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Abstract:    For purposes of automating the assignment of tolerances during design, a math model, called the Tolerance-Map 
(T-Map), has been produced for most of the tolerance classes that are used by designers. Each T-Map is a hypothetical point-space 
that represents the geometric variations of a feature in its tolerance-zone. Of the six tolerance classes defined in the 
ASME/ANSI/ISO Standards, profile tolerances have received the least attention for representation in computer models. The 
objective of this paper is to describe a new method of construction, using computer-aided geometric design, which can produce the 
T-Map for any line-profile.  The new method requires decomposing a profile into segments, creating a solid-model T-Map prim-
itive for each, and then combining these by Boolean intersection to generate the T-Map for a complete line profile of any shape. To 
economize on length, the scope of this paper is limited to line-profiles formed from circular arc-segments. The parts containing the 
line-profile features are considered to be rigid. 
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1  Introduction 

 
Geometric tolerancing is the modern method that 

designers use to specify allowable limits for the 
geometric manufacturing variations on the features of 
a part, variations such as size, position, form, runout, 
and orientation. The rules for specifying and 
interpreting all classes of geometric tolerances are 
codified in the ASME Y14.5 Standard (ASME, 2009) 
and the ISO standards. The ISO 1660 Standard (ISO, 
1987) is specific to profiles. A tolerance specification 
defines a tolerance-zone in which the feature of 
interest has several degrees of freedom of 

displacement. The location of the tolerance-zone is 
established with basic dimensions, and its boundaries 
are determined by the specified tolerance(s). 

There have been several attempts to model the 
variations that are described in the Standards. Sum-
maries of these, together with a comparison of the 
Arizona State University (ASU) Tolerance-Maps 
(T-Maps) model with other math models for toler-
ances, appear in (Pasupathy et al., 2003; Mujezinović 
et al., 2004; Ameta et al., 2011). The T-Maps model 
is one of several vector space models that map geo-
metric manufacturing variations into a region of 
parametric space. Other authors have used other 
vector space models (Giordano et al., 1999; Roy and 
Li, 1999) to model the 3D variations of a plane- 
segment (e.g., rectangular or circular) or the 4D var-
iations of a line-segment. The conclusion of the 
comparison of models in (Mujezinović et al., 2004; 
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Ameta et al., 2011) is that the other models contribute 
substantially to the science of representing geometric 
variations and tolerances, but that each model either is 
limited structurally from representing, or has not been 
developed to represent, one or more of the following 
aspects of the Standards: form tolerances, floating 
zones, Rule #1 tradeoff, bonus tolerance arising from 
material condition, and/or datum precedence. In ad-
dition, with one exception, none of those models have 
ever been formulated to represent profile tolerances, 
either in theory or in software for computer-aided 
tolerancing. We know of one exception: Giordano’s 
and Duret’s use of deviation space to model a rec-
tangular clearance space (Giordano and Duret, 1993). 

Tolerances on line-profiles are used to control 
manufacturing variations for cross-sectional shapes of 
parts, even mildly twisted ones, such as those on 
turbine or compressor blades. Such tolerances limit 
geometric manufacturing variations to a 2D  
tolerance-zone, i.e., an area, the boundaries to which 
are curves parallel to the true profile. The single pro-
file tolerance may be used to control position, orien-
tation, and form of the profile. A profile tolerance 
may also be used to control local variations on a large 
interrupted surface (ASME, 2009). Often formed by 
several isolated raised bosses, such a surface com-
monly forms the attachment feature on many metal 
castings and molded plastic parts. 

Our objective in this paper is to produce a math 
model that represents manufacturing variations of 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

line-profiles and their limits (tolerances), yet does so 
in a manner consistent with their representations for 
other features, such as lines and planes. With such a 
model, tolerance chains may contain a mixture of 
features, even different classes of tolerances, and yet 
be represented in a uniform way. 

As a first attempt at modeling line-profiles, 
T-Maps for some specific line-profile shapes were 
presented in (Davidson and Shah, 2012): for squares, 
for rectangles, and for those having an isosceles 
right-triangular shape. These T-Maps were simple 
enough that the intuitive method used there was suf-
ficient to get an accurate result. However, since the 
publication of (Davidson and Shah, 2012), we have 
found that the boundaries of those T-Maps were 
doubly traced, either in large part or entirely. Minor 
variations to those profile shapes cause the doubly 
traced portions to separate into so many faces and/or 
curved surfaces that the intuitive method becomes 
burdensome. 

