components, and u,, uy, and u, are the displacement
components. In the absence of body forces, the gov-
erning equations of motion are

T 0,7
0.0, +—=+0,1_ +—22— polu. =0,

t7z

r r
0,0, 2r
0~ 6 0 2 —
——++—"+0.1,+0.,7,,—pOiu, =0, 3)
r r
oo +2-—% .5 (00T o, - 0
ro-r ” zTrz ” _patur -

where p is the mass density.

FGM
cylindrical shell

/

Fig. 1 Coordinate system and geometry of a cylindrical
FGM shell
2.1 Boundary conditions at the edges

Four different kinds of boundary conditions are
considered here: Clamped-Clamped (C-C), Clamped-
Simply supported (C-S), Clamped-Free (C-F), and
Simply supported-Simply supported (S-S).

Clamped (z=0)-Clamped (z=/):

u=ug=u=0, z=0, 4)
u=ugFu,=0, z=I; %)

Clamped (z=0)-Simply supported (z=/):

u~ugu,=0, z=0, (6)
o~u,=ug=0, z=I, (7

Clamped (z=0)-Free (z=/):

u~ug=u~0, z=0, (®)
0~1.~1~0, z=I; ©)

Simply supported (z=0)-Simply supported (z=/):

(10)
(11

o~u,~ug=0, z=0,
o~u,=~ug=0, z=I.

2.2 Boundary conditions at the inner and outer
surfaces

The boundary conditions at the inner (+=b) and
outer (r=a) surfaces are given as
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at the inner surface (r=b),

O~ by TS obs T obs (12)
and at the outer surface (r=a),
O-rzﬁaa Trg— fé)a, Trz:fzaa (13)

where fy and f; are the tangential traction forces, and
/- 1s the normal traction force.

3 Semi-analytical solution
3.1 Normalization

The following normalized variables are now
introduced:

{6,,6,,6..7,5.7.9,7,.} (14)
=1{0,,04,0.,,7,5:7.5,7..}  Cy,

{ﬁr’ﬁgﬂﬁz} = {urﬂugauz}/ay

where the over-vector ~ denotes the normalized value,

t is the time, and the longitudinal wave velocity
1/2

c=(Cy/p)". (15)

The normalized displacement and stress com-

ponents can be expanded into a Fourier series form
as

G,(7,0,z,1) o.(7,z,t)cos(jO)
G,(7,0,zZ,t) c,(7,Z,t)cos(j6)
7 ,(7,0,Z,t) 7,(7,Z,t)sin(jO)
i (7,0,Z,t) ol (7,Z,t)cos(jO)
i,(7,0,2,1) =Z u,(7,z,t)sin(j6O) ¢, (16)
i (7,0,2,t) | 7| w.(7,z,0)cos(jO)
7 ,(7,0,z,t) 7,(¥,Z,t)sin(j0)
7 (F.0.2,0) 7_(7.2.0)cos(jO)
6.(7,0,z,1) o (7,Z,t)cos(j6)

where j=0, 1, 2, ..., o is the circumferential wave
number, and the over-bar denotes the Fourier trans-
formed function.

3.2 Applying Laplace transform and DQM

By substituting Eqgs. (14)—(16) and employing
the Laplace transform, the fundamental equations
can be rewritten in terms of transformed Fourier and
Laplace functions as

dé,:(ps 772]” ’735— ﬂgﬁg

dr 72
mo, 455 00
7 / 7
du _6121; aC, .~ jCnu, N G
dr FC, IC, *° 7C, C,’
ity _ i, Uy Ty
dr Iz 7o Cy
dn G55 ale, (7
dr l s
~ 2 2 .2
dz, =_a_77387ﬁr +| ps? +a ’7;;8; +] €44 ﬁz
dr r - / 7
aJ775 5 = Cs .=
IF zcll ’
dl%r@ _ j772 a]775 on Jclzo- 22:-1‘6
dr 7’ F rC11 7
., a’C,o* j'n, )=
(o R L,
where
612 Cd‘122
n :T—l, n, = C -,
1 | 2 22 Cll
~ C,C C;
=C,, ——213 =_B_C,, 18
75 23 c, 4 c. 33 (18)

