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Abstract:    The contact force distribution between the core member and the external member of a buckling-restrained brace 
(BRB) is closely related to its deformation mode, and it directly affects the working state of the extended core and external re-
straining member. This study focuses on a pinned BRB with extended core as a research object and investigates the stress state 
of a BRB. Based on the specified core deformation modes and contact force distributions, the contact force and the bending 
moment distribution in the external member are deduced. Lastly, by considering the mechanical characteristics of the external 
member and extended strengthened core region (ESCR), their strength design criteria are established. In the theoretical deriva-
tion of the design method, the influence of some parameters is considered, including the initial geometrical imperfection of the 
external member, the gap between the core and the external member, the rigidity reduction of the restrained strengthened core 
region (RSCR), and the change of contact position. Finite element numerical verification of the corresponding theoretical deriva-
tion is discussed in detail in another paper as Part II (Jiang et al., 2015). 
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1  Introduction 

 
As a buckling-restrained brace (BRB) possesses 

adequate hysteretic performance and its core can 
yield both under tension and compression loads 
without overall buckling, it has been widely applied 
in building structures (Black et al., 2004; Qiang, 
2005; Tremblay et al., 2006; Di Sarno and Manfredi, 
2010; 2012; Di Sarno et al., 2013). A BRB core 
member is used to carry the entire axial force. Be-

cause of the large slenderness ratio of the core mem-
ber, it is easy to buckle. Accordingly, an external 
restraining member is applied to provide lateral sup-
port and prevent the core member from lateral de-
formation. There are two kinds of connection types 
between the BRB and frame, namely a fixed or 
pinned connection. Compared with a fixed BRB 
(Iwata and Murai, 2006; Tsai and Hsiao, 2008; Chou 
and Chen, 2010), a pinned BRB (Fahnestock et al., 
2007; Wigle and Fahnestock, 2010; Zhao et al., 
2012b) can only withstand axial forces and its end 
rotation is not restrained by the frame, which usually 
leads to BRB overall buckling failure. Accordingly, 
this study will focus on the strength design method 
of pinned BRBs.  
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When designing a BRB, to prevent the core 
from failure at its two ends, it is usually reinforced 
before it extends out of the external restraining 
member (Chen et al., 2001; Qiang, 2005; Iwata and 
Murai, 2006). For a pinned BRB, its global lateral 
deflection as well as the flexural deformation of the 
extended core usually appears under axial load. 
There exist three distinct failure modes of a BRB in 
such situations: (1) The core bending failure around 
the extended core due to its insufficient bearing ca-
pacity (Zhao et al., 2011); (2) Overall buckling fail-
ure due to insufficient bending stiffness of external 
restraining member (Ju et al., 2009; Zhao et al., 
2012a); (3) Local failure of external restraining 
member at its ends due to immense contact force 
with the core or serious stiffness weakening. These 
failure modes are mainly related to a series of design 
parameters of a BRB, including the gap between the 
core and the external restraining member, overall 
initial imperfection of axis of the BRB, and the rigid-
ity and material strength in external restraining 
member. This study mainly focuses on the first two 
failure modes. In addition, when a BRB is subjected 
to cyclic load, fatigue failure of the core may also 
occur (Usami et al., 2011; Wang et al., 2012). But if 
the elasticity of the external member can be guaran-
teed in its design, the fatigue failure will only be re-
lated to the material characteristics of the core. This 
mechanism is not discussed in this study.  

By investigating a BRBs inherent mechanical 
behavior, it is found that the core contact force acting 
on the external member is the key factor affecting 
the BRB failure modes. The core contact force  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

directly affects the working conditions of the ex-
tended core and external restraining member. Ac-
cordingly, prior to utilizing the design method of the 
pinned BRBs, it is necessary to determine the con-
tact force distribution mode between the core and 
the external member. If the assumed contact force 
distribution is not compliant with the actual distribu-
tion mode, the obtained maximum bending moment 
acting on the extended core and external member 
and the contact forces acting on the end of external 
member will not be accurate.  