An alternative construction method is described 
in (He et al., 2013). There, the authors describe how, 
for a scalene triangular shape, solid-model T-Map 
primitives, one for each line-segment, may be pro-
duced, deformed, and then combined with Boolean 
intersection to get the T-Map for the entire profile. 
The method is applicable to any polygonal shape. The 
purpose of this paper is to modify the method of 
Boolean intersection of primitive T-Maps in (He et 
al., 2013) so that it applies to line-profiles composed 
only of circular arc-segments. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  (a) A partially dimensioned cast part with a hole (Datum D) and a tolerance of ŧ=0.5 mm applied to the 50° ad-

justment arc-slot AB to control its size, location, and form; (b) An adjusting-link to engage hole at O and arc-slot RS  
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2  Profile specifications and tolerance-zone 
boundaries 
 

The casting in Fig. 1a contains an arc-shaped 
opening to permit an operator to adjust machinery by 
clamping a bolt at any location within the 50° range 
shown. The opening, an arc-slot, is composed of four 
joined arc-segments. The theoretical finished shape 
for this opening is specified with the basic angle- and 
radius-dimensions. Geometric manufacturing varia-
tions to its machined shape are controlled by the pro-
file tolerance ŧ=0.5 mm relative to the Datums A, B, 
and D. This specification establishes two boundaries 
formed by parallel curves. One is 0.25 mm larger 
along every line normal to the surface, and the other is 
0.25 mm smaller. According to the standards (ISO, 
1987; ASME, 2009), measured points on the manu-
factured surface at every cross-section (each forming 
a line-profile) through the depth must lie within the 
outer and inner boundary lines at that cross-section. 

The adjustment arc-slot in Fig. 1a is reproduced 
in Fig. 2 along with its tolerance-zone boundaries. 
The middle-sized profile (MSP) is shown with a 
dashed line. Note that the range of allowable angular 
displacement of the MSP within the tolerance-zone is 
determined by the ratio ŧ/d, where d is the longest 
interior linear dimension between arc-centers (length 

RS  in Figs. 1a and 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
3  Tolerance-Map (T-Map) for a line-profile 
 

A Tolerance-Map® (T-Map®) for any feature 
(Davidson et al., 2005) is a hypothetical Euclidean 

point-space, the size and shape of which reflects all 
the allowable geometric variations for that feature. It 
is the range (co-domain) of points resulting from a 
one-to-one mapping from all the geometric variations 
from the manufacture of a feature, within its  
tolerance-zone, to the Euclidean point-space. These 
allowable manufacturing variations are displaced 
locations of the feature relative to its theoretical lo-
cation on the part. They are limited by the boundaries 
to the tolerance-zone, which, for line-profiles, are 
dependent upon the shape of the profile, the value of 
tolerance(s) assigned to it, and other specifications, 
such as datums, in the feature control frame (Fig. 1a 
and ISO (1987) and ASME (2009)). 

Since a T-Map represents the freedom of a fea-
ture in its tolerance-zone, the T-Map may be a 
bounded area (2D), volume (3D), or a hypervolume 
(4D, 5D, …, nD) of points. For line-profiles, the 
manufacturing variations are represented with the true 
profile, which is of perfect form, and allowable  
perfect-form profiles parallel to it, instead of the more 
familiar plane, line, or point. And, each point in the 
T-Map corresponds to any one of these perfect-form 
profiles or to any one of them that is displaced, yet 
remains within the tolerance-zone. Consequently, its 
T-Map is a 4D hypervolume, i.e., a 4D solid. The 
allowable manufacturing variations are: change in 
radius (size), two translational displacements ex and 
ey, and one rotational displacement θ. So that the 
T-Map may be used for metric computations, the 
units along all axes should be the same, i.e., a length 
[L]. For that reason, the scale assigned to the axis for 
angle θ is made θ′=θd/2 where, for the profile in 

Fig. 2, d= RS.  
For any given size for the profile, such as for the 

MSP, the T-Map is a hypersection of the full 4D 
T-Map, i.e., a 3D volume. 

 
 

4  Profile decomposition and the 3D primitive 
T-Map for one generic arc-segment 
 

When a complete line-profile comprising only 
circular arc-segments is decomposed, the resulting 
separate arc-segments are joined at points having 
either C0-continuity (a vertex) or C1-continuity (a 
common tangent). For each segment, a solid-model 
T-Map primitive is created in a local coordinate 

Fig. 2  The middle-sized profile (dashed curve), consisting 
of four joined arc-segments; the inner and outer bounda-

ries to its tolerance-zone; its idealized profile, arc ;RS
and two limiting displacements (dotted-lines), one up-
ward, the other rotated counterclockwise (CCW) 
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frame. Then, the primitive solid models are trans-
formed (displaced and deformed) to be consistent 
with a common global coordinate frame, after which 
they are combined by Boolean intersection to identify 
the region of common points that form the T-Map for 
the complete line profile. 

Although each T-Map primitive is unbounded in 
one direction, the final T-Map for the entire profile is 
a bounded space containing all possible mapped 
points that correspond to the acceptable profile  
deviations. 

Boundaries to the tolerance-zone and to the 
T-Map have the same function, but they exist in dif-
ferent spaces. The boundaries of a tolerance-zone 
constrain the displacements of the profile (feature), 
e.g., the two profiles drawn with dotted lines in Fig. 2, 
to only those manufacturing deviations that are per-
mitted by a designer’s choice for the one or more 
tolerances that are specified for the profile. In the 
T-Map space, the boundaries separate points, each 
corresponding to a profile displacement and size, into 
acceptable and unacceptable regions. Therefore, there 
is a one-to-one geometric transformation that relates 
the boundaries of the tolerance-zone, and every 
manufacturing variation of the feature within them, to 
points on the bounding surfaces of the T-Map, and to 
every point within them. 

