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Abstract:    In research on damage identification, conventional methods usually face difficulties in converging globally and 
rapidly. Therefore, a fast in-time damage identification approach based on the Kalman filter and energy equilibrium theory is 
proposed to obtain the structural stiffness, find the locations of damage, and quantify its intensity. The proposed approach estab-
lishes a relationship between the structural stiffness and acceleration response by means of energy equilibrium theory. After im-
porting the structural energy into the Kalman filter algorithm, unknown parameters of the structure can be obtained by comparing 
the predicted energy and the measured energy in each time step. Numerical verification on a highway sign support truss with and 
without damage indicates that the updated Young’s modulus can converge to the true value rapidly, even under the effects of 
external noise excitation. In addition, the calculation time taken for each step of the approach is considerably shorter than the 
sampling period (1/256 s), which means that, this approach can be implemented in-time and on-line.  
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1  Introduction 
 
Highway sign support trusses are 3D assemblies 

of lightweight linear members, which make them 
efficient and cost-effective structures for long spans. 
This kind of structure is essential because it gives 
drivers instructions and information to avoid traffic 
accidents. Transportation departments have been 
designing and building overhead highway sign sup-
port trusses for a number of years in the United States 

(Nadauld and Pantelides, 2007). These structures 
cover relatively long-spans and serve in harsh envi-
ronments with erosion caused by water, wind, and ice, 
vibration caused by wind and vehicles passing by, and 
so on. These negative factors can induce damage to 
these structures, including fatigue on anchor bolts and 
connection plates, bending about the diagonal, and 
cracks initiating from welded joints (Park and 
Stallings, 2006). Such damage may cause failure of 
structural members and even collapse of the whole 
structure, with danger to people in passing vehicles. 
To quickly determine maintenance and repair 
schemes for engineers, it is essential to use a con-
venient, valid, and trusty method for quickly identi-
fying damage on these structures. For this reason, 
usable damage identification methods are crucial and 
essential to this type of structure, which constantly 
experiences vibration. 
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With the increasing need for non-destructive 
evaluation of structural reliability, a wide variety of 
damage identification methods have been developed 
in recent years. There are numerous different non- 
destructive methods for damage identification, which 
can be classed mainly in two groups: non-model- 
based methods and model based methods. The non- 
model-based methods detect damage through vibra-
tional signals directly without use of a structural 
model. The non-model-based methods mainly include 
methods based on the change in natural frequency 
(Lee and Chung, 2000; Kim et al., 2003), the change 
of structural vibration mode (Khoo et al., 2004), the 
change of structural flexibility or stiffness (Yan and 
Golinval, 2005), the transfer function (Park and Park, 
2005), the statistic information (Iwasaki et al., 2004; 
López-Díez et al., 2005; Garcia-Perez et al., 2013), 
the power flow (Li et al., 2004), and so on. The 
model-based methods detect damage based on pre-
determined structural models, in which the model 
updating methods are widely used (Sinha and 
Friswell, 2003; Sadr et al., 2007; Zhao et al., 2009; 
Lei et al., 2012; Liu and Duan, 2012; Erdogan and 
Bakir, 2013; Liu et al., 2013). However, most of the 
above methods are not quick, which means they pro-
vide structural information with an obvious time de-
lay caused by their massive and off-line calculation 
process. In contrast, in-time damage identification 
methods can improve the ability to detect damage by 
first decision-makers (e.g., authorities, engineers, fire 
fighting, policing, Federal Emergency Management 
Agency). Nevertheless, it has always been a chal-
lenging problem to identify damage in structures 
which contain a large number of degrees of freedom 
(DOFs). It is also a difficult issue to model and iden-
tify such large-size structural system and enable the 
identification procedure to execute in an on-line or 
real-time environment.  

