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Abstract:    A new and simple approach is presented to analyze the time effect in the settlement of single pile and the distribu-
tions of pile shaft resistance and pile axial force. First, the viscosity of soil is considered by using a linear damper, and the non-
linear elasticity of pile lateral soil and pile end soil are simulated by using a hyperbola model and idealized elastoplastic model, 
respectively. Then, the settlement of the pile head, shaft resistance, and axial force along the pile are derived by virtue of a wave 
equation analysis program based on traveling wave decomposition. Based on the solutions, a parametric study has been under-
taken to investigate the influences of the parameters of a pile-soil system on the settlement behavior of a single pile. Finally, the 
calculated results are compared with the measured results to demonstrate the effectiveness and accuracy of the proposed ap-
proach. Note that the presented solution allows for a good prediction of the settlement behavior of a single pile and can provide a 
reference for the preliminary design of a pile foundation.  
 
Key words:  Settlement, Time effect, Hyperbola mode, Idealized elastoplastic model, Viscosity, Wave equation analysis program 
doi:10.1631/jzus.A1400329                     Document code:  A                     CLC number:  TU473.1 
 
 

1  Introduction 
 

The settlement of pile foundations is an im-
portant problem which concerns the safety and usa-
bility of buildings. As a result, a large amount of re-
search has been devoted to this field and sophisticat-
ed calculation methods have been put forward, such 
as the elastic theory method (Poulos and Davis, 1968; 
Seo and Prezzi, 2007; Seo et al., 2009), load transfer 
method (Seed and Reese, 1957; Liu et al., 2004; Kim 
et al., 2007; Zhang et al., 2010; Zhang and Zhang, 
2012), shear displacement method (Randolph and 
Wroth, 1978; Chow, 1989; Mylonakis and Gazetas, 

1998), and various other numerical methods (Ai and 
Han, 2009; Comodromos et al., 2009; Said et al., 
2009). However, these existing methods are primari-
ly focused on the calculation of the final value of the 
settlement, rather than its time-varying behavior. In 
fact, the behavior of a pile under vertical load is a 
complex process of pile-soil interaction in which the 
load first transfers to pile lateral soil, then the pile 
shaft resistance occurs rapidly along with the settle-
ment, and the pile tip resistance works consequently. 
As a result, the settlement behavior of a single pile is 
inevitably linked with time. Moreover, engineering 
practices show that the settlement of pile foundations 
in soft soil areas develops slowly, but continuously, 
within a long period of time after the construction is 
finished, due to the viscoelasticity of soft soils. For 
this reason, studying the time effect of the settlement 
of a single pile is not only theoretically significant 
but also valuable in engineering.  
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During the past several years, a great effort has 
been made to study the time effect of settlement in a 
single pile. By converting the viscoelastic problem 
into an equivalent elastic problem by virtue of the 
Laplace transform, Booker and Poulos (1976) ana-
lyzed the long-term settlement of a pile in a soil ex-
hibiting creep properties. Treating the pile-soil inter-
action as a time-dependent problem, Guo (2000) 
investigated the radial consolidation of the soil 
around a driven pile and the load-settlement re-
sponse by considering the influence of the dissipa-
tion of pore pressure on the pile-soil stiffness, as 
well as the viscosity of soil. Bartolomei and 
Omel’chak (2003) investigated the pile’s settlement 
behavior over time by using a mathematical model 
which took the viscoelastoplastic properties of soil 
into account. Danno and Kimura (2009) employed 
soil-water coupled analysis with the FEM-FDM 
method (namely finite element method and finite 
difference method) to evaluate the long-term dis-
placement of pile installed in soft clayey ground and 
pointed out that the long-term settlement of the pile 
foundation due to vertical load could not be neglect-
ed, even if its bearing capacity was sufficient enough 
to resist the load in the short-term. Zhao et al. (2013) 
established the calculation formula for the settlement 
of a single-driven pile caused by the pile-side recon-
solidation settlement based on the pile-soil interac-
tion principle. On this basis, they found that the set-
tlement of a single-driven pile could last for a very 
long time until it became stable. Feng et al. (2014), 
Hao and Dong (2014), and Yang et al. (2014) also 
investigated the time-effect settlement of bridge piles 
for the purpose of long-term settlement predictions 
of high-speed railway bridge pile foundations. All 
the above works indicate that the time effect of pile 
settlement is obvious. 

Introducing the concept of time by considering 
the soil’s linear viscoelastic properties, Wu et al. 
(2012) investigated the time effect of settlement of a 
single pile based on the virtual soil-pile model. 
However, the theoretical results coincided with the 
measured results only when the load acting on the 
pile head was small because of the small defor-
mation and linear elasticity assumption. The solution 
they presented could only calculate the settlement of 
the pile head, making it impossible to analyze the 
load transfer mechanism of a pile. 