The induced variables in transformed domain
are determined by

o, Ly Yy +&u6 +&3r,
Iz 7 c,
- C. -~
G-l s Thog Iy L Sug (19
7 / 7

1

z leqetC0n,
r [
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The DQM used in this study can be found in
(Liang et al., 2015b). By applying DQM, the new
state-space equations for the mth point are derived as

do,, _ _giA(l)%
d— l n;] mn - rzn

an;, <4 )=
+—=> A,.u
l;: ; mn-"zn

7 r
771 ~ ~
+ ? O-rm - Tr@m s
durm _ O C12 l/;l JCIZ ﬁ
- A %
a ¢, r7C, ™ FC, ™
aC13 z
mn zn ’
ZC“ n=1
du Ji u, T
Om __ J"rm Om rfm
—m sy Om g _rOm

&7 FF Gy

dﬁ a M ~ Z:-
im = __Z Afnllzum + lz’” >

= C.,

d ~rzm _ a773 a 774
dr - ;Amn m ZAmn zn

a]775 ZA i,

n=l1

CZCB (1= jZC—'44 ~
A'c +|5 p+—|u_,
lCll ; mn rn p }" zm

(20)

dz—-r&m —_ ajﬂs ZA(I)I/;l + jnflz’_trm
r

mn--zn

dr r =
(—2 p sz ]ﬁé’m - 22_19171
r r
jélz = 02644 S (2)=
+—=0 ——=>» Au, ,
7_’:C11 rm 12 "Z:; mn " On

where 5rm =o:' (r,zm,s) ﬁrm =u (r,zm,s)
The induced variables for the mth sample point

are determined by

Iy _
= a ~ ~ C =~
o-é’m == . ZA?(nln)uzn +77__.3urm + j773 un9 + 413 O-rm’
! 3 7 7 |
= _a773 n= +772L:l +]’72 Zx_lé, +Cl2 O:' (21)
zm n-zn — m ~ rm?
[ r 1

By applying the DQM, Fourier and Laplace
transform on Egs. (4)—(11), the boundary conditions
at the edges can be expressed as
Clamped (z=0)-Clamped (z=/):

i, =u, =u,=0, z=0, (22)

ﬁrM :L:lHM :ﬁzM =0, == (23)
Clamped (z=0)-Simply supported (z=/)

ﬁrl 21761 :ﬁzl =0, z=0, (24)

gzM zﬁﬂM :ﬁ,M =0, ==L (25)
Clamped (z=0)-Free (z=])

1’_~’r1 :1’;’91 :1’;’:1 =0, z=0, (26)

o;-zM :in =z:-rzM =0, == 27

(28)
(29)

Similarly, by applying the DQM, Fourier and
Laplace transform to Eqgs. (12) and (13), the bounda-
ry conditions at the inner and outer surfaces can be
rewritten as
at the inner surface (=b),

G =Fos Ton=Fus T =Fis  (30)
and at the outer surface (r=a),

G =Fus T =Jur Tos=Fur  GD
where &, =[5, Gs G Vs fou =Uns Fons-+
T o

3.3 Semi-analytical solution

Eq. (20) is a differential equation with variable
coefficients and is hard to solve. Therefore, an ap-
proximation is carried out to simplify the equations.
The radial local coordinate &, located at the center of
the kth arbitrary layer is introduced here. Adopting
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an approximation ¢&/R;<1 in which each layer is

viewed as a thin cylindrical shell, the following
equations can be obtained by employing binomial
series expansion (Alibeigloo and Shakeri, 2009):

1 _1-23 (32)
R, P R

1
7

where &=r—R; and L,=&/R;. According to Soong’s
assumption (Soong, 1970), 4, can be neglected in
comparison to unit (Jing and Tzeng, 1993; Alibei-
gloo and Shakeri, 2009). Hence, Eq. (20) can be re-
written in the following matrix form:

V()

—H- V),
) (1)

(33)

where V =[o,,u. ,u,,u_,7,_,7,), 6.=[0,,0,,,",

z9

= T = =~ = = T
GrM] B ur :[url’uVZ’“.’urM]

given in Appendix A. After substituting Eqgs. (22)—
(29), the matrix H for different boundary conditions
can be rewritten as shown in Appendix B.