With the help of the Kalman filter and energy 
equilibrium theory, a new method can be proposed to 
solve the problem of detecting damage for such large- 
size structural systems mentioned above. The Kalman 
filter provides a recursive solution of discrete linear 
data (Kalman, 1960). In recent years, some observer- 
based estimation techniques have been extensively 
studied by many researchers, including the least 
squares estimation (Groeneboom et al., 2001; Feng et 

al., 2008), the modified Kalman filter (Hoshiya and 
Saito, 1984; Ghanem and Shinozuka, 1995; Shino-
zuka and Ghanem, 1995; Yang et al., 2006; Song and 
Dyke, 2014), and the particle filter (van der Merwe et 
al., 2004; Chatzi and Smyth, 2009). On the other 
hand, energy-based structure analysis has been de-
veloped and implemented by many researchers since 
it was proposed. The energy equilibrium theory has 
already proved to be an effective basis for methods in 
structural engineering. However, dynamical damage 
identification strategies based on energy are still new 
topics (Xu and Wu, 2007). The energy damage iden-
tification strategy based on strain can locate damage 
positions accurately, and it can also quantify damage 
intensity and resist environmental noise (Xu et al., 
2011). 

To meet this demand, an in-time model updating 
approach is proposed to identify stiffness, find the 
location of damage, and quantify its intensity in 
structures which contain a large number of DOFs. 
This approach establishes a relationship between 
element stiffness and structural responses. Combining 
the energy equilibrium theory and the Kalman filter 
together, the structural stiffness can be obtained by 
comparing the predicted energy and measured energy 
in each step. A series of simulations on a highway 
sign support truss by this approach indicates that the 
unknown parameters can converge rapidly to the true 
value. In other words, the approach can locate the 
damage and measure the damage intensity in-time. 
The term ‘in-time’ in the study means the approach 
can promptly evaluate the damage, usually in less 
than 1 s in this study. 

 
 

2  Description of a full-scale highway sign 
support truss 
 

The real-world structure considered in the sim-
ulation is one segment of a sign support truss, for-
merly placed at Interstate I-29 near Sioux City in 
Iowa, USA as shown in Fig. 1 (Yan et al., 2012). This 
highway sign support truss was out of service and is 
now available for testing at the Robert L. and Terry L. 
Bowen Laboratory for Large-scale Civil Engineering 
Research at Purdue University, USA. The structure is 
a horizontal, 3D four-chord welded spatial reticulated 
truss. The horizontal space truss spans longitudinally 
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10.38 m with its four main chords placed on a 
1.83 m×1.98 m configuration. The entire highway 
truss consisted of four segments; however, only one 
of them is analyzed in this study. All bars of the truss 
are made of round, tubular aluminum (6061-T6) rods. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The structure was mounted with one end simply 

supported on metal blocks to simulate a pinned joint, 
and the other ends were placed on cylinders to simu-
late roller supports (Fig. 2) (Krishnan et al., 2011). 

 
 
 
 
 
 
 
 
 
 
 

 
 

The truss was vibrated by a shaker in the Z di-
rection (vertical). Because environmental vibrations 
provide rich spectrum components on the sign sup-
port truss (such as wind, ground vibration, and vibra-
tion caused by traffic), the shaker was set to a band 
limited white noise of 0–200 Hz. The noise level of 

the ambient was found to be of the order of 0.1g 
(g=9.8 m/s2), and the excitation of the shaker created 
an average 1g level. The shaker was located adjacent 
to the middle node (Fig. 3). The white noise signal 
from the signal generator was first amplified through 
an amplifier before being sent to the electro-dynamic 
shaker. The baseline noise in the system was also 
recorded. 

 
 
 
 
 
 
 

 
 

 
The types of damage observed in the real-world 

are dents, tears, and cracks in regions away from the 
ends, weld cracks in diagonal member joints to the 
main chord, weld cracks at the joints of vertical 
members and main chord, and bolt loosening and 
splice gaps at the flange connections. To validate the 
damage identification approach, multiple damage 
instances were created. They were induced on the 
structure by a variety of cuts through the member so 
as to simulate the damage to the member, which are 
shown in Fig. 4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Boundary condition of experimental setup

Fig. 3  Experimental setup of the Electro-dynamic shaker

Fig. 1  Sign support structure over Interstate I-29 when it
was in service (a) and one segment of the structure in
Bowen Lab (b) 