The core contact force distribution is closely re-
lated to the core deformation mode. For pinned 
BRBs with a single flat-plate core, the core may de-
form according to two distinct deformation modes, 
namely, the single-wave overall deformation (Fig. 1a) 
and the multi-wave deformation associated with a 
single-wave overall deformation (Fig. 1b). For the 
secondary deformation mode, namely the multi-wave 
deformation associated with a single-wave overall 
deformation, of the core, it appears that the stress 
state of the external restraining member is the super-
position of the core multi-wave deformation and the 
single-wave overall deformation. At the mid-span of 
the BRB, the moment of the external restraining 
member caused by the core multi-wave deformation 
equals zero because the pushing forces of the core 
outwards are self-balanced (Fig. 1d). Therefore, the 
maximum moment of the external restraining mem-
ber at the mid-span happens only when the core be-
haves as a single-wave deformation. Based on this, 
only the influence of the core single wave overall 
deformation is considered in this paper.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1  Deformation mode of BRB and corresponding force state of external member 
(a) Core single-wave overall deformation; (b) Force analysis on external member when BRB has single-wave overall defor-
mation; (c) Core multi-wave buckling together with large lateral displacement deformation; (d) Force analysis on external
member when BRB has multi-wave deformation associated with a single-wave overall deformation 
N is the axial force acting on the core member, q is the distribution load acting on the core contact region, Q1 is the concentrated
contact force between the core and the external restraining member ends when BRB has single-wave overall deformation, Q2 is
the concentrated contact force between the core and the external restraining member when BRB has single-wave overall defor-
mation, and Fl1 is the mid-span core contact force when BRB has multi-wave buckling deformation 
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2  Previous research on contact force distri-
bution mode 

 
Few studies are concerned with the contact 

force distribution mode between the core and the 
external restraining member; and studies on the de-
sign method considering the influences of extended 
core in a pinned BRB are even fewer. In some re-
search the assumptions used for the contact force 
distribution mode are inadequate. Usami and Kaneko 
(2001) put forward the continuous beam model with 
variable rigidity for the pinned BRBs with an H-
shaped core member, and assumed that the extended 
core and the external restraining member met the 
deformation compatibility conditions at the external 
member end (Fig. 2). However, as there was a gap 
between the actual core and the external member, 
when the BRB end rotates, the strengthened core 
region (SCR) and external restraining member would 
be faced with the two-point contact condition 
(Fig. 3). In such a case, the boundary conditions of 
extended core and external member at points c, d 
would be discontinuous and their lateral displace-
ment and rotation were different, which magnifies 
the bending moment of the extended core and the 
overall stress state of the external member. Accord-
ingly, the results obtained by using such a method 
were inaccurate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Guo and Jiang (2010) supposed that the lateral 

deformation of the core and the external restraining 
member are similar, therefore the contact force be-
tween the core and the external member follows a 
sinusoidal geometric distribution mode. The influ-
ence of gap between the core and the external mem-

ber was ignored, which led to inaccuracy when cal-
culating the contact force distribution.  

Zhao et al. (2011) assumed that two-point con-
tact was formed between the core and the external 
member end, and simplified the core yield region 
contact force distribution to the uniform distribution 
mode. Considering the contact force at the core end 
and mid-span as well as the deformation compatibil-
ity relationship at some contact points, the maximum 
bending moment of the extended core and external 
member were obtained. Finally, design criteria for 
predicting the limit strength of the extended core and 
external member were established according to the 
yield criterion of the cross-sectional edge stresses. 
The method is adequately applicable. However, the 
influences of geometric imperfection of the core and 
the external member as well as the gap when select-
ing the initial working state are not accounted for. 
Besides, the plasticity influence of the extended core 
is not mentioned and the assumption of the contact 
force distribution form of the core yield region needs 
to be revised. 

Wang et al. (2013) proposed a simplified calcu-
lation model for the pinned BRBs to investigate the 
influence of BRB end detail construction on the 
BRB’s overall performance. A double iterative algo-
rithm was used to consider the influence of end addi-
tional eccentricity ea on the performance of the ex-
tended core. In spite of the lucid concept of the sim-
plified model, and the consideration of factors like 
the extended core and external member rigidity, gap 
and initial imperfection, the check of the extended 
core must be carried out by the finite element (FE) 
analysis, and it is unable to offer analytic expressions; 
on this account, it is not recommended as a design 
proposal in engineering application. 

