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Abstract:    As one of the tools for surface analysis, morphological operations, although not as popular as linear convolution 
operations (e.g., the Gaussian filter), are really useful in mechanical surface reconstruction, surface filtration, functional simulation, 
etc. By introducing the slope transform originally developed for signal processing into the field of surface metrology, an analytic 
capability is gained for morphological operations, paralleling that of the Fourier transform in the context of linear convolution. 
Using the slope transform, the tangential dilation is converted into the addition in the slope domain, just as by the Fourier transform, 
the convolution switches into the multiplication in the frequency domain. Under the theory of the slope transform, the slope and 
curvature changes of the structuring element to the operated surface can be obtained, offering a deeper understanding of mor-
phological operations in surface measurement. The analytical solutions to the tangential dilation of a sine wave and a disk by a disk 
are derived respectively. An example of the discretized tangential dilation of a sine wave by the disks with two different radii is 
illustrated to show the consistency and distinction between the tangential dilation and the classical dilation.  
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1  Introduction 

 
Linear convolution and morphological (nonlinear) 

operations are two types of operations that have wide 
applications in the field of surface metrology. While 
linear convolution is a good approximation to the 
blurring in optical systems, the morphological dila-
tion operation resembles the tactile scanning process 
of some measurement instruments, such as the atomic 
force microscope (AFM) and the coordinate meas-
urement machine (CMM). Another prime example is 
the Gaussian filter and morphological filters used for 
the evaluation of surface textures, e.g., the separation 

of surface roughness, waviness and form error. The 
Gaussian filtration is essentially a moving smoothing 
process created by convolving the measured surface 
data with the Gaussian weighting function specified 
by a given cutoff wavelength (ISO, 2011). Morpho-
logical filtration is usually obtained by rolling balls 
(disks) with a given radius upon a surface (profile) 
and taking the locus of the center of the balls (disks) 
(ISO, 2012). 

Well-established computational and analytical 
methods are available for linear convolution, among 
which the Fourier transform is the most important one. 
It offers a dual description of the signal frequency by 
transferring the input signal from the physical-space 
(or time) into the frequency-space and converts the 
computationally expensive convolution in the spatial 
(or time) domain into the simple multiplication in the 
frequency domain (Bracewell, 1999). More im-
portantly, the convolution operation can be explained 
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as the frequency suppression in physics. It is of pro-
found practical significance in many engineering 
disciplines, including surface metrology. 

Morphological operations are an alternative 
method of combining two datasets. They aim to ex-
tract the geometrical structure of a surface data by 
matching it with small patterns (called structuring 
elements) at various locations of the data. By varying 
the shape and size of structuring elements, it can ex-
tract useful information of the shape of different parts 
of the surface data and their interrelation (Heijmans, 
1995). Although morphological operations are 
straightforward in their spatial processing, more in-
vestigations are required to further find out how the 
structuring element is changing the original surface, 
just like the way that the weighting function is 
changing the frequency components of the surface 
data in a convolution operation. In this paper, we post 
our initial investigation on the slope transform, based 
on the work of Dorst and van den Boomgaard (1994) 
and Maragos (1995). It will be shown that the slope 
transform can provide an analytical ability for mor-
phological operations, as is the Fourier transform to 
convolution operations in linear theory. This trans-
form approach will offer a theoretical insight into 
morphological operations and initiate more potential 
uses in the field of surface measurement. 

 
 

2  Linear convolution and morphological  
operations 

2.1  Linear convolution 

Linear convolution is a mathematical operation 
of combining two datasets to form a third one. The 
convolution of two continuous functions f(x) and g(x) 
is an integral that expresses the amount of overlap of 
g(x) as it is shifted over f(x): 

 

( ) ( ) ( ) ( )d .f x g x f g x  



            (1) 