The solution of Eq. (33) can be obtained as

, .... The matrix H is

V(4)=exp[H, (A -4 )]V (%),

_h</1<h

= 5

2R, 2R,

(34)

where H| is the matrix H for the kth layer.
Eq. (34) at A=/, yields

V(4,) = exp(Hh,) -V (2., (35)

where 4 is the thickness of the kth layer.
Subsequently,

I7(ﬂ’,’c-¢-l) = exp(Hthk-H) : I7(ﬂ‘k) (36)
=exp(H,, h.,)-exp(Hh) V(1)
Proceeding in the same manner for all K layers,
the relation between the state vectors at the outer and
inner surfaces of the FGM cylindrical shell is ex-
pressed as

V(b)=T(a—b)-V(a), (37)

where
1
T(h) =] [ exp(H,h,), (38)
k=K
‘T, T, T, T, T, T]
L, T, T, T, T, T,
ol T Te T e Ty Tl
]zll nZ 1213 T44 ES I:l()
L, T, T, T,, T; T
T, T, T, T, T; T|

Substituting the boundary conditions (30) and (31) at
the outer and inner surfaces into Eq. (37) yields

A B S A A T
where
T,(h) T,(h) T,(h) T,(h) T (h) T, (h)
T=|T,(h) T,(h) T,(h) T,(h) T, (h) T,(h)|,
T, (h) T,(h) T,(h) T, (h) T (h) T,(h)

?r :|:7r1a7r2a""7r1\4:|Ta Z :[ZI’ ;zza"'aZMTa

S :|:f¢91: ;aza""J%aMT'

After finding the nontrivial solution of Eq. (40),
the solution in time domain can be obtained by ap-
plying the numerical inversion of Laplace transform.
The algorithm for numerical inversion used in this
paper can be found in (Cohen, 2007; Liang et al.,
2015b).

4 Numerical results

For implementation, a Mathematica package
was developed for the proposed method. Firstly, a
comparison between the results obtained by the pro-
posed method and the FE method was carried out to
validate the proposed method. Subsequently, con-
vergence studies were carried out. Lastly, the effects
of the length/outer radius ratio (//a), the (outer radius
—inner radius)/outer radius ratio ((a—b)/a), and the
functionally graded index y were investigated.
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4.1 Validation

To validate the proposed method, its results
were compared to those obtained by FE method via
commercial software ANSYS. The details of four
cases considered are listed in Table 1.

The exponential variation law is given below:

{C;p}=1{C,. pYxexply(a-r)/(a—b)],
i,j=1,2,...,6,

(41)

where the over-hat denotes the corresponding value
of material properties at »=a, and y is the functionally
graded (FG) index.

The power variation law is given as

V() =la=r)i(a-b)Y, W
Vi(r)=1=[(a=r)/(a=D)T,
where Va(r) and V(r) are the volume fractions of
aluminum and ceramic zirconia, respectively. Thus,
the elastic constants along the radial direction can be
expressed as

{Cij3p} = {Qj,C’pC}VC(r)+{Ct‘j,A’pA}VA(r)’ 43)
i,j=1,2,...,6,
where C;c and pc are the elastic parameter and den-
sity of ceramic zirconia, and Cj; » and p, are the elas-
tic parameter and density of aluminum, respectively.
The material properties of the two materials are giv-
en in Table 2 (Hasheminejad and Gheshlaghi, 2012).
Subsequently, the material properties of the kth
layer in the laminate model are given by

[ 1€, Py
{C k-1

lj,pk: ]

e =ha

(44)

where k=1, 2, ..., K.

The load acting on the inner face of the cylin-

drical shell (r=b) is given by

o, = 107 C, 5 cos(jO)exp(—tc, /h), (45)
where cA=(C33,A/pA)1/2 is the longitudinal wave ve-
locity of aluminum.

For all four cases, the number M of sampling
points along the z-direction and number of layers K
along the radial direction are 21 and 4, respectively.
The FE models for the four cases are given in Fig. 2.
For the purpose of validation, the time histories of
the normalized deflection u,/h at a chosen position
(x=(a+b)/2, y=0, and z=h/2) of FGM cylindrical
shells subjected to transient loads obtained by the
proposed method (SSM) and the FE analysis (FEA)
are compared (Fig. 3). The results predicted by the
two methods agree with each other, no matter which
geometry, load, law of variation of material proper-
ties, FG index, or boundary condition is employed.