Based on the research results stated above, this 
study takes the pinned BRBs with extended core as a 
research object and investigates the force state of the 
pinned BRBs when the core behaves as a single-
wave overall deformation. Under the assumption of 
the core contact force distribution mode, the core 
contact force and the bending moment distribution of 
external member are deduced. Finally, according to 
the stress characteristics of the pinned BRBs, the 
design criteria for the external restraining member 
and the extended strengthened core region (ESCR) 
are established. In the theoretical derivation of the 
design method, the influence of some parameters is 
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considered, including the external member rigidity, 
strength and initial geometrical imperfection, the gap, 
the rigidity reduction of restrained strengthened core 
region (RSCR), and the change of contact position.  

 
 

3  Stress state of the pinned BRBs with core 
single-wave overall deformation 

 
The core single-wave overall deformation of a 

pinned BRB is analysed in this section. The initial 
geometrical configuration of the BRB is taken as its 
initial state when the external restraining member 
starts to provide lateral support to the core member. 
Based on the assumption of core contact force distri-
bution, the equilibrium equations of ESCR and 
RSCR are established. By employing the defor-
mation compatibility relationship between the core 
and the external member at some specific contact 
points, the maximum bending moment acting on the 
extended core, the contact force distribution and the 
bending moment distribution acting on the external 
member are obtained, so as to lay a foundation for 
developing design criteria of the external member 
and the SCR. There follows a discussion on the sim-
plified analytical model, initial state, equilibrium 
equation, deformation compatibility, and bending 
moment effect. 

3.1  Simplified analytical model 

The following assumptions are made for the 
simplified analytical model:  

1. The initial geometric imperfection of the core 
and the external member follow a sinusoidal distrib-
uted geometric pattern, and the geometric state when 
the two-point-contact just starts to be formed at the 
end of the core and the external member is defined as 
the initial state of the pinned BRBs. 

2. Two-point-contact occurs at the ends of the 
core and the external restraining member. The de-
formation mode of the core contact region and the 
external member is identical in the core contact re-
gion, and a sinusoidal distributed contact force in 
this region is specified. Nagao and Takahashi (1991), 
Inoue and Sawaisumi (1992), and Zhao et al. (2011) 
found that the core yield region possessing single-
wave overall deformation and their contact forces 
appearing as a sinusoidal or uniformly distributed 
pattern would be the worst for BRB overall perfor-

mance. It is also confirmed from FE numerical re-
sults that the contact force distribution in the core 
yield region is very complicated; however, it is more 
likely to follow a sinusoidal pattern. 

3. Core deformation is assumed to be a single-
wave, and the bending moment acting on the core 
contact region is zero.  

The simplified analysis model of a pinned BRB 
is shown in Fig. 4. As a pinned connector of the 
BRB has enough flexural rigidity, it can be simpli-
fied and considered as a rigid body. Given that the 
external member and core member often have initial 
geometrical imperfections (δ0, δ1) because of con-
struction and manufacture error, the influence of the 
initial geometrical imperfections should be taken into 
account (Fig. 5a). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2  Initial state 

The core of a pinned BRB often has a large 
slenderness ratio, and accordingly its lateral deflec-
tion occurs when subjected to axial compression. In 
such a case, the core will push one side of the  

Fig. 4  Simplified analytical model of a pinned BRB 
LBRB is the distance between two pinned connectors of BRB,
L0 is the length of a pinned connector, Lc10 and Lc20 are the
RSCR lengths with uniform section and variable section
when BRB is in the initial state, respectively, Lc0 is the total
length of the RSCR when BRB is in the initial state, Lp0 is the
length of the ESCR when BRB is in the initial state, Ly0 is the
length of the core flat-plate when BRB is in the initial state,
Lcm and Lem are the lengths of the core member and external
restraining member, respectively, L1 and L2 are the horizontal
distances between the contact points d and e and the pinned
connector, respectively, Lpc is the length of SCR with uni-
form section, g is the gap between the core and the external
member, EbIb is the flexural rigidity of the external restrain-
ing member, EpIp is the flexural rigidity of the ESCR, b0 and
t0 are respectively the height and thickness of wing-plate of
the SCR; hc and tc respectively represent the width and thick-
ness of the core member, and Ip and Ip0 respectively are the
moments of inertia of the ESCR and core member 
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external restraining member and cause rigid body 
movement. After the core contacts the end of the 
external member, it will formally enter the working 
state (Fig. 5b). Accordingly, the state can be taken as 
the initial state of the BRB and the corresponding 
core deformation is the initial geometrical configura-
tion of the BRB. As the BRB enters the initial state 
at the beginning of loading, the geometrical dimen-
sions of the BRB can be assumed as unchanged. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is assumed that the external restraining mem-

ber and the core member have a sinusoidal initial 
imperfection distribution with amplitudes of δ0 and 
δ1, respectively. In such a case, when the BRB is in 
the initial state, the core deformation is sinusoidal. 
Let the core deformation amplitude be δ2, then the 
core deformation y0(x) when the BRB is in the initial 
state can be obtained: 