Although the full T-Map for a line-profile is a 
4D solid, the morphology of the 3D hypersections is 
discontinuous with change in size for generally 
shaped line-profiles. Therefore, the list of steps below 
is for the purpose of generating a single 3D hyper-
section of the 4D T-Map. In the subsections that fol-
low, the method is applied to the MSP. Its application 
to other allowable sizes of the profile is reserved for 
section 5.3. 

There are six steps to building the solid model 
for a 3D hypersection of the T-Map for a given-sized 
line-profile:  

1. Decompose the entire line-profile into its n 
segments, 

2. Create the T-Map primitive (3D solid) relative 
to a local reference system Oxiyi (i=1, 2, …, n) for 
each of the segments, 

3. Identify a global reference x′y′-frame for the 
entire MSP and transform each 3D T-Map primitive 
to this frame, 

4. Intersect these transformed T-Map primitives 
in this global reference frame to get a tentative 3- 
solid T-Map (hypersection) for the entire profile, 

5. (Optional) Identify the invariant point (pole) 
(Hain, 1967; Davidson and Shah, 2012) correspond-
ing to the greatest allowable rotation of the MSP, and 

6. (Optional) Transform the tentative T-Map to 
its representation in a canonical global xy-frame with 
its origin at the pole. 

In the next three subsections we apply the first 
two of these steps to the MSP of a generic 
arc-segment, and, in sections 5.1 and 5.2, we apply all 
six to the arc-slot in Fig. 1a. 

4.1  T-Map primitive for the middle-sized profile 
(MSP) of a generic arc-segment 

A generic arc-segment AB  is shown in Fig. 3a 
with its MSP (arc with a dashed line) and the bound-
aries to its tolerance-zone (arcs with solid lines), all 
represented in a coordinate frame having its origin at 
the common arc-center. The orientation of this coor-
dinate frame is unimportant, but its center must be at 
the common center. The MSP may be approximated 
by a continuous set of tangent line-segments (five are 
shown) that range over the angle of the arc. Manu-
facturing variations from part to part permit each such 
line-segment to be located radially from – ŧ/2 to + ŧ/2, 
but tolerance ŧ offers no limit to its tangential location. 

Small translated locations are represented in the 
T-Map space with coordinates ex and ey that corre-
spond to the x- and y-directions in Fig. 3a. Therefore, 
in the 2D T-Map space, all allowable translated loca-
tions for any one of the five line-segments in Fig. 3a 
lie in the interior region between its corresponding 
parallel boundaries that are separated by tolerance ŧ. 
This region is unbounded in the direction of the 
line-segment. The Boolean intersection of two of 
these is the rhombus shown with the speckled shading 
in Fig. 3b. The intersection of five of these, one for 
each of the short line-segments in Fig. 3a tangent to 
the MSP, is the smaller hatched region in Fig. 3b. 

Then, when the arc-segment AB  is represented by a 
continuous array of tangents, i.e., as an envelope, the 
boundary of the area also becomes continuous 
(Fig. 3c). Since the body on which the manufactured 
arc-profile is produced is rigid and not displacing or 
deforming, each point in this hatched area of the 
T-Map space represents one allowable perfect-form 
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manufacturing outcome (displaced location) for the 
middle-sized arc-profile in Fig. 3a relative to its the-
oretical location on any one part. The entire hatched 
area in Fig. 3c corresponds to all of its allowable 
translated locations. For example, the two translated 
locations C and D of the MSP in Fig. 3a (dotted lines) 
are represented with corresponding points C and D at 
the T-Map boundary in Figs. 3b and 3c. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Although the boundaries to the tolerance-zone in 

Fig. 2 limit the rotation of the MSP of the entire pro-

file to ŧ/ AB  (see section 3), the boundaries for the 
generic arc-segment in Fig. 3a provide no limit 
whatever to its rotated location about local origin O, a 
property that corresponds to the collective unlimited 
tangential translated locations of the approximating 
line-segments in Fig. 3a. Therefore, the 3D T-Map 
primitive for the arc-segment is formed by extruding 
the hatched area in Fig. 3c in the orthogonal direction 
to the exey-plane, i.e., in the Cartesian θ′-direction 
(Fig. 3d). The result is an open right rhombic prism 
with one pair of opposite cylindrically rounded edges 
that possess C1-continuity with the adjoining planar 
surfaces. Since the prism and cylindrical shells have a 
common axis, we call this combined T-Map shape a 
‘cylism’. 

