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Abstract:    Preventive maintenance (PM) is very important for the safe, efficient, and reliable operation of mechanical systems. 
This paper focuses on one of the most challenging tasks for PM: PM scheduling. Two basic principles are integrated to support the 
PM scheduling of mechanical systems: (1) the cost principle, and (2) the reliability principle. These two PM scheduling principles 
are regarded as conflicting objectives, and the improved strength Pareto evolutionary algorithm is used to find the Pareto-optimal 
set within which the best compromise solution can be obtained according to fuzzy set theory. Both conceptual and mathematical 
models of the proposed multi-principle PM scheduling method are explained, and a case study is provided to illustrate the practical 
application of the new method. 
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1  Introduction 

 
Preventive maintenance (PM) is defined as a set 

of activities aimed at improving the overall reliability 
and availability of a system (Martorell et al., 2002; 
Ahmad and Kamaruddin, 2012). Instead of perform-
ing maintenance when a system fails, PM aims to 
reduce the chance of any unexpected failures. 
Therefore, PM activities are very important for the 
safety, efficiency, and overall reliability of mechani-
cal products (Tsai et al., 2004). 

During the last few decades, numerous papers 

have been published on PM modeling and optimiza-
tion. Levitin and Lisnianski (2000) presented an op-
timization model for PM scheduling in multi-state 
series-parallel systems. They considered the cost of 
unsupplied demand due to failures of components as 
an important part of the cost effectiveness of PM 
activities. Cassady and Kutanoglu (2005) developed 
an integrated mathematical model for a single- 
machine problem with total weighted expected com-
pletion time as the objective function. Their model 
allows multiple maintenance activities and explicitly 
captures the risk of not performing maintenance. 
Bartholomew-Biggs et al. (2006) proposed a new PM 
formulation which allows the optimal number of 
occurrences of PM to be determined, along with their 
optimal timings. The formulation involved the global 
minimization of a non-smooth performance function. 
El-Ferik and Ben-Daya (2006) developed a hybrid 
age-based model for imperfect PM involving main-
tainable and non-maintainable failure modes. They 
determined the number of PM actions and the length 
of PM intervals that minimize the total long-term 
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expected cost per unit time. Tam et al. (2006) ana-
lyzed the effect of reliability, budget and breakdown 
outage cost on the calculation of optimal maintenance 
intervals. Three models were proposed to calculate 
optimal maintenance intervals for a multi-component 
system in a factory subjected to minimum required 
reliability, maximum allowable budget, and mini-
mum total cost. Alardhi et al. (2007) presented a 
method for scheduling PM tasks in separate and 
linked cogeneration plants and satisfying mainte-
nance and production constraints. Lim and Park 
(2007) proposed a periodic PM policy, by which PM 
maintains the pattern of the hazard rate unchanged. 
They evaluated the expected cost rate per unit time 
based on computing the expected number of failures 
depending on the hazard rate of the underlying life 
distribution of the system. Shirmohammadi et al. 
(2007) presented a method for scheduling the PM of a 
system subject to random failures, and investigated 
the decision rule for PM. They defined the time be-
tween preventive replacements and cut-off age as 
decision variables to determine the optimal mainte-
nance policy. Bartholomew et al. (2006) proposed a 
model in which each action of PM reduces the 
equipment’s effective age. The optimization process 
involved minimizing a performance function that 
allows for the costs of the minimal repairs and even-
tual system replacement, as well as for the costs of 
PM during the equipment’s operating lifetime. Chung 
et al. (2009) proposed a double tier genetic algorithm 
(GA) approach for multi-factory production networks 
to keep the system’s reliability at a defined acceptable 
level and minimize the make-span of the jobs. Harrou 
et al. (2010) formulated a model of imperfect 
maintenance optimization for a series-parallel trans-
mission system structure. They improved the availa-
bility of a transmission system through selecting the 
optimal sequence of intervals to perform PM actions. 
Liao et al. (2010) developed a reliability-centered 
sequential PM model for a monitored repairable de-
teriorating system. They supposed that the system’s 
reliability could be monitored continuously and per-
fectly, and that whenever it reached a threshold, an 
imperfect repair must be performed to restore the 
system. Wang and Lin (2011) proposed an improved 
particle swarm optimization. The optimal mainte-
nance periods for all components in the system were 
determined according to their importance for system 

reliability, to minimize the periodic PM cost for a 
series-parallel system. Moghaddam and Usher (2011) 
presented mathematical models and a solution ap-
proach to determine the optimal PM schedules for a 
repairable and maintainable series system with 
equally-sized periods. Schutz et al. (2011) proposed 
and modeled periodic and sequential PM policies for 
a system. The objective of the periodic PM policy was 
to determine the optimal number of PM checks, and 
the objective of the sequential PM policy was to de-
termine the optimal number of PM intervals and their 
duration. Lin and Wang (2012) identified important 
components and determined their maintenance prior-
ities in a series-parallel system. The optimal mainte-
nance periods of these important components were 
determined to minimize total maintenance cost, given 
the allowable worst reliability of a repairable system. 
Wang and Tsai (2012) established a bi-objective im-
perfect PM model of a series-parallel system. They 
developed a unit-cost cumulative reliability expecta-
tion measure to evaluate the extent to which main-
taining each individual component benefits the total 
maintenance cost and system reliability over the op-
erational lifetime. Ebrahimipour et al. (2013) devel-
oped a multi-objective PM scheduling model in a 
multiple production line. They defined the reliability 
of production lines and the costs of maintenance, 
failure and downtime of a system as multiple objec-
tives, and different thresholds for available man-
power, spare part inventory and periods under 
maintenance were applied. 