 
Linear convolution is frequently observed in 

surface measurement as filtration techniques for sur-
face roughness assessment. g(x) is usually called the 
weighting function. As g(x) is moving across the 
measured surface f(x), it tends to suppress high  

frequency/short wavelength components of f(x) and 
produce a smoothed reference surface f(x)*g(x) in 
which the original surface f(x) is compared to gain the 
roughness surface. Refer to Fig. 1 for an illustration. 
The weighting function works as a filter kernel and 
usually takes the form of symmetry with the biggest 
weight in the center and the smallest weight in the two 
ends. Thus, the convolution at a specific position is 
mainly determined by the central part of the surface 
portions and less effected by the far ends. This ex-
plains why the convolution is also called the moving 
weighted average. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the spatial domain, convolution, although 

only needing one basic step, requires a number of 
multiplications to obtain one convolved point. See 
Path A in Fig. 2. In practice, the convolution theorem 
is employed for computation, which states that the 
Fourier transform of a convolution is the product of 
Fourier transforms. The surface f(x) and the filter 
kernel g(x) are first transformed to the frequency 
domain by the Fourier transform to obtain their fre-
quency spectrums F(ω) and G(ω). Their frequency 
spectrums are then multiplied, producing a combined 
result, F(ω)×G(ω). The transmission characteristic of 
the filter kernel determines which frequency bands 
can get through and which are suppressed. Finally, the 
multiplication F(ω)×G(ω) is transformed back by the 
inverse Fourier transform to achieve the convolved/ 
filtered surface. This routine is of supreme efficiency 
and involves the following three steps, see Path B in 
Fig. 2. Denote the Fourier transform by   and the 

inverse Fourier transform by 1 . 

*

Window function

Measured profileSmoothed profile
(reference)

Roughness profile

Window function

*

Fig. 1  Filtering by the linear convolution
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Step 1:      ( ) ( ),f x F     ( ) ( );g x G       (2) 

Step 2:     ( )( ) ( ) ( );f g x F G                    (3) 

Step 3:    1( )( ) [ ( ) ( )].f g x F G                 (4) 

 
 
 
 
 
 
 
 
 
 
 
 

2.2  Morphological operations 

Morphological operations are an alternative way 
of combining datasets. Dilation, erosion, opening, and 
closing are four basic morphological operations in 
mathematical morphology, which form the founda-
tion of mathematical morphology (Serra, 1982).  

The dilation of a function f(x) by the structuring 
function (element) g(x) is given by 

 
( )( ) [ ( ) ( )],V

u
f g x f u g x u                 (5) 

 
where V denotes the supremum (the least upper 
bound). It indicates that the dilated value at a given 
ordinate x  is the maximum value of f(x) in the win-
dow defined by g(x) when its origin is at x  (Soille, 
1999). 

Erosion is the morphological dual to dilation. 
The erosion of f(x) by g(x) is given by 

 

       ( ) ( ) ( ) ,
u

f g x f u g u x                  (6) 

 
where Λ means the infimum (the least lower bound). 
In other words, the eroded value at a given ordinate x 
is the minimum value of f(x) defined by g(x) when its 
origin is at x. 

The combinations of dilation and erosion yield 
opening and closing. The opening of f(x) by g(x) is 
given by the erosion of f(x) by g(x) followed by the 
dilation: 

 ( )( ) (      ) ( ).f g x f g g x                  (7) 

 
The dual operation of opening is closing. The 

closing of f(x) by g(x) is given by applying the dila-
tion of f(x) by g(x) followed by the erosion: 

 

 ( )( ) ( )     ( ).f g x f g g x                  (8) 

 
In contrast to widely used linear convolution 

techniques, although may not universally recognized, 
morphological methods found many of their applica-
tions in the field of surface measurement (Lou et al., 
2013b). To measure a surface by tactile instruments, 
traversing over workpiece surfaces by probe tips is 
the very initial application of morphological opera-
tions. See Fig. 3 as an illustration. This process can be 
explained in terms of morphological operations: the 
workpiece surface (as the input function) is dilated by 
the probe tip (as the structuring function). The traced 
surface is the dilation result. Obviously the traced 
surface is not identical to the real workpiece surface, 
but a dilated one. Thus, it always wants to correct the 
traced surface in order to recover the real workpiece 
surface. As Fig. 4 illustrates, the reconstruction is 
done by rolling an ideal tactile sphere (also with ra-
dius r) over the dilated surface from below. This 
process is exactly an erosion operation. The traced 
surface (the input function), is eroded by the probe tip 
(the structuring function) to generate the recovered 
workpiece surface. However, the reconstruction is not 
perfect. Although peaks are nicely reconstructed, 
parts of the valley features are not yet fully recovered. 