Table 2  Material properties (Hasheminejad and
Gheshlaghi, 2012)

. Elastic modulus,  Poisson’s p
Constituent E (GPa) ratio, u (kg/m)
Al 70 0.3 2700
Zr0, 200 0.3 5700

(a) (b)

Fig. 2 FE models of cases 1 and 3 (a) and cases 2 and 4 (b)

Table 1 Details of the four cases

Case m\;?;?;olfr(l);‘:rg; FG index, y par;gz?er, j [ (m) @ (m) b (m) B?ilcl)lri(sizrty;?)r,u;l
1 Power 0.2 1 2 1 0.98 S-S
2 Power 5 3 1 1 0.98 C-S
3 Exponential 0.2 1 2 1 0.98 C-F
4 Exponential 5 3 1 1 0.98 C-C
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Fig. 3 Deflection history u,/h at (x=(a+b)/2, y=0, and z=
h/2) obtained by the FEA and SSM: (a) case 1; (b) case 2;
(c¢) case 3; (d) case 4

4.2 Convergence studies

To further illustrate the accuracy of our pro-
posed method, convergence studies for different
numbers of sampling points M along the length z-
direction and for different numbers of layers K along
the radial r-direction were carried out. The law of
variation of material properties, FG index, load pa-
rameter, geometry of the cylindrical shell, and
boundary conditions used in the convergence studies
were the same as those in case 4 (Table 1).

Firstly, a convergence study using different
numbers of sampling points M along the z-direction
was carried out. A series of numbers of sampling
points M=7, 11, 17, 21, and 27 were used. The layer
number g was fixed as 4. For all the five sampling
point numbers, the time histories of the normalized
deflection u,/h at a chosen position (x=(a+b)/2, y=0,
and z=h/2) of FGM cylindrical shells are plotted in
Fig. 4a. The cases with M larger than 11 predicted
nearly the same time histories, showing that the pro-
posed method converges fast with increasing sam-
pling points.

Secondly, a convergence study employing dif-
ferent numbers of layers along the radial direction
was performed. A series of layer numbers of K=2, 4,
8, and 12 were employed. The sampling number was
fixed as 21. For all four layer numbers, the time his-
tories of the normalized deflection u,/h at a chosen
position (x=(a+b)/2, y=0, and z=h/2) of FGM cylin-
drical shells are plotted in Fig. 4b. The cases with K
larger than 4 gave coincident time histories. We con-
clude that the proposed method has a rapid conver-
gence rate with increasing layer numbers.

4.3 Natural frequency studies

To further demonstrate the reliability and accu-
racy of our proposed method, a homogeneous cylin-
drical shell with clamped-free boundary conditions
was considered. Table 3 shows the results of our
proposed method compared with those obtained by
experiment (Sharma, 1984) and from other theoreti-
cal methods (Hosseini-Hashemi et al., 2013). Anoth-
er homogeneous cylindrical shell with Clamped-
Clamped boundary conditions was also considered.
Table 4 shows the results of our proposed method
compared with those obtained by experiment and
from other theoretical methods (Leissa, 1973; Santos
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Table 3 Comparison results of natural frequencies for a cylindrical shell

533

. Natural frequency (Hz)
J Type — — — ~
Nam=1 Nam=2 Nam=3 Nam=4
Experiment (Sharma, 1984) 293.0 827 1894.0 -
Flugge (Hosseini-Hashemi ef al., 2013) 318.1 1006.4 2356.5 3882.3
Sanders shell theory (Hosseini-Hashemi ef al., 2013) 316.09 938.33 2186.63 3628.95
Proposed method 31547 937.26 2187.7 3632.9
Experiment (Sharma, 1984) 760.0 886.0 1371.0 2135.0
Flugge (Hosseini-Hashemi ef al., 2013) 769.7 927.7 1504.2 2403.6
Sanders shell theory (Hosseini-Hashemi et al., 2013) 767.56 916.16 1453.26 2298.27
Proposed method 768.80 914.99 1452.2 2299.8
Experiment (Sharma, 1984) 1451.1 1503.0 1673.0 2045.0
Flugge (Hosseini-Hashemi ef al., 2013) 1465.5 1523.3 1726.1 2148.5
Sanders shell theory (Hosseini-Hashemi ez al., 2013) 1459.96 1517.07 1711.62 2111.65
Proposed method 1465.2 1520.7 1713.5 2113.6
Experiment (Sharma, 1984) 2336.0 2384.0 2480.0 2667.0
Flugge (Hosseini-Hashemi ef al., 2013) 2366.6 2406.4 2509.1 2716.0
Sanders shell theory (Hosseini-Hashemi et al., 2013) 2355.0 2395.1 2497.73 2698.7
Proposed method 2368.2 2407.3 2508.5 2708.2
Experiment (Sharma, 1984) 3429 3476 3546 3667
Flugge (Hosseini-Hashemi ez al., 2013) 3469.7 3505.0 3588.5 3716.6
Sanders shell theory (Hosseini-Hashemi et al., 2013) 3448.11 34843 3561.57 3696.0
Proposed method 3475.6 3511.0 3587.4 3721.1