In fact, the interaction between a pile and soil is 
nonlinear and various kinds of nonlinear load trans-
fer models have been developed to simulate it. The 
hyperbola model was first proposed by Seed and 
Reese (1957) to simulate the load-transfer curves of 
pile lateral soil and fitted well with test results. Chin 
(1983) and Gupta (2012; 2013) have made the hy-
perbola model as a well-known model in plotting the 
behavior of piles. Broken line models were put for-
ward by some researchers to obtain analytical solu-
tions and for simplicity, such as the idealized elasto-
plastic model (Kezdi, 1965) and three broken line 
model (Guo, 2001). Previous studies showed that the 
load-settlement characteristics could be well ana-
lyzed by using the hyperbola model and broken line 
model to simulate pile lateral soil and pile end soil, 
respectively (Prevost and Hughes, 1981). 

To obtain a better understanding of the time ef-
fect of single pile settlement, a new and simple ap-
proach is presented by means of a wave equation 
analysis program based on a traveling wave decom-
position. The viscosity of soil is considered by using 
a linear damper, and the nonlinear elasticity of the 
pile lateral soil and pile end soil are simulated by a 
hyperbola model and idealized elastoplastic model, 
respectively. On this basis, the settlement behavior of 
a single pile is derived and the distributions of pile 
shaft resistance and pile axial forces are obtained 
accordingly. 
 
 
2  Pile-soil model and calculation principle 

2.1  Schematic of pile-soil model 

The schematic diagram of a pile-soil model is 
shown in Fig. 1. The main assumptions employed in 
this study are: (1) the pile is linear elastic with a cir-
cular cross section; (2) the soil reactions acting on 
the pile shaft and pile tip are simulated by distributed 
Voigt models; (3) the load is applied on the pile head 
along the axial direction. The pile-soil system is di-
vided into a total of N layers numbered as 1, 2, …, 
i, …, N with a total of N+1 nodes numbered as 0, 1, 
2, …, i, …, N with N going from pile head to pile tip. 
The time for the elastic wave to travel the length of 
one pile segment is defined as a time interval denot-
ed by Δt. The properties of pile and soil layers are 
assumed to be homogeneous within each layer and 
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the shaft resistance of each pile segment is assumed 
to be concentrated around the underside region of the 
segment. The displacement and velocity of the ith 
node at the jth time interval are denoted by s(i, j) and 
v(i, j), respectively. Then, the shaft resistance of the 
ith pile segment can be expressed as  

 

s( , ) ( , ) ( ) ( ) ( , ),R i j R i j A i c i v i j               (1) 

 
where A(i)=2πr(i)h(i) is the surface area of the ith 
pile segment, r(i) and h(i) represent the radius and 
length of the ith pile segment, respectively; Rs(i, j)= 
τ(i, j)A(i) denotes the static shaft resistance of the ith 
pile segment, τ(i, j) is the shear stress of the soil act-
ing on the surface of the ith pile segment; and c(i) is 
the damping coefficient of the ith soil layer. Accord-
ing to Randolph and Deeks (1992), the value of c(i) 
can be taken as c(i)=G(i)/vs(i), where G(i)= 
ρs(i)[vs(i)]

2 is the shear modulus of the ith soil layer, 
ρs(i) and vs(i) are the mass density and the shear 
wave velocity of the ith soil layer, respectively.  

The soil reaction acting on the pile tip can be 
given as 

 

toe stoe toe toe( ) ( ) ( , ),R j R j A c v N j                   (2) 

 
where Atoe and v(N, j) denote the cross sectional area 
and the velocity of the pile tip, respectively; Rstoe(j) 
is the static pile tip resistance; and ctoe is the damp-
ing coefficient of the pile end soil. According to 
Randolph and Deeks (1992), the value of ctoe can be 
taken as ctoe=3.2Gtoe/[π(1−μtoe)vstoe], where Gtoe= 
ρstoe(vstoe)

2 is the shear modulus of pile end soil, ρstoe, 
vstoe, and μtoe are the mass density, shear wave veloci-
ty, and Poisson’s ratio of pile end soil, respectively.  

As is shown in Fig. 2, the hyperbola model pro-
posed by Wong and Teh (1995) is adopted here to 
simulate the relationship of the shear stress τ(i, j) and 
the relative displacement between the pile shaft and 
the surrounding soil.  

 

f
s f

( , )
( , ) ,

1 ( , )
( )

( ) ( )

s i j
i j

s i j
R i

k i i








                      (3) 

 
where ks(i)=G(i)/{r(i)ln[rm(i)/r(i)]} is the initial shear 
stiffness of the pile-soil interface according to Ran-

dolph and Wroth (1978), rm(i)=2.5l[1−μ(i)] is the 
influence radius, μ(i) is the Poisson’s ratio of the ith 
soil layer; Rf(i)=τf(i)/τult(i) is the break ratio with an 
approximate value of 1, τult(i) is the ultimate shear 
stress of pile-soil interface; and τf(i) is the shear 
strength of the pile-soil interface which can be calcu-
lated by the following equation proposed by 
Chandler (1968): τf(i)=k(i)γ(i)ztanφ(i), where z is the 
depth, k(i) is the coefficient of the lateral pressure of 
the ith soil layer, and γ(i) and φ(i) denote the unit 
weight and internal friction angle of the ith soil layer, 
respectively. According to Jaky (1944), k(i)=1−sin(i), 
where (i) is the effective angle of internal friction.  