Morphological opening and closing have more 
uses in surface measurement. They appear as mor-
phological filters which can suppress valleys and 
peaks on the surface respectively (ISO, 2006). Their 
combined effects, alternating symmetrical filters, 
remove both surface peaks and valleys. Thus the 
resulted reference surface travels through the inside 
of the original surface. In this aspect, it resembles the 
“mean” surface generated by convolution techniques. 
Morphological operations were successfully em-
ployed to extract topographical features from engi-
neering surfaces (Lou et al., 2013c). They can also 
give an approximation to the form of conformable 
surfaces in a functional sense of sealing (Malburg, 
2003). Moreover, morphological operations were 
used to simulate the interaction of two mating  

Path B Surface
Filter 
kernal

Filtered 
surface

Surface 
spectrum

Filter 
spectrum

Filtered 
spectrum

*Convolution

×
Multiplication

Fourier 
transform

Inverse Fourier 
transform

Path A Step 1

Step 1

Step 2

Step 3

Spatial 
domain

Frequency 
domain

Fourier 
transform

Fig. 2  Convolution and the Fourier transform
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surfaces by rolling a ball upon the underlying surface. 
The ball is sized to simulate the largest reasonable 
radius at a contact, e.g., peak curvature (Lou et al., 
2013a). 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It can be shown that the structuring element is 
modifying the shape of the original surface during the 
traversing process. As is already stated, valleys in 
Fig. 4 are partially cut off on its dilation and closing 
profiles. However, how the shape (including slope 
and curvature) is modified is still unclear. Just as the 
Fourier transform nicely explains the linear convolu-
tion as frequency filtering, a counterpart transform, 
called the slope transform, may help with studying 
shape changes induced by morphological operations. 

 
 

3  Tangential morphology 
 
The tangential dilation is extended from the 

classical morphological dilation with less restriction. 
It was first introduced by Dorst and van den Boom-
gaard (1994) to construct the basis of the slope  
transform.  

3.1  Tangential dilation 

Eq. (5) presents the definition of the classical 
dilation of two functions, which is the supreme of the 
vector addition. Take Fig. 5 as an example, where the 
input function f(x) represents a profile and the struc-
turing function g(x) is a disk. To compute the dilation 
at a given x , the center of the disk is placed at the 
abscissa x  and the disk g(x) is touching f(x) at the 
abscissa .u  Thus, the height of the dilated curve at x  
is: ( )( ) ( ) ( ).f g x f u g x u     At the touching 

point, f(x) and g(x) have a common tangent line. 
Therefore, the slope of f(x) and g(x) at the touching 
point is equal to: ( ) ( ).f u g x u    

 
 
 
 
 
 
 
 
 
 
 
 
 

The tangential dilation is a weak version of the 
classical dilation, which does not keep the supremum. 
To compute the tangential dilation of f(x) and g(x), 
first find the slope of f(x) at u , i.e., ( ).f u  Then find 

an abscissa v such that ( ) ( ).g v f u    Thus, the 

tangential dilation at the abscissa x u v   is: 

( )( ) ( ) ( ).f g x f u g v  


 

The tangential dilation is formally defined as 
 

 ( )( ) stat ( ) ( ) ,
u

f g x f u g x u   


            (9) 

 

where stat ( )
u

f u  means the stationary values of f(u):  

 

 stat ( ) ( ) | ( ) 0 .
u

f u f u f u                    (10) 

 

The relationship between the classical dilation 
and the tangential dilation is that the supremum of the 
tangential dilation is equal to the classical dilation, 
i.e., 

Workpiece
Traced surface

Fig. 3  Scanning of the workpiece surface by a tactile
probe tip 

Workpiece

Traced surface
Reconstructed surface

Fig. 4  Reconstruction of the workpiece surface

f(x)

g(x)

xxuO

x-u

(u, f(u))

(x, f(u)+g(x-u))

Fig. 5  Computation of the classical dilation and the tan-
gential dilation 
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( )( ) V( )( ).f g x f g x  


                     (11) 

 
While Eq. (11) reveals the link of the classical 

dilation and the tangential dilation, it also evidently 
suggests the differences between two operations. The 
later operation will yield overlapping regions in its 
dilated result where the curvature of g(x) is larger than 
that of f(x). Nonetheless, the former one only retains 
the supremum of the result, as if the overlapping 
(crossed-over) regions are trimmed off. Fig. 6 presents 
such an example. The parabola function f(x)=0.5x2+1 
is dilated by disks with radii 1 mm and 2 mm, respec-
tively. The dilation with disk radius 2 mm causes 
crossing-over while the 1 mm disk does not. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The erosion operation is similar to the dilation, 
but takes the infimum (greatest lower bound). How-
ever, it can be easily converted into the dilation by 
first flipping the input function f(x) followed by flip-

ping the result of the dilation ( ) ( ),f x g x


 where 

( )f x


 is the flip of  f(x). 