4.2  T-Map primitive for other sizes of the generic 
arc-segment 

Certainly there are manufacturing variations of 
the arc-slot in Figs. 1 and 2 for which all arc-segments 
would be further inward or outward from the MSP. To 
determine the impact of this fourth variable (section 
3) for size on the T-Map primitive, the generic arc and 
tolerance-zone boundaries in Fig. 3a are redrawn in 

Fig. 4a to include such an arc A' B'  (long-and-short 
dashed line); it is larger than its MSP by the amount 
ΔF. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Tangent line-segments to arc A' B'  may only 
translate radially outward by the amount ŧ/2 – ΔF, but 
they can translate inward by ŧ/2+ΔF, –ŧ/2≤ ΔF≤ ŧ/2, so 
generating several sets of parallel lines separated by ŧ, 
in the same manner used to construct Fig. 3b. The 
Boolean intersection of a continuous array of limiting 

parallel tangents around arc A' B'  generates the 2D 
T-Map primitive (hatched region) in Fig. 4b. Just as in 
Fig. 3c, each point in this hatched area of the T-Map 
space represents one allowable perfect-form transla-
tional displacement in Fig. 4a of the arc of increased 
size, and the entire area corresponds to all of its al-
lowable translated locations. Two examples are the 
translated locations C′ and D′ (dotted arcs in Fig. 4a) 
which are represented with corresponding points C′ 
and D′ in Fig. 4b. 

Once again, there is no limit to rotation of the 

larger-sized arc A' B'  about O, so its 3D T-Map 
primitive is also formed by extruding the hatched area 
in Fig. 4b in the Cartesian θ ′-direction orthogonal to 
the exey-plane. The result is an asymmetrical open 
right ‘cylism’ with one pair of opposite cylindrically 

Fig. 4  (a) A profile (long-and-short dashed arc) for the 
generic arc-segment which is larger than the MSP by ∆F; 
two perfect-form variations C′ and D′ (dotted arcs);
(b) Its 2D T-Map primitive 

Fig. 3  (a) The middle-sized profile for a generic 
arc-segment (dashed-lined arc) in the (exaggerated) 
tolerance-zone that is specified with the profile tolerance 
ŧ; two perfect-form variations C and D (dotted lines); (b) 
The approximated 2D T-Map; (c) The 2D T-Map with a 
continuous boundary; (d) The 3D T-Map primitive 
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rounded edges. One rounded edge possesses 
C1-continuity with the adjoining planar surfaces, but 
the other may have C0-continuity (e.g., the ‘cylism’ 
formed from the shape in Fig. 4b) or C1-continuity, 
depending on the value for ΔF and the included angle 
of the arc. 

4.3  T-Map primitive referred to a different 
origin: the shear matrix 

When comparing with Fig. 3, it is clear that the 
local coordinate frames in Fig. 2 for the four 
arc-segments of the arc-slot have origins at distinct 
points O, R, and S. Yet, to obtain the Boolean inter-
section of the four T-Map primitives, all arcs must be 
represented in the same coordinate frame. The need, 
then, is to transform any arbitrary allowable dis-
placement of a profile arc-segment i (i=1, 2, 3, 4), 
represented in its local reference frame Oxiyi (Figs. 3a 
and 4a), to the equivalent representation in a global 
reference frame Gx′y′ (Fig. 5a). 

Allowable feature deviations from a theoretical 
location are two or more orders of magnitude smaller 
than corresponding dimensions (see (Davidson and 
Shah, 2012) for a discussion of exceptions). Conse-
quently, they may be treated as differential quantities, 
and they combine and transform with the same prop-
erties as kinematic velocities. This connection to 
kinematics permits relationships among deviations 
(small displacements) to be represented with a 
three-link serial linkage that carries a moveable lam-
ina. There are two identical and juxtaposed laminae in 
Fig. 5a, and they each contain the following etched 

features: the 50° profile arc-segment AB  (dashed 
line), local coordinate frame origin O, global coor-
dinate frame origin G, link OB, and pole P. 

The moveable lamina is initially coincident with 
the fixed one, i.e., with the dashed-lined representa-

tion for arc AB  and length OB. It is then displaced by 
a small amount that is represented in the Oxiyi-frame 
both with translation vector eO and (small) rotation θ. 
At this displaced location of the moveable lamina, 

length OB is shown with a solid line and arc AB  with 
a dotted line. Points P on both laminae are coincident, 
so P is the pole, or invariant point, for displacement 
(eO, θ). 

Note that, to provide a compact layout to Fig. 5, 
angle θ (direction CW) and values for components e′xi 
and e′yi of displacement are all negative. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From kinematics, small displacements at two 

points O and G on a moving lamina are related by 
 

,G O OG e e e                            (1) 

 
in which eOG=θ c (Fig. 5) is the small displacement 
of G relative to O, i.e., as perceived by an observer at 
O and in fixed frame Oxiyi. Relative displacement eOG 

is directed at right angles to OG  in a sense consistent 
with θ, and with the sense and direction for the cor-
responding angular displacement of the moving 
lamina (Fig. 5b). Of course, to effect the addition in 
Eq. (1), all three vectors must be represented in the 
same frame of reference. Typically, Eq. (1) is applied 
(Uicker et al., 2010) with all vectors represented in 
fixed frames of reference that have their coordinate 
axes parallel to those in Oxiyi, and the origin of each 
such frame is instantaneously coincident with one 
labeled point of the linkage. Instead, however, we 
choose to represent the vectors in frames that are 
parallel to the global Gx′y′-frame (Fig. 5a), but usu-
ally have distinct origins. This requires first repre-
senting the vectors eOi in rotated local x′iy′i-frames 
(i=1, 2, 3, 4) that have been rotated to be parallel to 
the global Gx′y′-frame (Fig. 5a); the resulting vectors 
e′Oi may then be used in e′G=e′O+e′OG to relate  