To calculate the static pile tip resistance Rstoe(j), 
the idealized elastoplastic model shown in Fig. 3 is 
adopted to simulate the reaction of the pile end soil 
acting on the pile tip.  

 

toe f
stoe

stoef f

( , ), ( , ) ,
( )

, ( , ) , 

k s N j s N j s
R j

R s N j s





  

         (4) 

 
where ktoe, sf, and Rstoef denote stiffness, ultimate 
displacement, and ultimate resistance of the pile end 
soil in elastic stage, respectively. According to Ran-
dolph and Wroth (1978), the value of Rstoef can be 
expressed as Rstoef=ktoesf, where ktoe=8Gtoe/[π(1− 
μtoe)d], and d is the diameter of the pile tip.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Schematic diagram of a pile-soil model 
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During the static pile load test, the time-varying 
load applied to the pile head can be expressed as 
Eq. (5) which is depicted in Fig. 4: 

 

1
1

1 2

, ,
( )

, ,

q
t t T

Tf t

q t T

 

  

  
  

                    (5) 

 
where q is the maximum load, and T1 and T2 denote 
the moment when the load reaches its maximum and 
that when the loading is finished, respectively.  

2.2  Calculation principle of wave equation analy-
sis program 

As is shown in Fig. 5, R(i, j) is the shaft re-
sistance of the ith pile segment; the numbers 1 and 2 
are employed to denote Pu

+(i, j) and Pd
+(i, j), which 

represent the upward and downward traveling wave 
of the upper interface of the ith node at the jth time 
interval, respectively; the numbers 3 and 4 are 

adopted to denote Pu
−(i, j) and Pd

−(i, j), which repre-
sent the upward and downward traveling wave of the 
lower interface of the ith node at the jth time interval, 
respectively. The acoustic impedance of the pile 
shaft is assumed to remain unchanged within each 
pile segment, and no distortion happens when elastic 
waves travel inside it. The upward traveling wave 
Pu

+(i+1, j−1) becomes Pu
−(i, j) when it travels from 

the tip to the head of the ith segment in a time inter-
val. Similarly, the downward traveling wave Pd

−(i, j−1) 
becomes Pd

+(i+1, j) when it travels from the head to 
the tip of the ith segment in a time interval.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
The acoustic impedance of the ith pile segment 

is defined as Z(i) and two dimensionless parameters 
are set as 

 

u ( ) ( ) / [ ( 1) ( )],T i Z i Z i Z i                    (6) 

d ( ) ( 1) / [ ( 1) ( )].T i Z i Z i Z i                  (7) 

 
Eqs. (8) and (9) can be obtained from the as-

sumption that elastic waves do not distort when trav-
eling inside each pile segment.  

Fig. 4  Loading regime sketch 

f(t)

t

q

0 T1 T2

Fig. 3  Idealized elastoplastic model applied to simulate
the nonlinear elasticity of the pile end soil 

Fig. 2  Hyperbola model applied to simulate the nonlinear 
elasticity of pile lateral soil 

Fig. 5  Force analysis of each node 

i−1 i−1
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i+1
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R(i, j)

ith node
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3 4
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u u( , ) ( 1, 1),P i j P i j                          (8) 

d d( , ) ( 1, 1).P i j P i j                          (9) 
 

The displacement of the ith node at the jth time 
interval can be obtained by means of the trapezoidal 
integration method: 

 
( , ) ( , 1)

( , ) ( , 1) Δ .
2

v i j v i j
s i j s i j t

 
         (10) 

 
The exciting pulse f(t) applied to the pile head 

(i=0) can be discretized at a time interval of Δt and 
therefore yields 

 

u d(0, )+ (0, ) ( ).P j P j f j                      (11) 

 
The velocity of the pile head can be denoted as 
 

d u(0, ) [ (0, ) (0, )] / (1).v j P j P j Z            (12) 

 
It can be obtained from Eq. (8) that: 
 

u u(0, ) (1, 1).P j P j                          (13) 

 
Then, substituting Eqs. (11) and (13) into 

Eq. (12) leads to 
 

u(0, ) [ ( ) 2 (1, 1)] / (1).v j f j P j Z            (14) 

 
From Eqs. (10) and (14), the displacement of 

the pile head at the jth time interval can be expressed 
as 

 

u(0, ) (0, 1) [ ( ) 2 (1, 1)

(1) (0, 1)]Δ / [2 (1)].

s j s j f j P j

Z v j t Z

    

 
      (15) 

 

         
For the ith node (i=1, 2, …, N−1), Pu

+(i, j) is 
made up of three parts as follows.  