Note: 71, represents the number of axial mode; /=502 mm; (a+b)/2=63.5 mm; (a—b)/2=1.63 mm; u=0.28; p=7800 kg/m’

(u/a)x1000

ctla

(u/a)x1000

2 L L

0 5 10 15
ctla

Fig. 4 Deflection history u,/h at (x=(a+b)/2, y=0, and
z=h/2) with different numbers of sampling points along
the length direction (a) and with different layer numbers
along the radial direction (b)

Table 4 Natural frequencies for a cylindrical shell

Natural frequency (Hz)
No. Experiment Eq. (2.98)  Santos et Proposed
(Leissa, 1973) (Leissa, 1973) al. (2009) method
1 522 552 531 530
2 525 597 573 572
3 529 611 590 592
4 700 736 717 720

Note: /=304.8 mm; (a+b)/2=76 mm; (a—b)/2=0.254 mm; p=0.3;

p=7860 kg/m’

et al., 2009). The results obtained by our proposed
method, experiment, and other theoretical methods
agree with each other very well.

4.4 Effect of load frequency and duration

The effect of load frequency on the response of
FGM cylindrical shells was investigated. Two cylin-
drical shells with Clamped-Clamped boundary con-
dition and different thicknesses (cylindrical shell A:
a—b=0.02 m and cylindrical shell B: a—5=0.04 m)
were considered. The FG indexes y, geometries,
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loads, and boundary conditions were the same as
those in case 3 (Table 1).

A natural frequency analysis was carried out
and the results for the two cylindrical shells are
listed in Table 5. Subsequently, the responses of the
FGM cylindrical shells with a force fi=sin(wf?) acting
at a point ((a+b)/2, 0, ) were investigated by em-
ploying the proposed method. The ranges of the fre-
quency o for shells A and B were 0-300 Hz and
100475 Hz, respectively. The amplitudes of dis-
placements at a point ((a+b)/2, 0, //2) of the two cy-
lindrical shells are plotted in Figs. 5 and 6, respec-
tively. The figures show that the cylindrical shells
resonate at the natural frequency.

Table 5 The first ten frequencies (Hz) for the two FG
cylindrical shells

Frequency (Hz) No Frequency (Hz)

Shell A Shell B Shell A Shell B
1 88.6 121.5 6 227.7 313.8
2 99.2 141.2 7 239.7 336.2
3 137.3 184.0 8 260.4 372.7
4 143.5 273.0 9 272.5 413.6
5 205.5 285.6 10 280.8 459.2

4.5 Effects of l/a and (a—b)/a

The effects of the length/outer radius ratio (//a)
and the (outer radius—inner radius)/outer radius ratio
((a—b)/a) on the transient response of FGM cylindri-
cal shells were examined. The law of variation of
material properties, FG index, load parameter, and
boundary conditions used in this section were the
same as those in case 4 (Table 1). The sampling
number was 21 and the layer number was 4.

Firstly, the effect of //a was investigated. A se-
ries of length/outer radius ratios //a=1, 2, 4, and 8
were used. The outer radius @ and inner radius b
were fixed to be 1 and 0.98 m, respectively. Fig. 7a
gives the time histories of the normalized deflection
u,/h at a chosen position (x=(a+b)/2, y=0, and z=h/2)
of FGM cylindrical shells with different length/outer
radius ratios //a. The deflection of FGM cylindrical
shells under this type of load increases as /l/a
increases.