Fig. 5  (a) A middle-sized arc-segment at its theoretical 
location (dashed-lined arc) and at an (exaggerated) al-
lowable small displacement (dotted arc) that is repre-
sented both in its local coordinate frame Ox1y1 and global 
frame Gx′y′ located at general point G; (b) The extracted 
vector triangle for small displacements 
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displacements. The first two scalar equations in the 
transformation 

 

T

1 0 C S 0

0 1 S C 0

0 0 1 0 0 1

xi y i i xi

yi x i i yi

xi yi

e c e

e c e

e e

 
 

 



          
                
              
    SR

     (2) 

 
represent both operations, and the third equation 
acknowledges that small rotation θ is the same eve-
rywhere on the moving lamina (Note that Cϕi=cosϕi, 
etc.). 

By not combining the matrices in Eq. (2), we 
preserve the uncoupled operations of rotation of each 
vector eOi to its equivalent e′Oi, represented by the 
rigid-body rotation R, from the small-displacement 
relation in Eq. (1), which is represented exclusively 
by the matrix S and its corresponding vector triangle 
(e.g., Fig. 5b). An important consequence of this 
equivalence between Eq. (1) and matrix S is that S 
may be used only to transform information in Eq. (1) 
between frames that have distinct origins but all 
corresponding axes parallel, such as between the 
Ox′iy′i- and Gx′y′-frames in Fig. 5. 

The coupling of a translation e and rotation θ in 
matrix S causes shear of the right ‘cylismic’ T-Map 
shapes, which are described in sections 4.1 and 4.2 
(e.g., Fig. 3d), to oblique ‘cylisms’ in which the 
central axis has the direction-ratios ex:ey:θ′::cy:cx:d/2 
and in which all cross-sections parallel to the 
exey-plane in a T-Map are preserved. Typical cross- 
sections are the hatched regions in Figs. 3c and 4b. 

Since the shear matrix S in Eq. (2) is a kinematic 
transformation, angle θ has no units. Therefore, when 
S is used in Eq. (2) to transform coordinates of points 
(eO , θ ′) of a T-Map from a rotated local frame (e.g., 
the Ox′iy′i-frame in Fig. 5a) to a global frame Gx′y′, 
angle θ must first be extracted from θ′=θd/2 (the end 
of section 3). As a result of this relation, S may be 
used to transform both points (eO, θ′) of the T-Map for 
a line-profile and small displacements (eO, θ) of the 
arc-segment, between any two coordinate frames 
having distinct origins but all corresponding axes 
parallel. 

It is helpful to note that shear matrix S may also 
be used to transform points of an entire T-Map from 

one global frame (e.g., the Gx′y′-frame in Fig. 5a) to 
another, say the Hx′y′-frame (not shown), that has a 
distinct origin but axes parallel to the first. See the end 
of section 5.2. 
 
 
5  Line-profile example: the arc-slot in Fig. 1a 
 

The MSP of the arc-slot in Figs. 1a and 2 is 
redrawn in Fig. 6 showing its decomposition into the 
four arc-segments 1, 2, 3, and 4. The local coordinate 
frames Oxiyi (i=1, 3), Rx2y2, and Sx4y4, are also shown 
at the respective local arc-centers for these segments 
and, in each case, with the y-axis lying in the plane of 
bilateral symmetry for the arc-segment.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the two parts in Fig. 1 are assembled, one 

important design requirement is that the pin RS  of the 

adjusting-link not bind over the entire arc RS  of the 
casting. Consequently, we have chosen the 
Rx′y′-frame as an important global frame of reference 
in which to describe the T-Map of the entire 
line-profile; its x′-axis is chosen to align with the 
center distance between pins of the adjusting link 
when it is at the lower end (R) of the slot. This 
line-profile T-Map would be used in a tolerance loop 
that also would include (a) the size, position, and 
orientation tolerances for the hole at O in the casting, 
and (b) the size, relative position, and orientation 
tolerances for the pins on the adjusting-link. The same 

Fig. 6  Global Rx′y′- and Pxy-frames for the arc-slot in 
Fig. 1a which has been decomposed into four arc-
segments, each with its local reference frames xiyi and x′iy′i
and its 2D T-Map primitive. The angles ϕi shown are for 
global frame Rx′y′ 
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tolerance-loop would occur with a radial alignment of 
a global x′y′-frame having its origin at point S. 

Of course, the local x′iy′i-frames (i=1, 2, 3, 4) in 
Fig. 6 are obtained from the local xiyi-frames with the 
rotation matrix R in Eq. (2). Note that, to be consistent 
with Eq. (2), the values for ϕi, cxi, and cyi in R and S 
must be chosen in the following manner: angle ϕi is 
measured from the global frame of interest (either 
Rx′y′ or Pxy in Fig. 6) to the local xiyi-frame, vector c 
is directed from the local to the global origin, and cxi 
and cyi are projections of this vector c onto the global 
axes. The 2D T-Map primitives are shown in Fig. 7a 
for the four arc-segments. 