(1) Transmitted wave generated by Pu
−(i, j): 

 

1u u

u u

2 ( )
( , ) ( , )

( 1) ( )

2 ( ) ( 1, 1);

Z i
P i j P i j

Z i Z i

T i P i j






 

  
              (16) 

 
(2) Reflected wave generated by Pd

+(i, j): 

2u d

d u d

( 1) ( )
( , ) ( , )

( 1) ( )

[ ( ) ( )] ( 1, 1);

Z i Z i
P i j P i j

Z i Z i

T i T i P i j





 


 

   

          (17) 

 
(3) Shaft resistance of the ith pile segment:  
 

3u u( , ) ( ) ( , ).P i j T i R i j                       (18) 

 
Accordingly, Pu

+(i, j) can be written as 
 

u u u d u

d u

( , ) 2 ( ) ( 1, 1) [ ( ) ( )]

( 1, 1) ( ) ( , ).

P i j T i P i j T i T i

P i j T i R i j

 



    

       

(19) 

 
Similarly, Pd

−(i, j) can be denoted as 
 

d d d u d

u d

( , ) 2 ( ) ( 1, 1) [ ( ) ( )]

( 1, 1) ( ) ( , ).

P i j T i P i j T i T i

P i j T i R i j

 



    

   
    (20) 

 
The velocity of the upper interface of the ith 

node at the jth time interval, v+(i, j), can be expressed 
as 

 

d u( , ) [ ( , ) ( , )] / ( ).v i j P i j P i j Z i               (21) 

 
From Eqs. (9), (19), and (21), we can obtain 
 

d u d

u u u

( , ) {[1 ( ) ( )] ( 1, 1)

2 ( ) ( 1, 1) ( ) ( , )} / ( ).

v i j T i T i P i j

T i P i j T i R i j Z i

 



    

   
 

(22) 
 
Substituting Eqs. (6) and (7) into Eq. (22) gives 
 

d u2[ ( 1, 1) ( 1, 1)] ( , )
( , ) .

( 1) ( )

P i j P i j R i j
v i j

Z i Z i

 
      


 

 

(23) 
 
Similarly, the velocity of the lower interface of 

the ith node at the jth time interval, v−(i, j), can be 
obtained and is found to be equal to v+(i, j), which 
means that the velocity of the upper and the lower 
interface of the ith node is continuous. As a result, 
the velocity of the ith node at the jth time interval 
can be derived as 
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d u2[ ( 1, 1) ( 1, 1)] ( , )
( , ) .

( 1) ( )

P i j P i j R i j
v i j

Z i Z i

      


   
(24) 

 
Combining Eqs. (1), (3), (10), and (24), the dis-

placement and velocity of the ith node (i=1, 2, …, 
N−1) can be rewritten as  

 
2

s f

s f

( ) [ ( )] 8 ( ) ( ) ( ) ( )
( , ) ,

4 ( ) ( ) ( )

B i B i M i k i R i D i
s i j

M i k i R i

  


 

(25) 

2
s f

s f

( ) [ ( )] 8 ( ) ( ) ( ) ( )
( , )

2 ( ) ( ) ( )Δ

2 ( , 1) ( , 1)Δ
,

Δ

B i B i M i k i R i D i
v i j

M i k i R i t

s i j v i j t

t


  


  


 (26) 

where 

f s f( ) 2 ( ) ( ) ( ) ( )[2 ( ) ( , 1)

( ) ( , 1)Δ ( )Δ ( )Δ ],

B i M i i k i R i M i s i j

M i v i j t N i t A i t




  
   

 

( ) ( ) ( ) ( ) ( 1),M i A i c i Z i Z i     

d u( ) 2[ ( 1, 1) ( 1, 1)],N i P i j P i j         

f

f

( ) ( ) ( )[2 ( , 1) ( , 1)Δ ]

( ) ( )Δ .

D i M i i s i j v i j t

N i i t




   


 
 
For the Nth node (i.e., the pile tip), we can  

obtain 
 

u d toe( , ) ( , ) ( ) ( , ).P N j P N j R j R N j           (27) 

 
The velocity of the Nth node can be derived as 
 

d u( , ) [ ( , ) ( , )] / ( ).v N j P N j P N j Z N          (28) 

 
According to Eq. (9), we can obtain 
 

d d( , ) ( 1, 1).P N j P N j                     (29) 

 
From Eqs. (27)–(29), one obtains 
 

d toe2 ( 1, 1) [ ( ) ( , )]
( , ) .