3.2  Slope and curvature changes of the tangential 
dilation 

As shown in Fig. 5, let the abscissa of the center 
of the structuring function g(x) be at x  and the ab-

scissa of the touching point of f(x) and g(x) be fx u  

and ,gx x u   respectively. It is obvious that the 

height of the tangential dilation function is the addi-
tion of the height of f(x) and g(x) at the touching point: 

( )( ) ( ) ( ).f gf g x f x g x  


                     (12) 

 
At the touching point, the slopes of f(x), g(x), and 

( )( )f g x


 coincide with each other: 

 

( ) ( ) ( ) ( ).f gf g x f x g x    


                  (13) 

 
This relationship clearly indicates that slopes are 

not modified by the tangential dilation. However, the 
point carrying that slope is transported by a distance. 
The curvature at the contact point is broadened, being 
the addition of those of f(x) and g(x) (Keller, 1991): 

 
( ) ( ) ( ),f f g gf g

R x R x R x                     (14) 

 
where Rf (x) denotes the curvature of f(x), and so on. 
 
 

4  Slope transform 

4.1  Slope transform and inverse slope transform 

Since the tangential dilation only parallelly off-
set the point carrying that slope, an input function 
with a constant slope will only be translated by a 
certain distance without changing its shape. These 
types of functions are planar functions eω:<ω, x>

 
with 

the constant slope ω, and it follows that: 
 

( )( ) [ ]( ),e g x e s g    


                     (15) 

 
where s[g] is the translation shift, depending on g. 
Planar functions e are called morphological eigen-
functions (Maragos, 1995). If an arbitrary function 
can be decomposed into a series of planar eigenfunc-
tions, then a tangential dilation can be constructed by 
the composition of these shifted eigenfunctions. 

To be more precise, given a function f(x), find 

the tangent plane at the point  , ( ) .x f x  The slope of 

this tangent plane is ( );f x   the tangent plane 

intersects the height axis at ( ) , .f x x  Thus, the 

intercept can be expressed as a function of the slope. 
Formally the slope transform of f at ω is defined as 

 

[ ]( ) stat ( ) , .
x

f f x x                    (16) 

H
ei

gh
t 

(m
m

)

Fig. 6  Tangential dilation of a parabola with disk radii 
1 mm and 2 mm 
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It transfers the function f(x) in the spatial domain 
to the function S[f](ω) in the slope domain. Con-
versely, given a slope function S[f](ω), the original 
function f(x) can be reconstructed by the inverse slope 
transform: 

 
( ) stat [ ]( ) ,f x f x


     .                 (17) 

4.2  Addition theorem 

It has been proved that the slope transform oc-
cupies a critical property, which makes it resemble 
the Fourier transform of the linear theory (Dorst and 
van den Boomgaard, 1994). The slope transform of 
the tangential dilation is the addition of the slope 
transforms: 

 
[ ]( ) [ ]( ) [ ]( ).f g f g    


            (18) 

 
This property enlightened an important percep-

tion into morphological operations. An arbitrary 
function can be invariably decomposed into a number 
of planar eigenfunctions, each of which corresponds 
to a point in the slope domain as the pair of the slope 
and the intercept of the eigenfunction. Thus, to 
compute the tangential dilation of f(x) by g(x), f(x) and 
g(x) are first transformed into the slope domain as 

[ ]( )f   and [ ]( ).g   Then the addition of 

[ ]( )f   and [ ]( )g  are transformed back to the 

spatial domain by the inverse slope transform, giving 

the result of ( )( )f g x


. See Fig. 7 for an illustration. 

Similar to the Fourier transform of the convolution, 
the slope transform of the tangential dilation involves  
 

 
 
 
 
 
 
 
 
 
 
 
 

the following three basic steps. Denote the inverse 

slope transform by 1 . 
 