From the above, it is evident that the two PM 
schedule principles presented (cost and reliability) are 
not unfamiliar to the design community. Furthermore, 
each principle has been individually adopted by dif-
ferent methods. However, there has been no attempt 
to integrate these two principles and regard them 
together as a to-be-solved multi-objective optimiza-
tion problem. Traditional methods use weighted-sum 
approaches or require the user to supply a weight 
vector or a preference vector, before solving the 
problem. Multiple objectives can become a single 
objective by use of a weight or preference vector, and 
the outcome of the optimization process is usually a 
single optimal solution. To obtain a set of Pareto- 
optimal solutions for multi-objective optimization, 
these methods have to be applied many times with 
different weights or preference vectors. This causes 
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problems in multi-objective optimization and does 
not emphasize the complete range of the transformed 
objective uniformly.  

In this paper, we propose a multi-objective 
evolutionary optimization approach to determine 
optimal PM schedules. A multi-objective mathemat-
ical model is developed to determine a plan for three 
different PM activities for each component of a me-
chanical system, and to show how to optimize these 
activities such that their total cost is minimized and 
the overall reliability of the mechanical system is 
maximized simultaneously, over the planning hori-
zon. The improved strength Pareto evolutionary al-
gorithm (ISPEA2) is implemented to find the Pareto- 
optimal solutions that provide good trade-offs be-
tween total cost and overall reliability. Such an ap-
proach should be useful for maintenance planners and 
engineers tasked with the problem of developing 
recommended maintenance plans for mechanical 
systems of components. The effectiveness of the 
proposed approach is illustrated using a numerical 
example which compares our algorithm with the 
non-dominated sorted genetic algorithm (NSGA-II) 
and a generational genetic algorithm (GA). 

 
 

2  Multi-principle model of a PM schedule 

2.1  Effects of PM activities on reliability 

Mechanical system performance can be kept as 
good as possible if great care is taken in PM during its 
operation. Meanwhile, the life cycle of the mechani-
cal system is extended and its efficiency promoted. To 
decrease potential risks to the mechanical system or to 
avoid great economic loss, it is necessary to carry out 
periodic PM for some important components. PM 
activities are classified into inspection, maintenance, 
and replacement. By combining the effects of PM 
activities on these components, the enhancement  
in performance of the mechanical system can be 
calculated. 

We assume that PM scheduling maintenance and 
replacement activities for each component occur over 
the period [0, T]. The interval [0, T] is segmented into 
J discrete intervals. At the end of period j (j=1, 2, …, 
J), the mechanical system is scheduled for either 
inspection, maintenance, or replacement. We assume 
that maintenance or replacement activities in period j 

reduce the “effective working age” of the mechanical 
system. Consider a mechanical system of N series 
subsystems/components (SCs), each subject to dete-
rioration. To account for instantaneous changes in 
working age and failure rate, we introduce the fol-

lowing notation. Let ,et i j
  denote the effective work-

ing age of SCi at the start of period j and ,et i j
  denote 

the effective working age of SCi at the end of period j. 
It is clear that: 

 

, , 1 ,et et ( ) et / .i j i j j j i jt t T J  
              (1) 

 

Let Δeti, j denote the change in effective working 
age of SCi in period j, the PM activities are carried out 
at period j. In this study, we assume that either of the 
three kinds of PM activities occurs at the end of the 
period. It is clear that: 

 

, , 1 ,et et et .i j i j i j
 

                              (2) 

2.1.1  Inspection activity 

In this case, inspection is to be carried out on SCi 
in period j. This is often referred to as leaving SCi in a 
state of “bad-as-old”. It finds that: 

 

, 1 ,

, 1 , 1

et et ,

(et ) [et ( )].

i j i j

i i j i i j j jh h t t

 


 
 

 


  
                (3) 

2.1.2  Maintenance activity 

In this case, SCi is maintained in period j, which 
places it into a state somewhere between “good-as 
-new” and “bad-as-old”. The maintenance activity 
reduces the effective age of SCi by a stated percentage 
of its actual age, that is, 

 

, ,et et ,i j j i j                                   (4) 

 
where εj is an improvement factor. 