( )

P N j R j R N j
v N j

Z N

    
  (30) 

 
Then, by Eqs. (1)–(4), (10), and (30), the dis-

placement and velocity of the pile tip (i.e., the Nth 
node) can be rewritten as follows:  

(1) When s(N, j)<sf, 
 

2
s f toe f

s f toe f

( , )

[8 ( ) ( ) ( ) 4 ( )Δ ]
,

4 ( ) ( ) ( ) 2 ( )Δ

s N j

B B M N k N R N k R N t D

M N k N R N k R N t



   


 

(31) 

2
s f toe f

s f toe f

( , )

[8 ( ) ( ) ( ) 4 ( )Δ ]

Δ [2 ( ) ( ) ( ) ( )Δ ]

2 ( , 1) ( , 1)Δ
,

Δ

v N j

B B M N k N R N k R N t D

t M N k N R N k R N t

s N j v N j t

t



   


  


 

 (32) 
where  

toe toe( ) ( ) ( ) ( ),M N Z N A c A N c N     

f toe f s f

d

2 ( ) ( ) ( )Δ ( ) ( )

[2 ( ) ( , 1) ( ) ( , 1)Δ

2 ( 1, 1)Δ ( )Δ ],

B M N N k N t k N R N

M N s N j M N v N j t

P N j t A N t

 


 

  

   

   

 

f

d f

( ) ( )[2 ( , 1) ( , 1)Δ ]

2 ( 1, 1) ( )Δ .

D M N N s N j v N j t

P N j N t



 

   

  
 

 
(2) When s(N, j)≥sf, 
 

2
s s s f s

s f

[8 ( ) ( ) ( )]
( , ) ,

4 ( ) ( ) ( )
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(34) 

where 

s f toe f s f
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Up to now, equations of velocity, displacement, 

upward traveling wave, and downward traveling 
wave of each node have been given. However, these 
equations are correlated with each other. Therefore, 
iterations are needed to derive the displacement s(i, j) 
when there is a load applied to the pile head. In par-
ticular, based on the settlement of the pile head at 
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any moment, s(0, j), the time effect of the settlement 
of a pile can be obtained. 

According to Eq. (3), the shaft resistance of the 
ith pile segment when the settlement is finished can 
be derived as 

 

f
s f

( )
( ) ( ),

1 ( )
( )

( ) ( )

s i
i C i

s i
R i

k i i








              (35) 

 
where s(i) is the final displacement of the ith node; 
C(i)=2πr(i) and denotes the circumference of the ith 
pile segment. 

Accordingly, the axial force of the ith node can 
be given as 

 

1

( ) ( ) ( ).
i

zF i q i h i                       (36) 

 
Based on Eqs. (35) and (36), the distributions of 

the pile shaft resistance and pile axial force can be 
obtained.  

In multi-stage loading, the load-settlement rela-
tion curve can be derived based on the final settle-
ment of the pile head in each stage loading. 
 
 
3  Parametric study and discussion  
 

A comprehensive parametric study is conducted 
to analyze the time effect of the settlement of a sin-
gle pile and the distributions of the pile shaft re-
sistance and pile axial force. In the following analy-
sis, pile lateral soil is assumed to be homogeneous to 
highlight the influences of the pile-soil parameters. 

3.1  Influence of the shear wave velocity of pile 
lateral soil on the settlement behavior of a single 
pile 

In this section, the applied load is 400 kN; the 
shear wave velocity of the pile lateral soil is vs=100, 
120, 140, and 160 m/s. Other parameters of the pile 
and soil are given in Table 1. 

Fig. 6 shows the influence of the shear wave ve-
locity of the pile lateral soil on the time effect of the 
settlement of a single pile, where s is the settlement 
of the pile head, and t is the time duration of the ap-
plied load. It can be seen that the settlement occurs 

rapidly when the load acts on the pile head and in-
creases quickly with time, but gradually tends to be 
stable if the time is long enough. Note that both the 
stable value and the stable time of the settlement 
decrease with the increase of the shear wave velocity 
of the pile lateral soil but the decrease rate tends to 
be convergent. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The influence of the shear wave velocity of the 
pile lateral soil on the distributions of the pile shaft 
resistance and pile axial force is shown in Fig. 7, 
where τ and Fz represent pile shaft resistance and 
pile axial force, respectively; H=0 m and H=−20 m 
denote the positions of the pile head and the pile tip, 

Table 1  Properties of the pile and soil for the para-
metric study 

Parameter 
Description 

Pile 
Pile lateral 

soil 
Pile end 

soil 
Length, l (m) 20   

Radius, r (m) 0.25   

Elastic wave velocity, 
v (m/s) 

4000   

Density, ρ (kg/m3) 2500 1800 2000 

Shear wave velocity 
(m/s) 

 100 150 

Poisson’s ratio, μ  0.4 0.4 

Internal friction angle, 
φ (°) 

 30  

Coefficient of lateral 
pressure, k 

 0.45  

sf (mm)   3 

Fig. 6  Influence of the shear wave velocity of the pile 
lateral soil on the time effect of the settlement of a single 
pile 