Fig. 4  Multiple damage cases 
(a) Element 20, full cut; (b) Element 45, 20% cut; (c) Element 
64, 50% cut; (d) Element 76, 80% cut 
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3  Theories of the damage identification 
method 

3.1 Energy equilibrium equation of an elastic  
system 

For single degree of freedom (SDOF) system, if 
it is assumed that the damping depends on the veloc-
ity, a complete dynamic equilibrium equation of a 
SDOF system can be expressed as 

 
,my + cy + ky = f                           (1) 

 
where m is the mass, c is the damping, k is the stiff-
ness, y is the displacement of the particle, ẏ is the 
velocity, ÿ is the acceleration, and f is the input force 
of the SDOF system. Additionally, y and f are the 
functions with respect to time t. The displacement is 
assumed to be 0 when t=0, i.e., ẏ|t=0=ÿ|t=0=0. If both 
sides of Eq. (1) are multiplied by velocity ẏ, and then 
integrated over time t, the energy equilibrium equa-
tion of the SDOF dynamic system at time t can be 
expressed as 
 

0 0 0 0
d d d d ,

t t t t
myy t + cyy t + kyy t = f y t                  (2)

 
 

where the first term is the kinetic energy of the SDOF 

system, i.e., 2
ek 00

d
2

t tm
W myy t y    ; the second term 

is the energy dissipated by damping, i.e., 
2

h 0
d ;

t
W cy t    the third term is strain energy, i.e., 

2
es 00

d
2

t tk
W kyy t y   ; and the right hand term of the 

equation is input energy, i.e., f 0
d .

t
W f y t    The en-

ergy equilibrium equation of the SDOF system can be 
expressed as Eq. (3), which means that the internal 
energy is equal to the external energy:  

 

ek h es f .W W W W                         (3) 

 
For the multi degree of freedom (MDOF) sys-

tem, the dynamic equilibrium equation of a MDOF 
system can be expressed as  

 
,My + Cy + Ky = F                            (4) 

where M is the mass matrix of the dynamic system, C 
is the damping matrix of the system, K is the stiffness 
matrix, y is the vector of displacements, ẏ is the vector 
of velocities, ÿ is the vector of accelerations, and F is 
the external force. The displacement and velocity of 
the system are assumed to be 0 when t=0, i.e., 
ẏ|t=0=ÿ|t=0=0. If both sides of Eq. (4) are multiplied by 
ẏT and then integrated over time t, the energy equation 
of the MDOF dynamic system at time t can be ex-
pressed as  

 
T T T T

0 0 0 0
d d d ( )d ,

t t t t
t + t + t = t t   y My y Cy y Ky y F       (5) 

 
where the first term of the left side represents the 
kinetic energy of the MDOF system at time t, i.e.,

 
T T

ek 0

1
d ;

2

t
W t  y My y My     the second term of the 

left side is the energy dissipated by the damping at 

time t, i.e., T
h 0

d ;
t

W t  y Cy   the third term is the strain 

energy, i.e., 
 

T T
es 0

1
d ;

2

t
W t  y Ky y Ky  and the right 

side of the equation is the input energy by the external 

force, i.e., 
 

T
f 0

( )d .
t

W t t  y F  Based on the energy 

equilibrium theory, the energy equilibrium of the 
MDOF system can be also expressed as  

 

ek h es f .  W W W W                       (6) 

 

3.2  Kalman filter algorithm 

The Kalman filter algorithm assumes the state 
nx   of a discrete-time process that is governed by 

the linear state space equation as  
 

1 1 1,j j j j    x Ax Bu w                     (7) 

 

with a measurement nz   that is 
 

1 ,j j j z Hx v                             (8) 

 

where n  is an n-dimensional state space, A is the 
state transition matrix, B is the input coupling matrix, 
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and H is the measurement sensitivity matrix. The 
random variables wj and vj are the process noise and 
measurement noise, respectively. uj−1 is the optional 
control input, and the subscript j is the jth time step. 
The parameters wj and vj are assumed to be inde-
pendent, and they have normal probability distribu-
tions as  

 
( ) (0, ),

( ) (0, ).

p N

P N

w Q

v R




                          (9) 