 

0
0 2 0 0

BRB 0

0 BRB 0

( )= sin π ( ),
2

,

x L
y x y L

L L

L x L L


 
  

  

+
            (1) 

where LBRB represents the distance between two 
pinned connectors of BRB; L0 represents the length 
of a pinned connector; and δ2 represents the defor-
mation amplitude of the core in the initial state, 
which can be calculated by Eq. (5). 

Fig. 5b shows that, at position x=L2, the core 
contacts the end of external restraining member and 
the core deformation should meet the following 
boundary conditions: 

 

BRB 2
0 0 0/2
( ) ( ) = 2 ,
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where g represents the lateral gap between the core 
and the external member. 

Thus, the BRB initial geometrical configuration 
y0(x) can be expressed as  
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where m0=π/(LBRB−2L0), and  
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g
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                         (5) 

 
where Lp0 denotes the length of the ESCR when the 
BRB is in the initial state, as shown in Fig. 5b. 

3.3  Equilibrium equation 

For the pinned BRBs in the working state 
(Fig. 5c), differential equations of equilibrium are 
established for the ESCR and RSCR, which are giv-
en by 
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where EpIp is the elastic flexural rigidity of the ESCR. 
Considering that the RSCR is a beam-column with a 
variable cruciform section, its flexural rigidity is re-
placed with a constant equivalent stiffness. The 
simply supported beam-column with equivalent 
stiffness should possess the same rotation at the 
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Fig. 5 Changing process of stress state of a pinned BRB
(a) Original state of BRB with imperfections; (b) Initial state;
(c) Working state 
Lp is the length of the ESCR, Lc is the horizontal distance
between two contact points of the core member end, Ly is the
horizontal distance between two inner contact points in the
middle of core member, and L3 is the horizontal distance
between the contact point d and the core member end 
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beam-column end with the RSCR subjected to end 
moment (Fig. 6). Through simplification, the RSCR 

equivalent flexural rigidity 0p p,eq p p=E I E I  can be 

obtained. η1 represents the RSCR rigidity reduction 
coefficient. Considering the plasticity influence of 
the RSCR, its value is related to the core axial strain. 
From the FE analysis discussed in part II (Jiang et al., 
2015), when the core axial strain is 1%, η1 takes 4/9; 
when the core axial strain is 2%, η1 takes 1/4; when 
the core axial strain is 3%, η1 takes 4/25. 0  repre-

sents the RSCR equivalent flexural rigidity coeffi-
cient, which is calculated by  

 
3
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3 3
1 c 0 c
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where Lc20 and Lc0 respectively represent the length 
of RSCR with variable section length and the total 
length of the RSCR when a pinned BRB is in the 
initial state, μ1 is a dimensionless coefficient, b0 and 
t0 respectively represent the height and thickness of 
wing-plate of the SCR, and hc and tc respectively 
represent the width and thickness of the core member, 
as shown in Fig. 4 and Fig. 6. 

From the force analysis of the SCR (Fig. 7), it is 
found that the end contact force Q1 is 

 

cd ec
1

c

,
N M

Q
L

 
                            (10) 

 
where N is the axial force acting on the core member, 
Mec is the bending moment applied at the end of the 
core contact region (x=L2) of the ESCR, and δcd is 
the vertical distance between two contact points c 
and d, which are shown in Fig. 7. Lc represents the  
 

 
 
 
 
 
 
 
 

horizontal distance between two contact points c and 
d of the core member end. 