0 12 24 36 48 60 72
0.0

0.5

1.0

1.5

2.0

 v
s
=100 m/s

 v
s
=120 m/s

 v
s
=140 m/s

 v
s
=160 m/s

P
ile

 to
p 

se
ttl

em
en

t, 
s 

(m
m

)

Time, t  (x10
2
 s)



Li et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2015 16(8):630-643 637

respectively. Note that from Fig. 7a the pile shaft 
resistance increases quickly with depth, but the in-
crease rate tends to be convergent. It can also be seen 
that with the increase of the shear wave velocity of 
the pile lateral soil, the pile shaft resistance within 
the same depth increases and the location where the 
shaft resistance tends to be constant deepens. Fig. 7b 
shows that pile axial force has a maximum value on 
the pile head and decreases with the depth due to the 
resistance of the pile lateral soil. It can also be seen 
that both the pile axial force and pile tip resistance 
decrease as the shear wave velocity of the pile lateral 
soil increases.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

3.2  Influence of the shear wave velocity of the pile 
end soil on the settlement behavior of a single pile 

Parameters used in this section are as follows: 
the applied load is 400 kN; the shear wave velocity 

of the pile end soil is vstoe=150, 200, 250, and 
300 m/s; other parameters of pile and soil are listed 
in Table 1. 

Fig. 8 shows the influence of the shear wave ve-
locity of the pile end soil on the time effect of set-
tlement of a single pile. It can be seen that with the 
increase of the shear wave velocity of the pile end 
soil, both the stable time and the stable value of the 
settlement decrease but the decrease rate tends to be 
convergent. Due to the similar influence on the time 
effect of the settlement of a single pile to the pile 
lateral soil, the bearing stratum of the pile tip should 
be carefully chosen during the design of the pile 
foundations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The influence of the shear wave velocity of the 
pile end soil on the distributions of the pile shaft re-
sistance and pile axial force is shown in Fig. 9. Note 
that from Fig. 9a the pile shaft resistance increases 
quickly with depth, and the increase rate tends to be 
convergent until it reaches the maximum value. After 
reaching the maximum value, the shaft resistance 
corresponding to a smaller shear wave velocity of 
the pile end soil (vstoe=150 m/s in this case) tends to 
be constant, while that corresponding to a bigger 
shear wave velocity of the pile end soil decreases 
with depth and the decrease rate increases with the 
increase of the shear wave velocity of the pile end 
soil. It can also be seen that the pile shaft resistance 
within the same depth decreases as the shear wave 
velocity of the pile end soil increases. Fig. 9b shows 
that the pile axial force within the same depth  

Fig. 8  Influence of the shear wave velocity of the pile end 
soil on the time effect of the settlement of a single pile 
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Fig. 7  Influence of the shear wave velocity of the pile 
lateral soil on the distributions of the pile shaft resistance 
(a) and pile axial force (b) 
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increases with the increase of the shear wave veloci-
ty of the pile end soil.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

3.3  Influence of the concrete strength grade on 
the settlement behavior of a single pile 

The concrete strength grade and elastic modulus 
Ep are given in Table 2 according to the national 
standard in China (MOHURD, 2010). In the follow-
ing analysis, the influence of the concrete strength 
grade is reflected by the elastic wave velocity which 
is calculated according to the relation v=(Ep/ρ)

1/2. 
The applied load is 400 kN, and the other soil-pile 
parameters in Table 1 are also adopted here.  

Fig. 10 shows the influence of the concrete 
strength grade on the time effect of the settlement of 
a single pile. Note that the stable value of settlement 
decreases with the increase of the elastic modulus or 

concrete strength grade, but the decrease rate tends 
to be convergent. It can also be seen that if the con-
crete strength grade is large enough such as C50, 
further increase of the concrete strength grade has 
little influence on the stable value of the settlement, 
indicating that the settlement of a single pile can be 
effectively reduced by increasing the concrete 
strength grade just within a certain range. Fig. 10 
also shows that the stable time of settlement is not 
affected by the concrete strength grade. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

The influence of the concrete strength grade 
on the distributions of the pile shaft resistance and 
pile axial force is shown in Fig. 11. It can be seen 
from Fig. 11a that the pile shaft resistance above a 
certain depth, namely 15 m below the ground surface, 
decreases with the increase of the concrete strength 
grade but the decrease rate tends to be convergent, 
while that below a certain depth increases as the 
concrete strength grade increases. The compressive 
deformation of the pile stem under the same load 
decreases with the increase of the concrete strength 
grade, as a result, the pile shaft resistance in the shal-
low position decreases accordingly and the applied 
load can transfer more to the deeper position. 