Step 1:     ( ) ( ),f x F    ( ) ( );g x G         (19) 

Step 2:    ( )( ) ( ) ( );f g x F G     


             (20) 

Step 3:     1( )( ) ( ) ( ) .f g x F G   


           (21) 

 
Path A in Fig. 7 is a direct implementation of the 

tangential dilation in the spatial domain. Similar to 
the convolution operation, the computation of dilation 
of each point requires a number of additions and then 
takes the maximum. Following Path B, the dilation 
converts into the simple addition in the slope domain. 

The slope transform indicates that the intercept 
is a function of the slope. Thus, the addition in the 
slope domain reveals that the tangential dilation does 
not modify the slope, but only changes the intercept at 
the point carrying that slope. Going back to the spatial 
domain by applying the inverse slope transform, it 
means that the point is offset and the tangent plane of 
the dilated function at this point has the same slope as 
before but with a different intercept. The change of 
intercept is determined by the structuring function 
and also the slope at that point. 

 
 

5  Examples 
 

In surface metrology, structuring functions are 
usually circular, e.g., disks for profile data and balls 
for areal data. In the following examples, the profile is 
taken as the input function and the disk as the desired 
structuring function. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Path B Surface
Structuring 

function
Dilated
surface

Surface slope 
and intercept

Structuring 
function slope 

& intercept

Combined 
slope & 
intercept

Tangential 
dilation

+
Addition

Slope transform

Inverse slope 
transform

Slope transform

Path A Step 1

Step 1

Step 2

Step 3

Spatial 
domain

Slope
domain

+

Fig. 7  Morphological tangential dilation and the slope transform 
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5.1  Example 1: a sine wave dilated by a disk 

Given a sine wave profile f(x)=sin(x) and a disk 
2 2( )g x R x  with radius R, solve the dilated  

profile. 
Apply the slope transform to the sine wave: 

( ) stat[sin( ) ].
x

F x x     Then it follows: cos x =ω 

x =arccos(ω). Thus, F(ω)= 21  −ωarccos(ω). 

Apply the slope transform to the disk function: 

2 2( ) stat[ ].
x

G R x x     Then it has: 
2 2

x

R x




 

=ω
2

.
1

R
x




 


 Thus, it leads to: 

G(ω)= 21 .R   

In the slope domain, two transformed functions 

are added: 2 arcco( s( ) ) 1 ( )F G         
21 .R   The inverse slope transform carries the 

addition back to the spatial domain: 
 

2

2

( )( ) stat 1 arccos( )

1 .

f g x

R x


  

 

   
   



 

 
However, it is difficult to find the stationary 

points by solving   in the expression of x. Therefore, 
it is unable to obtain an analytic solution with the 
exact expression of the tangential dilation of the sine 
wave by a disk. Nevertheless, it will be illustrated in 
the following example that in certain cases such an 
analytic solution can be obtained. 

5.2  Example 2: a disk dilated by a disk 

Given a disk 2 2
1( )f x R x   with radius R1 

and another disk 2 2
2( )g x R x   with radius R2, to 

solve the dilated profile, which is expected to be a 
disk with the combined radius (R1+R2), namely the 
disk is expanded by R2 

in radius. 

As aforementioned, it has 2
1( ) 1F R    

and 2
2( ) 1G R   . 

Thus, in the slope domain, the tangential dilation 
becomes the addition of F(ω)+G(ω)= 

2
1 2( ) 1 .R R    Applying the inverse slope trans-

form: 2
1 2( )( ) stat[( ) 1 ],f g x R R x


      


 

then we can obtain: 

 
2

1 2 2 22
( )

1

x
R R x

R x

 


   


 with R=R1+R2, 

 
and thus, 
  

2
2 2 2

2 2 2 2

1
( )( ) 1 .

x
f g x R x R x

R x R x
      

 



 
This result verifies the expectation that the di-

lated disk is an expanded disk having a radius equiv-
alent to the sum of those of the input disk and the 
structuring disk. 

 
 

6  Discretization 
 

As indicated by Example 1 in Section 5, analytic 
solutions of the tangential dilation are not always 
possible. However, discretization solutions can be 
found. The discrete slope transform and inverse slope 
transform are given by the following formulas, re-
spectively (Dorst and van den Boomgaard, 1994): 

 

,

y
x Xx
y x y xy Y

x

 
                

                  (22) 

and 

1

.