 
In real-world, the process noise covariance Q 

and measurement noise covariance R might be time- 
varying. But we assume they are constant here. Then 
the a priori and a posteriori estimate errors can be 

defined as ˆ
j j j
  e x x  and ˆ ,j j j e x x  respec-

tively. The a priori covariance matrix of state esti-

mation uncertainty is defined as T[ ]j j j
  P E e e , and 

the a posteriori covariance matrix of state estimation 

uncertainty is T[ ].j j jP E e e  Above all, the specific 

equations for the time and measurement updates are 
presented as equations below: 

Discrete Kalman filter time update equations: 
 

1 1
ˆ ˆ ,j j j


  x Ax Bu                       (10) 

T
1 .j j


 P AP A Q                        (11) 

 
Discrete Kalman filter measurement update 

equations: 
 

  1T T ,j j j

  K p H HP H R               (12) 

 ˆ ˆ ˆ ,j j j j
   x x K z Hx                    (13) 

  .j j j
 P I K H P                         (14) 

 
The Kalman gain Kj in Eq. (12) is the key point 

of the measurement update equation. After measuring 
the process zj, the next step is to actually calculate an 
a posteriori state estimate by incorporating the 
measurement as in Eq. (13). Then an a posteriori 
covariance matrix of state estimation uncertainty is 
obtained by Eq. (14). After importing an initial state 

0
ˆ ,x  a priori covariance matrix of state estimation 

uncertainty, P0 and the measurement noise covariance 
R0 are then calculated repeatedly via Eqs. (10)–(14) to 
obtain the eventual state x.  

3.3  In-time damage identification approach 

To update the stiffness of the structure, a rela-
tionship between these unknown parameters and the 
structural energy is established. If the truss has l el-
ements (rods) and n DOFs, the Young’s modulus 
E=[E1, E2, …, Ei, …, El]

T is chosen to represent the 
stiffness of the highway sign support truss, where Ei is 
the Young’s modulus of the ith element in the struc-
ture. Firstly, we assume there is an ‘initial structure’, 
whose Young’s modulus of each member in the 

structure is equal to 1.0×1010 N/m2, i.e., 1,[EE  
T

2 , , , , ]i lE E E  =[1, 1, …, 1, …, 1]T×1010 N/m2. 

The stiffness matrix of all the members of the ‘initial 

structure’ can be defined as g 1 2, ,[ , , ,i K KK K    

T] ,lK  where iK  is the stiffness matrix of the ith 

element of the ‘initial structure’ in the global coor-
dinate system. The stiffness matrix of the ‘true 
structure’ (unknown or real-world structure) of all the 
members can be defined as Kg=[K1, K2, …, Ki, …, 
Kl]

T, and Ki is the stiffness matrix of element i with a 
true Young’s modulus in the global coordinate sys-

tem. Thus, i i iEK K  is the real stiffness matrix of 

the element i. The strain energy esW  of the ‘initial 

structure’ subject to the response of the ‘true struc-
ture’ can be expressed as 

 

T
es g0

T
1

g

1

T

0

T

d
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t

t
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u t
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

    
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         
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        





W v u

Kv

K

K

Kv

v





   (15)

 
 

where vg is the (l×n)×n matrix; v is the n×1 velocity 
vector, i.e., v=[v1, v2, …, vi, …, vn]

T, and vi is the ve-

locity of the ith DOF; ( )
g

m n n K   is the stiffness of 
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the ‘initial structure’, n n
i

K   is the stiffness ma-

trix in global coordinate system; and 1nu   is the 
displacement vector of all the DOFs. The size of the 

(l×n)×n stiffness matrix gK  is much larger than the 

normal n×n global stiffness iK . The reason for this 

assembly of matrix gK  is that, it can easily produce 

an l×1 strain energy vector esW  of each member. The 

strain energy Wes and esW  are the key parameters for 

the damage identification algorithm. These two 
measured parameters are compared in each time step 
to produce an updated system state, i.e., Young’s 
modulus E of the truss. In this study, with the help of 