Table 2  Elastic modulus and concrete strength grade 

Concrete strength 
grade 

Elastic modulus, 
Ep (GPa) 

Elastic wave 
velocity, v (m/s)

C20 25.5 3194 

C30 30.0 3464 

C40 32.5 3606 

C50 34.5 3715 

C60 36.0 3795 

Fig. 10  Influence of the concrete strength grade on the 
time effect of the settlement of a single pile 
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Fig. 9  Influence of the shear wave velocity of the pile end 
soil on the distributions of the pile shaft resistance (a)
and pile axial force (b) 
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Fig. 11b shows that pile axial force within the same 
depth increases slightly with the increase of the con-
crete strength grade.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 

3.4  Influence of the ultimate displacement of the 
pile end soil in the elastic stage on the settlement 
behavior of a single pile 

In this section, the applied load is 800 kN; the 
ultimate displacement of the pile end soil in the elas-
tic stage is sf=2.0, 2.5, 3.0, 3.5, and 4.0 mm; other 
parameters used herein are given in Table 1. 

Fig. 12 shows the influence of the ultimate dis-
placement of the pile end soil in the elastic stage on 
the time effect of the settlement of a single pile. As is 
shown in Fig. 12, in the initial phase when the ap-
plied load is small, the pile end soil remains in the 
elastic stage and the settlement curves corresponding 
to different sf coincide completely with each other. 
However, the settlement curves separate out from the 

coincidence state gradually with the increase of the 
applied load, and the smaller the value of sf, the 
sooner the corresponding curve separates out. More-
over, the moment the settlement curve separates out 
from the coincidence state is the moment when the 
settlement of the pile tip reaches its ultimate value in 
the elastic stage. It can also be seen that with the 
increase of sf, both the stable time and stable value 
of the settlement decrease but the decrease rate tends 
to be convergent. 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
The influence of the ultimate displacement of 

the pile end soil in the elastic stage on the distribu-
tions of the pile shaft resistance and pile axial force 
is shown in Fig. 13. It can be seen that with the in-
crease of sf, the pile shaft resistance decreases but 
the pile axial force increases. It can also be seen that 
both the decrease rate of the pile shaft resistance and 
the increase rate of the pile axial force gradually tend 
to be convergent. 
 
 
4  Application in engineering  
 

To evaluate the reliability of the new approach 
employed in this study, a comparison with the meas-
ured load-settlement results from field tests is further 
conducted. 

4.1  Engineering example I 

This example is connected with a prestressed 
concrete pipe pile installed at a site on one of the 

Fig. 12  Influence of the ultimate displacement of the pile 
end soil in the elastic stage on the time effect of the set-
tlement of a single pile 
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Fig. 11  Influence of the concrete strength grade on the 
distributions of the pile shaft resistance (a) and pile axial 
force (b) 

-20

-15

-10

-5

0

 C20, E
p
=25.5 GPa

 C30, E
p
=30.0 GPa

 C40, E
p
=32.5 GPa

 C50, E
p
=34.5 GPa

 C60, E
p
=36.0 GPa

D
e

pt
h

, H
 (

m
)

0 50 100 150 200 250 300 350 400

Pile axial force, F
z
 (kN)

(b) 

-20

-15

-10

-5

0

 C20, E
p
=25.5 GPa

 C30, E
p
=30.0 GPa

 C40, E
p
=32.5 GPa

 C50, E
p
=34.5 GPa

 C60, E
p
=36.0 GPa

D
ep

th
, H

 (
m

)

0 5 10 15 20

Pile shaft resistance,  (kN/m)

(a) 



Li et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2015 16(8):630-643 640

heat-engine plants in Wenzhou, China. The length, 
diameter, wall thickness, and concrete strength grade 
of the pile were 45 m, 550 mm, 110 mm, and C80, 
respectively. During the pile static load test, the max-
imum test load was 3300 kN, which had been divid-
ed into nine grades. The test load of the first grade 
was 620 kN and the increment for each next grade 
was 310 kN. The pile-soil system was not complete-
ly destroyed after the test was finished. The detailed  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

soil profiles and properties are given in Table 3. 
Fig. 14 shows that the calculated results match 

well with the measured results during the entire pro-
cess of loading, which may be attributed to the con-
sideration of the nonlinear elasticity and viscosity of 
the pile lateral soil and pile end soil. Therefore, it 
can be seen that the model presented in this study 
allows a good prediction of the settlement of a single 
pile. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Soil profiles and properties in the test site of example I 

Layer 
No. 