5.1  3D T-Map for the MSP in global frame Rx′y′ 

When a line-profile is part of a tolerance loop for 
which a worst-case tolerance analysis is desired, it is 
the 3D T-Map for the MSP that is required for the 
analysis because the positional and orientation 
deviations are greatest for this size (section 5.1 in 
(Davidson and Shah, 2012)). Further, the functional 
requirement for a profile is often constructed from 
position and orientation requirements, rather than 
from requirements for size deviations. Therefore, we 
first confine attention to the 3D T-Map for the MSP 
for the arc-slot in Fig. 1a. Further, from the functional 
requirements for an assembly of the two parts in 
Fig. 1 (section 5), we choose, as a practical example, 
to formulate this T-Map in global frame Rx′y′. 
T-Maps for larger and smaller sizes of the line-profile 
will be addressed in section 5.3. 

The 2D primitives for all four arc-segments are 
shown in Fig. 7a arranged relative to an xy-frame that 
is aligned with the axis of symmetry for each. Then, 
in Fig. 6, they are separated, and each one is shown 
deployed around the profile with an orientation and 
alignment that is consistent both with its own local 
xiyi-frame and the single xy-frame in Fig. 7a.  

To construct the T-Map in Rx′y′ for the arc-slot 
in Figs. 1a and 2, values for ϕ, c′x, and c′y are identi-
fied from the five coordinate frames (Rx′y′ and 
xiyi-frames, i=1, 2, 3, 4) and the geometry shown in 
Fig. 6. The values are listed in Table 1 by using the 
rules established at the end of section 5. These values, 
when used in matrices R and S in Eq. (2), constitute 
Step 3 in the procedure described at the end of section 
4. The geometric functions required in the procedure 
are accomplished on the T-Map primitives with the 

ACIS software (Spatial Co., 2012) and can be keyed 
to the steps listed in section 4: extrusion of the 2D 
primitives in Fig. 7a to form right cylinders and 
cylisms; rotation R and shear S of these to form the 
operand T-Map primitives (oblique cylinders or 
‘cylisms’), all in one global reference frame Rx′y′; and 
finally the Boolean intersection of the operands to 
form the T-Map in Rx′y′ for the entire arc-slot. The 
result is the 3D hypersection shown in Fig. 8 com-
prising segments of just two circular cylindrical 
shells: a right-circular one formed from the T-Map 
primitive for arc-segment 2 of the arc-slot, and an 
oblique one formed from arc-segment 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

Since c′x2=c′y2=0 (Table 1), the 2D T-Map 
primitive for arc-segment 2 is not sheared, and so, 
remains a right circular cylinder with axis Oθ ′ in the 
T-Map space. The other cylinder is oblique and 
derives from arc-segment 4. The direction ratios for 

Fig. 7  2D T-Map primitives for the arc-segments of the 
curved slot in Figs. 1a and 2, the dashed lines (rounded 
rhombus) for both arcs centered at O and the solid lines 
for the two arcs at R and S; (a) For the MSP;  (b) For arcs 
1, 2, and 4 of an arc-slot larger than the MSP by ΔF 
 

Table 1  Values to formulate R and S for the T-Map 
represented in global frame Rx′y′ 

Arc-segment ϕ (°) c′x (mm) c′y (mm) 

1 115 68.00 0 

2 0 0 0 

3 115 68.00 0 

4 230 24.29 –52.09 
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its axis may also easily be obtained from the values in 
Table 1, i.e., cy:cx:d/2::52.09: 24.29:28.74. Since the 
values for c′x and c′y are the same for arc-segments 1 
and 3, their T-Map primitive is a single oblique 
cylinder in Rx′y′ that is doubly traced. Recalling that 
d/2=68 sin25°=28.74 mm (Fig. 1a and the penultimate 
paragraph of section 3), the direction ratios for its 
common axis are e′x:e′y:θ′::cy:cx:d/2::0:68.00:28.74, 
indicating that the axis lies in the e′yθ′-plane of the 
T-Map. After Boolean intersection, the doubly traced 
cylinder from arc-segments 1 and 3 is trimmed away, 
its only remnants being two portions of the circular 
edge of diameter ŧ in the exey-plane and the two 
surface-lines shown in Fig. 8. The two lines, one in 
front and the other hidden, represent the tangency of 
planes from the ‘cylisms’ for segments 1 and 3, after 
their extrusion and shear from the dashed lines in 
Fig. 7a. 

The dominance of arc-segments 2 and 4 in con-
trolling displacements of the MSP in Fig. 2 may also 
be verified intuitively. Suppose that arc-segments 1 
and 3 were removed from the profile, so that the pro-

file were defined only by the bar RS  and two rigidly 
attached semicircular cams, one at each end. These 
cams would provide the entire array of constraints 
experienced by the complete line-profile in Fig. 2 
because the arcs 2 and 4 are semicircles. True, for 
radial translated locations within the 50 deg arc for 
segments 1 and 3, a profile variation (MSP or one of 
different size) would also touch a boundary-arc of the 
tolerance zone for segment 1 or 3, but it would add no 
additional constraint. This touching corresponds to 
the remnant circular edge in the T-Map for arc- 
segments 1 and 3. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 

When the 3D hypersection T-Map is created for 
a reference frame having its origin at a general loca-
tion, the shear matrix S induces coupling between θ ′ 
and coordinates ex and ey of the T-Map, so amplifying 
the values of ex and ey that would be used in a toler-
ance accumulation (stackup) for an assembly. This 
amplification is important in practical applications, 
such as the radial variation e′x through point R (Fig. 3) 
in the assembly of the two parts in Fig. 1. It is simi-
larly important when applying T-Maps to tolerance 
accumulation with features other than profiles. For 
instance, for planar features, the same shearing of a 
canonical T-Map is required when a stackup includes 
a part having an offset between two planar faces that 
are included in the tolerance loop (e.g., (Davidson et 
al., 2002)). 