Eq. (15), an l×1 strain energy vector esW  of each 

member is obtained from g 1 2, ,[ , , ,i K KK K    

T] .lK  By using the constantly updated parameter Wesj 

in Eq. (21), the measurement update equations of 
Kalman filter can be operative and produce an up-
dated Young’s modulus Ej at each time step. The 
kinetic energy can be expressed as 
 

T
ek 0

d ,
t

W t  v Ma                         (16) 

 
where M is the n×n global mass matrix of the ‘true 
structure’, and a is the n×1 acceleration vector of the 
structure. The energy dissipated by damping can be 
expressed as 

 
T

h 0
d ,

t
W t  v Cv                          (17) 

 
where C is the n×n damping matrix of the ‘true 
structure’, and v is the n×1 velocity vector of the 
structure. The input energy caused by the shaker can 

be expressed as T
f 0

d .
t

W t  v F  The strain energy of 

the ‘true structure’ can be obtained by 
 

es f ek h .W W W W                         (18) 

 

The deference between esW  and Wes is caused by 

the inequality of the ‘initial structure’ and the ‘true 
structure’. 

Above all, the discrete-time state equations for 
the model updating approach can be expressed as  

 

1

T
es es 1

,

,

j j j

j j jW v





 

 

E IE w

W E
                      (19) 

 
where Ej−1 is the Young’s modulus at time step j−1, 
and Ej is the Young’s modulus at time step j; I is the 
identity matrix and is referred to the matrix A in 
Eq. (10); Wesj is the total strain energy at time step j, 

esW is the strain energy of the ‘initial structure’ whose 

Young’s modulus is 1×1010 N/m2, so esW is constant; 

and wj and vj are the noise of the system process and 
measurement, respectively. So the core equations of 
the proposed model updating approach are as follows:  

The time update equations are  
 

1

T
1

ˆ ˆ ,

,

j j

j j











E IE

P IP I
                              (20) 

 
and the measurement update equations are 
 

 
 

 

1T
es es es

es es

es

,

ˆ ˆ ˆ ,

,

j j j

j j j j j

j j j

R

W

 

 



 

  

 

K P W W P W

E E K W E

P I K W P

             (21) 

 

where ˆ
j
E  is the a priori Young’s modulus estimate at 

time step j, and ˆ
jE  is the a posteriori Young’s mod-

ulus estimate at time step j;
 j

P  is the a priori error 

covariance estimate of Young’s modulus at time step 
j, Pj is the a posteriori error covariance estimate at 
time step j, Kj is the Kalman gain at time step j, R is 
the noise of measurement, Wesj is the total strain en-
ergy of the ‘true structure’ at time step j obtained by 

Eq. (18); esW  is the strain energy calculated by the 

response of the ‘initial structure’. After obtaining the 
main equation of the proposed damage identification 
approach, the unknown Young’s modulus can be up-
dated through these equations.  
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4  Simulation verification of the damage 
identification approach  

4.1  Simulation setup 

A finite element (FE) model of the real-world 
sign support truss was built and simulated in 
MATLAB, and it consists of 28 nodes and 83 ele-
ments. The nodes are numbered in Fig. 5. The model 
is rigid at connections between main chords and other 
members. Besides the four nodes constrained as 
boundary condition, each node has six DOFs, in-
cluding three translational motions and three rota-
tional motions. Each element is taken as a beam el-
ement in the FE model. The geometry and physical 
information of each member and the total structure 
are listed in Table 1. The length of bays 1–6 is equal to 
1.73 m. The truss is 1.83 m wide and 1.98 m high.  

A Z-direction band-limited white noise (0– 
200 Hz) on node 4 is used to excite the truss in each 
test, and the responses in the three directions (X, Y, 
and Z in Fig. 5) at all nodes are measured corre-
spondingly. The generated white noise is imposed on 
the truss using an electro-dynamic shaker which is 
placed at node 4 (Fig. 5). The sampling frequency is 
256 Hz when measuring the dynamical responses. All 
the above testing processes of model updating are 
simulated in MATLAB. 