After performing deformation and force analy-
sis with the extended core and the external member 
as free bodies, the following four boundary condi-
tions can be obtained: 
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Substituting Eqs. (6) and (7) into the above 

boundary conditions, the expression of the defor-
mation function y1(x) of the extended core can be 
obtained: 
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where 1 p p/ ( ) ,k N E I  and c1 represents the un-

determined coefficient in the deformation function 
y1(x), which can be found from the boundary condi-
tions Eqs. (12), (13), and (16). k1, k2 are dimension-
less coefficients, which can be found from Eq. (17); 
A0, A1, A2, Y1, and Y2 are calculation coefficients, 
which can be found from Eq. (18); 0 01/  . 
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where Lp represents the length of ESCR subjected to 
given flexural moment (Fig. 7); L1, L2 respectively 
represent the distances between the contact points d, 
c and the pinned connector; L3 represents the dis-
tance between the contact point d and the core mem-
ber end (Fig. 7). 
 
 
 
 
 
 
 
 
 
 
 
 
 

After obtaining the deformation y1(x) of the ex-
tended core, the bending moment Mec at the contact 
position between the ESCR and the external restrain-
ing member can be determined by  
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                 (20) 

where m1, m2 are dimensionless coefficients. 
In addition, the rotation θec at a pinned connect-

or (x=L0) can be easily obtained. Its expression is 
shown in Eq. (21), and its physical meaning is shown 
in Fig. 7, where r1, r2 are coefficients. 
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where the contact force Q1, bending moment Mec, 
and deformation δcd are three unknown quantities, 
and the equations related to these quantities estab-
lished are only Eqs. (10) and (19). Accordingly,  
other equations should be built by using the defor-
mation compatibility relationship between the core 
and the external restraining member.  

3.4  Deformation compatibility and bending mo-
ment effect 

The force analysis is carried out with respect to 
the core contact region and the external restraining 
member in the working state (Fig. 8). The defor-
mation compatibility relationship of the core and the 
external member between points c, d and points d, e 
are elucidated by this figure.  

The core contact region and the external re-
straining member are taken as free bodies, as shown 
in Figs. 8a and 8b. It is supposed that the contact 
force distribution is sinusoidal and the mid-span con-
tact force distribution intensity is q0. After perform-
ing force analysis on the core contact region, the dis-
tribution load q acting on the core contact region can 
be obtained: 

 
2

de
0 2

y y y

ππ π
sin sin ,

N
q q u u

L L L

   
       

   
       (23) 

 
where Ly represents the horizontal distance between 
two contact points in the middle of the core member; 
δde represents the vertical distance between points d 
and e on the core contact region, which can be ob-
tained by the bending deformation analysis of the 
external restraining member. It is mainly related to 
the external restraining member initial imperfection 

Fig. 7  Force analysis of SCR 
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amplitude δ0, bending moment Q1Lc, and the sinus-
oidal distribution contact force q. δde can be given by 

 
2 4

1 c y 0 y
de de0 4

b b b b

+ ,
8 π

Q L L q L

E I E I
                    (24) 

 
where EbIb is the flexural rigidity of the external re-
straining member, and δde0 is the vertical distance 
between points d and e when the BRB is in its initial 
state. 

Let the length of external restraining member 
equal Lem, then the expression of the external re-
straining member deformation function y3(v) in the 
initial state can be obtained: 

 

3 0
em

π
( )= sin .y v v

L


 
 
 

                          (25) 

 
Let x1=1−sin(πLc/Lem), then another expression 

of the vertical distance δde0 between points d and e 
can be given as 

 

de0 1 0 c em 0= [1 sin(π / )] .x L L                  (26) 

 
By substituting Eq. (24) into Eq. (23), the equa-

tion of the distribution force intensity q0 can be writ-
ten as 
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1 c y y
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   (27) 

 
Similarly, the vertical distance δcd between 

points c and d in the center of SCR can be obtained 
by deformation analysis of the external restraining 
member: 

 

cd 0 c
em
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               (28) 

 
where the first three terms refer to the gap, Poisson 
effect, and the influence of the external restraining 
member initial geometrical imperfection. The fourth 

term is caused by the sinusoidal distribution contact 
force q, and last two terms denote the contribution of 
the end contact force Q1.  and εc respectively repre-
sent the steel Poisson’s ratio and the core axial com-
pressive strain. 

By substituting Eq. (27) into Eq. (28), δcd is ob-
tained, then substitute δcd into Eq. (10), the contact 
force of SCR at point c can be expressed by 
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         (30) 

 
where w1 and w2 represent dimensionless calculation 
coefficients. 