5.2  3D T-Map for the MSP in the canonical global 
frame Pxy 

When the T-Map for a line-profile is constructed 
with a reference frame having its origin at pole P, the 
displacements ex, ey, and θ are uncoupled because, for 
the profile rotated to its limit, θmax, no translation at P 
occurs. The pole P as origin is sufficient to identify the 
canonical frame of reference for the T-Map when the 
line-profile does not exhibit a bilateral line of 
symmetry. However, when there is such a line, one of 
its coordinate axes should be aligned with the axis of 
symmetry. Consequently, we have chosen the 
canonical Pxy-frame in Fig. 6 with its origin at the pole 
(see section 4.3 and step 5 in section 4) for the arc-slot 
and axis Px aligned with the axis of bilateral symmetry. 

Construction of the 3D hypersection for the MSP 
in frame Pxy follows the same steps (section 4) as 
those used in constructing the T-Map in the 
Rx′y′-frame (section 5.2). The revised values for ϕ, cx, 
and cy are listed in Table 2 for the four arc-segments 
comprising the line-profile. Note that all ϕi-values are 
25° less than those in Table 1 for all arc-segments, so 
indicating that the matrix R in Eq. (2) causes the ro-
tated local frames of reference (not shown in Fig. 6) 
to be aligned properly with the Pxy-frame. 

 
 
 
 
 
 
 

Table 2  Values to formulate R and S for the T-Map 
represented in global frame Pxy 

Arc-segment ϕ (°) cx (mm) cy (mm) 
1 90 61.63 0 
2 –25 0 28.74 
3 90 61.63 0 
4 205 0 –28.74 

 

Fig. 8  Boolean intersection of the T-Map primitives 
which forms the 3D hypersection T-Map in global frame 
Rx′y′ for the MSP of the arc-slot in Fig. 1a. The coordi-
nate values correspond to the MSP rotated to its two 
limits in the tolerance-zone, e.g., the CCW limit shown in 
Fig. 2. The diameter of the circular edge is ŧ 
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The 3D hypersection T-Map, created for the 
MSP in the Pxy-frame (Fig. 9), is once again formed 
from the intersection of two oblique circular cylin-
ders, now with both axes in the exθ′-plane. These 
correspond to the T-Map primitives from 
arc-segments 2 and 4, and, since the direction ratios 
(Table 2) are ex:ey:θ

 ′::cy: cx:d/2:: ±28.74:0:28.74, the 
axes are at right angles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
After intersection, these T-Map primitives form 

the 3D hypersection shown in Fig. 9. It is a square 
elliptic globe that is inscribed in a sphere of diameter 
ŧ; it is one form of generalized Archimedean globe 
(Appendix A and Apostol and Mnatsakanian, 2012). 
The doubly traced cylinder from arc-segments 1 and 3 
is only present as two portions of the circular edge in 
the exey-plane and the two parallel surface-lines that 
lie in the ex θ

 ′-plane and at 45° to the ex- and θ ′-axes.   
Often the location of pole P is not known a 

priori, as it is for the symmetrical arc-slot in Figs. 1a, 
2, and 6. For such line-profiles, transformation S may 
be applied to that point (e′x, e′y, θ′max) of the complete 
T-Map for which coordinate θ′ is greatest. Then, since 
P is stationary, the outcome coordinates in Eq. (2), 
(ex, ey, θ), can be set to (0, 0, θ). As one example, when 
the coordinates at a θ′-limit in Fig. 8 are substituted in 
Eq. (2), the relation 
 

0 1 0 0 227

0 0 1 0 106

0 0 1 0 0087
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=                   (3) 

 

results. Of course, to use matrix S in Eq. (2) properly, 

angle θmax must be obtained from θ′=θd/2, i.e., 0.250 
=28.74θ, where d/2=28.74 mm is the characteristic 
length for the line-profile. The results are (cx, cy)= 

(–12.15, 26.05) mm. When locating the pole P with 
this procedure, it is important to note that the T-Map 
will then be represented in a global Px′y′-frame (not 
shown in Figs. 2 and 6) with its axes parallel to those 
in frame Rx′y′ because matrix S is confined solely to 
translational changes in location of origin. An 
additional rotation about the θ′-axis is required for its 
representation in the canonical frame Pxy. 