In each numerical test, acceleration responses in 
three directions at every node are recorded to make 
the following calculation. The procedure of the model 
updating approach involves three parts: First, the 
input energy EA of the true model (true model of the 
physical specimen) is calculated through input force. 
Then, the total energy EB of the initial model (model 
to be updated with false Young’s modulus) is  
 

 
 
 
 
 
 
 
 
 
 
 
 

calculated by the previously obtained acceleration. 
Finally, EA and EB are substituted into the Kalman 
filter algorithm to produce the true Young’s modulus. 
Note that both the true model and initial model are 
simulated in MATLAB. 

4.2  Simulation verification on an undamaged 
structure 

The mathematical procedures for detecting 
damage using the damage identification approach 
involve two parts. First, the strain energy of the 
structure is obtained via Eq. (18). Second, that energy 
is substituted into the Kalman filter via Eqs. (20) and 
(21). Then the updated structural Young’s modulus 
can be obtained for each time step. Specifically, a 
time-history analysis is performed to get the structural 
response through SIMULINK using a 1.5 s long, 
0–200 Hz band-limited wide noise as the input signal, 
where the time step is 1/5120 s. Then the energy of the 
structure is calculated by responses from that  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Geometrical and material properties of the truss 

Parameter Value Parameter Value 

Main chords Outside diameter (mm) 152.4 Span of each bay in the left 
segment (m) 

1.73 
Thickness (mm) 79.0 

Diagonal braces Outside diameter (mm) 76.2 Span of each bay in the right 
segment (m) 

1.64 
thickness (mm) 6.3 

End vertical braces 
and end struts 

Outside diameter (mm) 63.5 Total span length (m) 17.24 

Thickness (mm) 6.3 Young’s modulus (N/m2) 6.9625×1010 

Other members Outside diameter (mm) 50.8 Density (kg/m3) 2714.47 

Thickness (mm) 4.8 Poisson’s ratio 0.33 

 

Fig. 5  Finite element model for the 3D truss in MATLAB
and the location of damaged members 
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analysis, and the Kalman filter is used to estimate the 
Young’s modulus of the structure, where the sampling 
frequency is 256 Hz. It is indicated that the damage 
identification method needs a relativity low sampling 
frequency. The velocity and displacement of the truss 
are obtained via the integration and double integration 
of acceleration over time t. 

It is assumed that all the parameters are known 
except the Young’s modulus of the structure, i.e., the 
mass and damping ratio of the truss are assumed to be 
equal to those of the physical specimen. To begin with 

the calculation, the initial Young’s modulus E  is 
assumed to be 1.0×1010 N/m2. The initial a priori 

covariance matrix j
P  is set as 1.0×108I, where I is 

the l×l identity matrix. The initial measurement noise 
covariance R is assigned as 1.0×10−45. The strain 
energy of the ‘initial structure’ and ‘true structure’, 

W  and Wesj, can be calculated through Eq. (15) and 

Eq. (18). Then ,E  R, ,W  and Wesj are substituted 

into Eqs. (20) and (21) to start the calculation process 
of the Kalman filter. The results indicate that all the 
parameters of all the elements will converge to the 
true value, which is 6.9625×1010 N/m2. As shown in 
Fig. 6, element 1 converges to the true value in 0.24 s 
(about 60 time steps); element 10, element 50, and 
element 83 converge to the true value in about 0.32 s 
(about 80 time steps); and the convergence conditions  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

of the other elements are similar. The implication is 
that this damage identification approach can identify 
the Young’s modulus and indicate the health of the 
structure in a short time.  

4.3  Simulation verification on damaged structures 

1. Damage Case 1 
In this case, only one member (bar) at top of the 

back-panel in bay 2 (element 20, connecting joint 23 
and joint 24 in Fig. 5) is assumed to lose all the 
stiffness to simulate the full cut through the section. 
By using the same method as for the undamaged truss, 
the results are shown in Fig. 7. It is shown in Fig. 7 
that the Young’s modulus of both damaged and 
healthy elements can converge to the true value. The 
Young’s modulus of the initial truss for model up-
dating is 1.0×1010 N/m2. As shown in Fig. 7, the 
damaged element 20 converges to the true value, 
6.9625×1010 N/m2, in 0.15 s (about 51 time steps). 
The healthy element 1, element 10, and element 83 
converges to the true value in about 0.28 s (about 72 
time steps), 0.32 s ((about 82 time steps), and 0.34 s 
(about 87 time steps), respectively; all the other 
healthy elements of the truss can also converge to the 
true value, 6.9625×1010 N/m2, in 0.4 s.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Damage Case 2 
In this case, three different elements (bars) are 