By Eq. (29) and Eq. (19), the expressions of 
bending moment Mec which acts on the ESCR end, 
and the end contact force Q1 between ESCR and ex-
ternal restraining member can be given by Eq. (31) 
and Eq. (32). 

 

ec 2 c ,M c NL                                          (31) 

1 1 2 2( ) , Q w c w N                                 (32) 

1 2 1 2 2 2 1
2
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( )
.
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


             (33) 

 
By substituting Eq. (29) into Eq. (21), the ex-

pression of the BRB end rotation θec can be obtained: 

 

ec 1 2 1 2 2 2 1 2 2( ) ( ) / .r r k r k w c w k              (34) 

 
As the contact force Q1 and the sinusoidal dis-

tribution force q of the core contact region are 
known, according to the equilibrium equation, the 
expression of the contact force Q2 (Fig. 5c) can be 
obtained, which is given by Eq. (35). After perform-
ing force analysis on the external restraining member, 
the bending moment distribution of the external 
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member within the core contact region can be  
obtained:  

 

y
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where u represents the horizontal distance between a 
certain point on the external restraining member and 
point d (Fig. 8). At the mid-span, namely u=Ly/2, the 
bending moment of the external member is the max-
imum, which is given by 

 
2
y

em,max 1 c 02
.

π

L
M Q L q                          (37) 

 
Note that Lp, Lc, and Ly will change with the in-

crease of core axial strain, which can be respectively 
calculated by  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p p0 BRB ,= / 2L L                                 (38) 

c c10 BRB 2 c202+= + / ,L L L                      (39) 

y em c= 2 ,L L L                                      (40) 

 
where η2 represents the correction coefficient of the 
contact position variation at the variable cruciform 
region of the RSCR, which is obtained by FE nu-
merical analysis. When the core axial strain is 1%, 
η2 takes 1.0; when the core axial strain is 2%, η2 
takes 0.9; when the core axial strain is 3%, η2 takes 
0.8.  

When the core yields, the relation between the 
core axial force N and the core axial strain εc is 
shown in Eq. (41). Considering the effect of axial 
force, some part of the variable cruciform region of 
the RSCR will also enter plasticity (Fig. 9). Through 
simple derivation, the expression of core axial dis-
placement ΔBRB corresponding to axial force N can 
be obtained, as shown in Eq. (42). Relevant parame-
ters can be calculated from Eq. (43). 
 

y c y y1 ( / 1)[ ] ,wN NN                    (41) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8  Force analysis on the core contact region (a) and external restraining member (b) 
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where w is the core strength improvement coefficient 
in the plasticity stage; α is the ratio between the tan-
gent modulus and elastic modulus of the core mem-
ber in its plasticity stage; εy represents the yield 
strain of the core member; Ny is the core yield load; 
fcy is the core yield strength; Ec is the elastic modulus 
of the core member; Ac and Ap respectively represent 
the section areas of the core flat-plate and the uni-
form section strengthened region; Ac0 represents the 
critical area of the core plasticity section, which is 
the dividing plane of core plasticity and elasticity 
portion; Ac1 and Ac2 respectively represent the equiv-
alent section areas of the plasticity region and the 
elastic region of the variable cruciform region of the 
RSCR; lc1 and lc2 respectively represent the length of 
the plasticity region and the elastic region of the core 
member variable cruciform region; Lpc is the length 
of the uniform section SCR; Ly0 denotes the length of 
the core flat-plate when the BRB is in the initial state. 

 
 

4  Design method of the pinned external in-
tegrated BRBs 

 
It is confirmed that only the external restraining 

member with both sufficient rigidity and strength can 
guarantee the core member reaching the full section-
al yielding without global buckling. Currently, the 
design method of the BRB can be classified into two 
categories: one is based on the rigidity standards of 
the external restraining member, namely the restrain-
ing ratio expressed by Eq. (45), and the other is 
based on the moment-bearing capacity of the exter-
nal restraining member. This study will further ex-
plore the design method of the pinned BRBs which 
combines both the rigidity and the strength of exter-
nal restraining member.  

In addition, the SCR should also have sufficient 
strength under combined axial force and moment so 
as to avoid the bending failure at the core end. Its 
strength design method is also discussed. 