5.3  4D T-Map for the line-profile in the canonical 
global frame Pxy 

The six steps listed in section 4 may also be 
modified appropriately for construction of 3D hy-
persections of the 4D T-Map of a line-profile for in-
crements in size larger or smaller than the MSP by 
any amount ΔF≤ŧ/2. The first modification to the 
steps is to use the 2D T-Map primitives from Fig. 7b 
that exhibit less symmetry than those in Fig. 7a. When 
these are deployed at the individual arc-segments 
around the profile (Fig. 10), it is necessary to recog-
nize that larger size of the entire profile corresponds 
to a decrease in radius for the concave arc-segment 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The complete 4D construction is undertaken by 

using sufficient values of allowable increments ΔF in 
size to identify all the changes in morphology (num-
ber and orientation of both faces and cylindrical 
shells) that occur over the allowable size range –ŧ/2≤ 

Fig. 10  The same geometry as in Fig. 6, but now the 
deployed 2D T-Map primitives are for a profile size ΔF
larger (long-and-short dashed curve) than the MSP 
(Fig. 7b) 

Fig. 9  T-Map of Fig. 8 for the MSP of the arc-slot in 
Fig. 1a, now transformed to the canonical global 
Pxy-frame. Both circular edges have diameter ŧ   
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ΔF≤ŧ/2. Of course, all such 3D T-Maps must be 
formed in steps 3 and 4 with the same global frame 
that is used for the MSP T-Map, e.g., global frame 
Rx′y′ or Pxy. An example of a 4D T-Map is shown in 
Fig. 11; it is represented in frame Pxy. Careful 
sketching of a larger sized profile within the bounda-
ries reveals that arc-segments 1 and 3 now provide 
constraint because contact of the larger profile at the 
inner boundary at segments 2 or 4 does not occur. 
Therefore, as size increases from the middle size, 
planar faces evolve from the tangent lines to cylinders 
in the T-Map for the MSP (e.g., in Fig. 8). 

The practical use for any 4D T-Map for a 
line-profile is in conducting a statistical tolerance 
analysis, because each point in the 4D T-Map con-
tributes to the sample-space of possible deviations for 
the profile. 

 
 

6  Conclusions 
 

This paper introduces a new method for con-
structing T-Maps for line-profiles that are to be 
manufactured on rigid parts. A T-Map represents a 
designer’s specified limits to the allowable geometric 
variations to the profile manufacturing. The new 
method constitutes a decomposition of the profile into 
joined segments, the formation of a T-Map primitive 
(a 3D solid) for each one in a local coordinate system, 
the transformation of all of these to different orienta-
tions and shapes in a common reference frame, and 
the Boolean intersection of these transformed T-Map 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

primitives to obtain the T-Map for the entire profile. 
All of these geometric operations are normally found 
in computer-implementations of computer-aided 
geometric design (CAGD). 

Although there are other ways (He et al., 2013) 
to arrive at Eqs. (1) and (2), in this paper we have used 
a kinematic equivalent to represent the allowable 
displacements of the perfect-form profile within its 
tolerance-zone.  

The authors use an arc-slot profile (for adjust-
ment) as an example to explain the procedures of 
construction. Certainly, this is a special case, but the 
procedures in the body of the paper are general and 
apply to any shape of profile that is formed from 
circular arc-segments: closed or open, and concave or 
convex. Further, current work will expand this 
method to line-profiles containing free-form seg-
ments, thereby providing potential for its use in gen-
erating T-Maps for line-profiles of any shape. 
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Appendix A: an Archimedean globe and 
dome 
 

A circumsolid is any geometric shape that cir-
cumscribes a sphere. An Archimedean globe is a 
circumsolid formed as the union of two or more cir-
cular cylinders for which the axes are coplanar (the 
exθ′-plane in Fig. 9) and intersect at one point. Two 
Archimedean domes are formed when an Archime-
dean globe is bisected by its central plane that con-
tains the cylinder axes. The square elliptical globe in 
Fig. 9 is formed by a dilatation in the ey-direction of 
an Archimedean globe, so causing the two circular 
cylinders to become elliptic in cross-section and the 
curved edges of the solid to become circles. More 
properties, figures, and formulae about generalized 
Archimedean domes and globes may be found in 
Chapter 5 of Apostol and Mnatsakanian (2012). 

 
 

中文概要 
 

题 目：弧线段 T-Map 布尔交运算获取线轮廓度 T-Map

的方法研究 

目 的：为使零件在设计阶段实现公差的自动分配，研究

线轮廓度在计算机中的表达模型。 

创新点：1. 提出一种新的构建线轮廓度公差 T-Map 图的方

法；2. 用运动学等效的方法表示理想轮廓公差域

的允许偏差。 

方 法：1. 将零件轮廓分解成多段，然后分别为每段生成

一个实体模型 T-Map（图 6 和 7）；2. 利用布尔

交运算将所有分段 T-Map 合成一个完整线轮廓

度的 T-Map（图 8）；3. 以弧形短槽为例，演示

创建线轮廓度的方法步骤。 

结 论：将弧形短槽轮廓分成多段，先实现每一段的

T-Map，再利用布尔交实现整体线轮廓度公差的

T-Map 图，证明该方法在构建任意轮廓的线轮廓

度公差上的有效性。 

关键词：几何公差；线轮廓度；公差模型；公差带；布尔

交 

 