subjected to different levels of damages in the  

Fig. 6  Process of the damage identification approach for 
an undamaged structure 
(a) Element 1; (b) Element 10; (c) Element 50; (d) Element 83
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Fig. 7  Process of the damage identification approach of
damage Case 1 
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simulation. A bottom diagonal bar at bay 3 (element 
45, connecting joint 4 and joint 17) loses 20% element 
stiffness to simulate a cut of a fifth in depth of the full 
cross-section. A bar at front of panel 3 (element 64, 
connecting joint 4 and joint 11) loses 50% stiffness to 
simulate a halfway cut, and the middle diagonal at 
panel 6 (element 76, connecting joint 13 and joint 20) 
loses 80% stiffness to simulate an 80% cut. By using 
the same model updating approach as before, the 
Young’s modulus of all the elements are calculated, 
and the results of four representative members  
are plotted in Fig. 8. For example, the healthy mem-
ber, element 1, converges from the initial value 
1.0×1010 N/m2 to the true value 6.9625×1010 N/m2 in 
0.25 s (about 64 time steps); the damaged member, 
element 45, converges to its true value of 5.57× 
1010 N/m2 in 0.32 s (about 82 time steps), which 
means a 20% stiffness loss of the element; the dam-
aged element 64 converges to its true value of 
3.48×1010 N/m2 in 0.32 s (about 82 time steps), which 
means a 50% stiffness loss of the element; and the 
damaged element 76 converges to its true value of 
1.39×1010 N/m2 in about 0.32 s, which means an 80% 
stiffness loss of this element. The other healthy ele-
ments converge to the true value of 6.9625× 
1010 N/m2 in 0.4 s. It is clear that the damage identi-
fication approach can identify the Young’s modulus 
of the damaged part of the structure in a short time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.4  Simulation verification on damaged structures 
with noise 

Noise with root mean square (RMS) noise-to- 
signal ratio at 5% is considered at all channels of the 
accelerometers. The identification process of the 
Young’s modulus of element 20 and the three dam-
aged elements is shown in Fig. 9. As shown in Fig. 9, 
although the convergence speed and precision are 
different for different elements, parameters of the 
damaged elements converge to the true value with 
only slight errors. The initial value of Young’s mod-
ulus is 1×1010 N/m2, and the true value is 6.9625× 
1010 N/m2. At the end of 5 s, the results of these four 
elements are as below: the Young’s modulus of ele-
ment 1 is 6.8675×1010 N/m2; the Young’s modulus of 
element 45 is 5.4551×1010 N/m2; the Young’s modu-
lus of element 64 is 2.9622×1010 N/m2; and the 
Young’s modulus of element 76 is 1.6136×1010 N/m2. 
The corresponding errors of these four elements are 
1.30%, 2.06%, 14.91%, and 15.87%. So this model 
updating approach is stable in a noisy environment, 
specifically the average error is 8.55% and the 
maximum error is 15.87%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.5  Evaluation of the time required to implement 
the proposed “in-time” approach 

Compared to traditional health monitoring 
methods, the proposed damage identification  

Fig. 8  Process of the damage identification approach of 
damaged Case 2 
(a) Element 1; (b) Element 45; (c) Element 64; (d) Element 76
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Fig. 9  Process of the damage identification approach with 
5% RMS noise 
(a) Element 1; (b) Element 45; (c) Element 64; (d) Element 76
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approach, based on the Kalman filter and energy 
equilibrium theory, has yet another advantage, which 
is the ability to detect the damage in-time. This 
damage identification approach gathers structural 
acceleration responses and input force at every 
measured time step and produces the desired results 
immediately. The approach implemented substitutes 
these data in the energy equilibrium theory and the 
Kalman filter to get conclusions concerning such 
steps. As a result, the user is able to obtain structural 
stiffness information during the loading period and 
can also observe the trend behavior in the stiffness 
changes. This combination of observations is very 
important for predicting and preventing disasters.  