Secondly, the effect of the (outer radius—inner
radius)/outer radius ratio (a—b)/a was studied. A
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Fig. 5 Relationship between load frequencies (duration)
and displacement amplitudes for cylindrical shell A:
(a) displacement u,; (b) displacement u,
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Fig. 6 Relationship between load frequencies (duration)
and displacement amplitudes for cylindrical shell B:
(a) displacement u,; (b) displacement u,
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series of (outer radius—inner radius)/outer radius ra-  er law, along the radial direction. For the exponential
tios (a—b)/a=0.02, 0.04, 0.08, and 0.16 were em-  variation law, a series of FG parameters y=5, 2, —2,
ployed. The length and outer radius were fixed to be ~ and —5 were employed. For the power variation law,
1 and 1 m, respectively. Fig. 7b gives the time histo-  a series of FG parameters y=5, 2, 0.5, and 0.2 were
ries of the normalized deflection u,/h at a chosen  used.
position (x=(a+b)/2, y=0, and z=h/2) of FGM cylin- For the two laws of variation of material prop-

drical shells with different (¢—b)/a. The deflection erties, the time histories of the normalized deflection
decreases as (a—b)/a increases. u,/h at a chosen position (x=(a+b)/2, y=0, and z=h/2)
of FGM cylindrical shells are given in Fig. 8. For the
FGM shell with exponential variation law, the de-
flection of the shell decreases as the FG index y in-
creases. For the FGM shell with the power variation

law, the deflection of the shell increases as the FG
index y increases.

0.3 . . ——
. I @1
02} j
0 10 20 30 40 01 A SN
ctla
(o] L A i \
s 0 kY /
2 r T . / S
0.1}
1 S —— =2
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8 ctla
3
-1 . )
.-~--~-~-~-(a-b)/a=0.02"x._\ (a-b)/a=0.04
o LT (a-b)yat0.08 T ri(ab)/a=0.16,
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Fig. 7 Deflection history u,/h at (x=(a+b)/2, y=0, z=h/2)
of FGM cylindrical shells with different length/outer

radius ratio //a (a) and (outer radius—inner radius)/outer
radius ratio (a—b)/a (b)

4.6 Effect of functionally graded index

Fig. 8 Deflection history u,/h at (x=(a+b)/2, y=0, z=h/2)

The effect of the FG index y on the shell re- with the material properties vary in an exponential law

sponse was studied. The load parameter, geometry,  (a) and a power law (b) along the radial direction

and boundary conditions used in this section were
the same as those in case 4 (Table 1). The sampling
number was 21 and the layer number was 4.

Two laws of variation of material properties
were considered. Under the law of exponential varia-
tion the material properties vary according to an ex-
ponential law, while under the law of power varia-
tion the material properties vary according to a pow-

5 Conclusions

A 3D semi-analytical method was proposed to
analyze the transient response of FGM cylindrical
shells. The boundary conditions at the edges can be
arbitrary. The SSM, DQM, and Laplace transform
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and its numerical inversion method were integrated
into the proposed method. The SSM was used to
obtain a 3D analytical solution; the DQM was used
to deal with the arbitrary boundary conditions at the
edges; and the Laplace transform and its numerical
inversion method were used to obtain solutions in
time domain. At the edges, four kinds of boundary
conditions were considered: C-C, C-S, C-F, and S-S.

A comparison between the results generated by
the proposed method and by the FE method showed
that the two methods predicted nearly the same re-
sults. Convergence studies were carried out. The
proposed method showed a fast convergence rate
with increasing sample number along the length di-
rection and increasing layer number along the radial
direction. The natural frequencies obtained by the
proposed method, experiment, and other theoretical
methods were in close agreement with each other.
The effects of load frequency, load duration,
length/outer radius ratio, and (outer radius—inner
radius)/outer radius ratio on the transient response of
FGM shells were investigated. The exponential and
power laws of variation of material properties were
considered. For the two laws of variation of material
properties, the effect of functionally graded index on
the transient response of FGM shells was investigat-
ed. The results obtained in this paper can serve as
benchmark data in further research.
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Appendix A

The matrix H is given as
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For calculation of A,(,f)

-, please refer to Liang et al.
(2015D).

Appendix B

The matrix H for different boundary conditions
can be rewritten as follows.
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