Y
X xX
Y X Y XY y

X



                 

             (23) 

 
Eqs. (22) and (23) require derivatives with re-

spect to the variables. Thus, a derivative can be de-
termined with a specific form. For instance, if it takes 
the forward difference: [ ] [ ] [ 1],x i x i x i     then 

Eqs. (22) and (23) lead to: 
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 

          (25) 

 
Fig. 8 presents an example where a sine wave 

f(x)=0.5sin(2x) is tangentially-dilated by a disk with 
radius 0.5 mm. The tangential dilation is implemented 
by the discrete slope transforms. The transformed sine 
wave and disk in the slope domain are depicted in 
Fig. 9. The disk is observed as a hyperbola in the 
slope domain. The bold dot lines are the result of the 
addition of two transformed curves. The added result 
is then converted back to the spatial domain, yielding 
the dilated profile. In this example, the tangential 
dilation is equal to the classical dilation due to the fact 
that there are no crossed-over regions of the tangential 
dilation profile. However, as the disk radius grows, 
this problem can arise. Fig. 10 illustrates the tangen-
tial dilation of the same sine wave but with disk radius 
1 mm. It is evident that the region on the sine wave 
having a radius curvature smaller than the given disk 
radius will result in this problem occurring. This is 
definitely undesired because the dilation operation 
only keeps the supremum and the crossed regions 
should be trimmed off. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7  Conclusions and future work 

 
In contrast to linear convolution which is well 

studied and exploited, morphological operations are 
not fully understood and developed. By introducing 
the slope transform into the field of surface metrology, 
a deeper perception into morphological operations is 
gained. As the Fourier transform switches the con-
volution into the multiplication in the frequency do-
main, the slope transform converts the tangential 
dilation into the addition in the slope domain. As such, 
the slope and curvature changes caused by the struc-
turing element are revealed. The derivation of the 
analytical solutions to the tangential dilation of a sine 
wave and a disk by a disk are illustrated respectively. 
It is found that the analytic solution is not always 
available. The discretized tangential dilations of a 
sine wave by the disks with two different radii are 
presented. The result clearly shows that the supre-
mum of the tangential dilation is identical to the 

-1 -0.5 0 0.5 1

-2

-1

0

1

2

3

4

5

Gradient

In
te

rc
ep

t

Sine wave
Disk
Addition

Fig. 9  Addition of the slope transform of the sine wave and 
the disk 

H
e

ig
h

t 
(m

m
)

Fig. 10  Tangential dilation of the sine wave by a 1 mm
disk 

-3 -2 -1 0 1 2 3 4
-1

-0.5

0

0.5

1

1.5

2

2.5

Length (mm)

H
ei

gh
t (

m
m

)

Sine wave profile
Tangential dilation profile
Classical dilation profile

Fig. 8  Tangential dilation of the sine wave by a 0.5 mm
disk 



Lou et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2015 16(5):395-403 
 

403

classical dilation. However the tangential dilation 
tends to produce the overlapping regions, which is 
undesireable in practice. 

A key area of future research will be the inves-
tigation of the feasibility of the slope transform in real 
practice. If the crossing point can be located and the 
crossed regions trimmed off, the result of tangential 
dilation will be the same as that of the classical dila-
tion. Then the boosts of the slope transform can be 
envisioned. Another research target will be the areal 
extension of the tangential dilation and the slope 
transform. 
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中文概要 
 
题 目：基于坡变换的表面测量中的形态学操作理论探究 

目 的：通过引入坡变换，揭示表面测量中形态学操作的

本质。 

创新点：引入坡变换，将空间域的形态学膨胀操作转换为

坡域的加法操作，揭示结构元素对表面轮廓坡度

和曲率的改变。 

方 法：1. 基于坡变换理论，空间域的切膨胀操作对应于

坡域的加法操作（图 9）；2. 分析圆结构元素作用

于正弦波和圆的理论解；3. 用不同半径的圆结构

元素作用于正弦波，分析切膨胀和经典膨胀的相

同和不同之处。 

结 论：1. 坡变换将形态学操作从空间域转换到坡域，可

获取类似于傅立叶变换将卷积操作从空间域转

换到频域的分析能力；2. 切膨胀操作为经典膨胀

操作的上确界，但会产生重叠区域。 

关键词：形态学操作；坡变换；切膨胀；卷积；表面测量 

 
 

 