The required time for the calculation process of 
this method involves two components. The first 
component is for the energy calculation; the second 
component is for the Kalman filter. Both computa-
tions are performed in MATLAB, in which different 
embedded programs can be used to get the required 
time for the damage identification approach in each 
step. The results are shown in Fig. 10, in which the 
horizontal straight lines are the sampling period, i.e., 
1/256 s. The computer used for the calculation was an 
Intel® Core™ i5-2310 processor, whose clock speed 
is 2.9 GHz and Max turbo Frequency is 3.2 GHz, and 
a 4 GB DDR3-1066 Memory. Even under the same 
conditions, there are always slight differences (less 
than 1%) of the required time of a MATLAB program 
running at different times. Even though such tiny 
differences were found, the conclusions are not af-
fected. So only one representative trial is illustrated 
here. For example, in the undamaged case, the total 
time cost is 0.4628 s, and the average time cost in 
 

 
 
 
 
 
 
 
 
 
 
 

every time step is about 0.0012 s. In Case 2, the total 
required time is 0.4811 s, and the average required 
time in each measured step is 0.0012 s. As shown in 
Fig. 10, the time spent in each step is always shorter 
than the sampling period, which means that the 
damage identification approach is fast enough to 
update the model and detect the damage in real time. 

 
 

5  Conclusions 
 
A damage identification approach is proposed to 

identify the location of damage and to quantify its 
intensity. Numerical tests are conducted on a sign 
support truss structure to validate the proposed 
method. The conclusions of the proposed method are 
drawn as follows: 

1. Numerical results demonstrate that the pro-
posed damage identification approach can accurately 
locate the damage at a bar-level and measure the 
damage intensity. Additionally, the approach has a 
good performance on both single and multiple dam-
age scenarios. 

2. With the help of the damage identification 
approach, it was possible to get the previously un-
known parameters to converge to the true value on 
time. The main advantage found during the imple-
mentation of this approach is that it is significantly 
time saving compared to others. This approach uses 
the Kalman filter, which provides an efficient com-
putational means to estimate the state of a process. 
Taking the sign support truss for example, the ele-
ment’s Young’s modulus of both a healthy and a 
damaged truss can converge to the true value in less 
than 0.4 s, which is equal to 102 measured steps. 

3. The damage identification approach is a 
method intended to offer a real time result. The time 
required in each measured step is considerably shorter 
than the sampling period, which makes the approach 
in-time or on-line. Taking the sign support truss as an 
example, the average time required for each step is 
0.0012 s, which is less than a third of the sampling 
period 1/256 (0.0039) s. 

4. The damage identification approach is also 
effective in a noisy environment. In this study, no 
error in calculating the Young’s modulus of damaged 
elements is greater than 16% of the true value. 

Fig. 10  Comparison between the time required of the 
undamaged truss (a) and the damaged truss (b) for each 
time step and sampling period 
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中文概要 
 

题 目：一种基于 Kalman 滤波和能量原理的实时损伤识

别方法 

目 的：建立一种损伤识别方法，能够实时地监测多自由

度复杂结构中构件的损伤情况。 

方 法：1. 用能量原理对结构刚度进行解构，建立结构单

元刚度和节点响应之间的关系；2. 用 Kalman 滤

波原理分析结构刚度的预测值和测量值，迅速对

结构的刚度进行识别（图 6–9）；3. 对每一步计算

进行耗时监测，确保算法的实时性（图 10）。 

结 论：1. 该方法能够较准确地得到结构的刚度信息，同

时得出损伤单元的损伤位置和损伤量；并且收敛

速度快，计算量小，具有很强的实时性和抗噪能

力；2. 对于本文的桁架结构，所有杆件刚度均能

在 0.4 s 内收敛，平均每一荷载步计算时间约为

0.0012 s，小于采样周期 1/256 s，说明该方法可

以迅速、准确地对结构进行实时的监测。 

关键词：实时模型修正；能量平衡原理；Kalman 滤波原理；

损伤识别；健康监测 

 
 
 
 
 