Soil layer 
Thickness of 
soil layer (m) 

Density, ρs 
(kg/m3) 

Shear wave ve-
locity, vs (m/s)

Internal friction 
angle, φ (°) 

Poisson’s 
ratio, μ 

Lateral pressure 
coefficient, k 

1 Backfill soil 6 1800 95 17.2 0.38 0.57 

2 Muck 6 1788 123 10.9 0.45 0.66 

3 Mucky soil 8 1822 153 14.1 0.40 0.61 

4 Mucky silty clay 5 1789 192 12.3 0.42 0.65 

5 Silty clay 15 1880 241 18.9 0.35 0.52 

6 Silt 15 1920 254 23.8 0.30 0.43 
(sf=5.3 mm) 

Fig. 13  Influence of the ultimate displacement of the pile end soil in the elastic stage on the distributions of the pile shaft 
resistance (a) and pile axial force (b) 
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Fig. 14  Comparison of the calculated results and the measured results of s-logt curves (a) and load-settlement curves (b) 
for example I (unit of t: min) 
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4.2  Engineering example II 

This example is connected with a prestressed 
concrete pipe pile installed at a site on one of the 
heat-engine plants in Huzhou, China. The length, 
diameter, wall thickness, and concrete strength grade 
of the pile were 22 m, 500 mm, 100 mm, and C80, 
respectively. During the pile static load test, the max-
imum test load was 1800 kN, which had been divid-
ed into nine grades. The test load of the first grade 
was 360 kN and the increment for each next grade 
was 180 kN. The pile-soil system was not complete-
ly destroyed after the test was finished. The detailed 
soil profiles and properties are given in Table 4. 

As can be seen in Fig. 15, the comparison be-
tween the calculated results and the measured results 
shows altitudinal consistency. 

 
 

5  Conclusions 
 

1. By using the dashpot to consider the viscosi-
ty of soil, and by means of a hyperbola model and  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

idealized elastoplastic model to simulate the nonlin-
ear elasticity of pile lateral soil and pile end soil, 
respectively, a new approach is proposed, which can 
not only analyze the time effect of the settlement of a 
single pile but also obtain the distributions of the pile 
shaft resistance and pile axial force. 

2. The settlement occurs rapidly as the load acts 
on the pile head and increases quickly with time, but 
gradually tends to be stable if the time is long 
enough, indicating that the time effect of settlement 
of a single pile is quite obvious. Parametric studies 
show that soil parameters have a more significant 
influence on the settlement behavior of a single pile 
than the concrete strength grade of the pile body. As 
a result, it is of great importance to choose proper 
bearing stratum and concrete strength grade during 
the design of pile foundations for the requirement of 
safety, rationality, and economics.  

3. The comparison of the calculated results and 
the measured results shows that the approach pre-
sented in this paper is effective to simulate the set-
tlement behavior of single piles driven in multi-
layered soils.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4  Soil profiles and properties in the test site of example II 

Layer 
No. 

Soil layer 
Thickness of 
soil layer (m) 

Density, ρs 
(kg/m3) 

Shear wave ve-
locity, vs (m/s)

Internal friction 
angle, φ (°) 

Poisson’s 
ratio, μ 

Lateral pressure 
coefficient, k 

1 Backfill soil 5 1800 97 16.2 0.40 0.59 

2 Silty clay 2 1867 102 18.9 0.35 0.53 

3 Silt 3 1852 136 20.6 0.30 0.50 

4 Clay 8 1853 150 15.5 0.41 0.58 

5 Silty clay mixed 
with silt 

8 1835 163 19.5 0.32 0.52 
(sf=11 mm) 

Fig. 15  Comparison of the calculated results and the measured results of s-logt curves (a) and load-settlement curves (b) 
for example II (unit of t: min) 
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中文概要 
 

题 目：非线性粘弹性土中单桩沉降时间效应分析新方法 

目 的：提出一种新的简便方法，计算非线性土中单桩

沉降的时间效应以及沉降稳定之后桩身侧摩阻

力和桩身轴力的分布情况，为桩基础的设计提

供参考。 
创新点：1. 考虑土体的非线性（包括桩侧土和桩端土），

计算结果更接近实际情况；2. 采用基于行波分

解的波动分析程序，计算桩身任意位置处的沉

降，并据此计算任意位置处的侧摩阻力和桩身

轴力；3. 该方法既可以用于分析单桩沉降的时

间效应，也可以计算不同加载等级下桩的最终

沉降量，为设计提供参考。 
方 法：1. 采用线性阻尼器模拟土体的粘性，双曲线模

型和理想弹塑性模型分别模拟桩侧土和桩端土

的非线性，采用基于行波分解的波动分析程序

得到桩身不同位置处的沉降、侧摩阻力及轴力

计算公式（式(15)、 (25)、 (31)、 (33)、 (35)和
(36)）；2. 分析在不同桩土参数情况下，桩顶沉

降随时间的变化规律（图 6、8、10 和 12）及桩

身侧摩阻力和桩身轴力分布情况（图 7、9、11
和 13）；3. 将计算结果与工程实测结果进行对

比，以验证理论模型的可行性（图 14 和 15）。 
结 论：1. 单桩沉降的时间效应非常显著，并受到桩土

参数的影响；2. 本文提出的方法能够较准确地

模拟工程实际情况。 
关键词：沉降；时间效应；双曲线模型；理想弹塑性模

型；波动分析程序 

 
 