4.1  Design criteria for the external restraining 
member 

As the external restraining member only offers 
lateral support to the core member, it is a flexural 
member. Accordingly, the sectional bending capacity 
of the external member can be considered as a con-
trol of the BRB restraining ratio in its design method. 
For the pinned BRBs, it should be ensured that: 

 

,maxem em,u ,MM                             (44) 

 
where Mem,max is the maximum bending moment of 
the external member, which can be calculated by 
Eq. (37); Mem,u is the bending capacity of the exter-
nal restraining member. If the external member is 
made from all-steel as some kind of integrated re-
straining member, then Mem,u=Wem fey, where Wem is 
the elastic modulus of the section in the external re-
straining member to the outer fiber in the bending 
direction, and fey is the yield stress of the external 
member steel.  

The defined design parameter is the restraining 
ratio ξ (Black et al., 2004; Guo et al., 2010), given 
by Eq. (45). It is only related to the BRB geometrical 
parameters and the yield stress of the core material. 

 
2 2

b b BRB y( ) /π ( ),E I L N                          (45) 

 
where Ny represents the core member yield load. 

After some manipulation of Eq. (44), the mini-
mal value of the BRB restraining ratio [ξ] can be 
obtained: 
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Note that as this study mainly focuses on the ex-

ternal integrated BRB, the external restraining mem-
ber flexural rigidity is clear. However, for the exter-
nal assembled BRB, as the external members are 
bundled by scattered bolts, the external member ri-
gidity will inevitably be reduced. The determination 
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of the rigidity reduction coefficient of the external 
member will be a focus in the assembled BRB, and 
is not included in this study. 

4.2  Design recommendations for the SCR 

Since the ESCR behaves as a typical beam-
column, its limit strength is considered as a full sec-
tional yielding and is expressed as an interaction be-
tween axial force N and bending moment Mec. For 
the ESCR with cruciform section, its interaction 
equation is complicated. For convenience, the ap-
proximation equation (Chen, 2005) is applied:  

 
2

p,ec ec p,ec( / ) / 1.0,N N M M                (47) 

 

where N refers to the core axial force which is calcu-
lated by Eq. (41); Np,ec is the fully sectional yield 
force of ESCR; Mec is the maximum bending mo-
ment of the ESCR, which can be calculated by 
Eq. (31); Mp,ec represents the fully sectional plasticity 
bending moment of the ESCR.  

 
 

5  Conclusions 
 

Taking a pinned BRB with extended core as a 
research object, this paper presents a theoretical der-
ivation for its design method. Firstly, considering the 
core single-wave overall deformation mode, the 
equilibrium equations are established for the ESCR 
and the RSCR based on the assumed core contact 
force distribution modes. In addition, by employing 
the deformation compatibility relationship at some 
specific contact points, the maximum bending mo-
ment acting on the extended core (Eq. (31)), and the 
core contact force distribution (Eqs. (32) and (35)) as 
well as the bending moment distribution acting on the 
external restraining member (Eq. (36)) are also ob-
tained. In the theoretical derivation, the following fac-
tors are considered: the initial geometrical imperfec-
tion of the external member, the gap between the core 
and the external member, the rigidity reduction of the 
RSCR, and the change of contact position. 

Lastly, based on the stress characteristics of the 
external restraining member and the SCR, their de-
sign criteria denoted by Eqs. (46) and (47) are estab-
lished. The theoretical derivation reliability is veri-
fied by finite element numerical analysis in another 
study as Part II (Jiang et al., 2015). 
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中文概要 
 

题 目：内核外伸铰接防屈曲支撑设计理论研究. 第一部

分：理论推导 

目 的：研究内核外伸的铰接防屈曲支撑的受力状况。 

方 法：在假定内核对外围约束构件挤压力分布模式

后，建立内核外伸加强段和约束加强段的平衡

方程，并结合内核与外围约束构件之间的变形

协调关系求解出内核外伸段上最不利弯矩、内

核挤压力及外围约束构件上的弯矩分布。基于

外围约束构件及内核外伸加强段的受力特点建

立外围约束构件设计准则和内核加强段设计 

准则。 

结 论：设计准则可以有效地预测支撑整体失稳破坏和

内核外伸加强段折曲破坏。 

关键词：防屈曲支撑；内核单波整体变形；挤压力分

布；内核构件加强段；设计准则 
 