The factor εj is similar to that proposed by 
Jayaalan and Chaudhuri (1992). This factor allows for 
a variable effect of maintenance on the aging of a 
mechanical system. When εj=0, the effect of mainte-
nance is to return the mechanical system to a state of 
“good-as-new”. When εj=1, maintenance has no ef-
fect and the mechanical system remains in a state of 
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“bad-as-old”. The maintenance activity effectively 
reduces the age of SCi for the start of the next period. 
Thus, 

 

, 1 , ,

1
0 0

et et et

(1 ) ( ).

i j i j i j

j k

j r j k j k
k r

t t

 


   
 

  

   
              (5) 

 
The rate of occurrence of failure for SCi is 

,(et )i i jh   at the end of period j and drops to ,(et )i i jh   at 

the start of period j+1 (Fig. 1). 
 
 
 
 
 
 
 
 
 
 

2.1.3  Replacement activity 

In this case, SCi is to be replaced at the end of 
period j, immediately placing it in a state of 
“good-as-new”. Its age is effectively returned to time 
zero. Thus, 

 

, 1 ,et 0 et 0.i j i j
 

                           (6) 

 
The rate of occurrence of failure for SCi instan-

taneously drops from ,(et )i i jh   to hi(0) (Fig. 2). 

 
 
 
 
 
 
 
 
 
 

2.1.4  Dynamic reliability of an SC 

Normally, the hazard rate function of any SC can 
be expressed as a function of reliability. Thus, 

d ( ) 1
( ) ,

d ( )

R t
h t

t R t
                               (7) 

 
where the reliability function R(t) and the hazard rate 
function h(t) depend on both the intrinsic character-
istics of the SC and the extrinsic conditions during 
use. 

Most failures of mechanical systems can be as-
cribed to cumulative damage. According to Wang et 
al. (1996; 1997), each SCi is assumed to have a rate of 
occurrence of failure, hi(t), where t denotes the actual 
time, and t>0. The Weibull distribution is a reliability- 
dependent failure rate model which is suitable for 
describing cumulative failure problems, such as fa-
tigue, wear, corrosion, and thermal creep. In this 
study, we assume that component failure is given by 

 
1

( ) ,
i

i
i

i i

t
h t



 


 

  
 

                             (8) 

 
where i  and i  are the scale and the shape parameters 

of SCi, respectively. 
Thus, the reliability of SCi in period j is given by 

 

,

,

et

, et
exp ( )d .

i j

i j
i j iR h t t





                          (9) 

2.2  Cost of PM activities 

A common problem in planning the PM schedule 
is to determine the proper PM activities for an SC. To 
solve this problem, the cost associated with all 
SC-level maintenance and replacement activities in 
period j is represented by a function of all the activi-
ties carried out during that period. 

If a mechanical system carries a high rate of 
occurrence of failure through a period, then the me-
chanical system is at risk of experiencing a high cost 
of failures. Conversely, a low rate of occurrence of 
failure in period j should yield a low cost of failure. To 
account for this, Usher et al. (1998) proposed the 
computation of the expected number of failures in 
each period for each SC in a mechanical system. The 
cost of each failure is cfi, which in turn is computed as 
the cost of failures attributable to SCi in period j as 

 
,

,

et

, et
CF cf ( )d .

i j

i j
i j i ih t t




                             (10) 

Fig. 2  Effect of period j replacement for failure rate of SCi
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Fig. 1  Effect of period j maintenance for failure rate of SCi
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The total cost function can be written as follows: 
 

c ,
1 1

, , ,
1 1

(CF ) (cm ma )

(cr ra ) (ci (1 ma ra )),

N N

i i i j
i i

N N

i i j i j i j
i i

F
 

 

  

     

 

 
  (11) 

 
where mai,j is the binary variable of maintenance 
activity for SCi in period j. If SCi at period j is main-
tained, then mai,j=1, otherwise, mai,j=0. rai,j is the 
binary variable of replacement activity for SCi in 
period j. If SCi at period j is replaced, then rai,j=1, 
otherwise, rai,j=0. 

Fig. 3 illustrates the conceptual modeling of the 
proposed multi-principle PM scheduling method. The 
left half of the model indicates that the PM schedule 
of the mechanical system must simultaneously follow 
two principles which serve to address different as-
pects (i.e., the cost of failure, the cost of replacement, 
and the reliability of an SC) of the mechanical system. 
This represents the main research problem in this 
study. The right half of the model indicates the im-
proved multi-objective optimization method (i.e., by 
treating the two principles as two conflicting objec-
tives) that is used to solve the problem.  

2.3  Multi-objective optimization model of PM 
schedule 

In the multi-objective optimization model of the 
PM schedule, we attempt to minimize the total cost 
and maximize the reliability of the mechanical sys-
tem. To consider the reliability objective in this 
model, we take the reliability function for SCi in the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

period j as Eq. (9), which can be extended to the re-
liability function of the mechanical system as 

 

R , ,
1 1

exp ( (et ) (et ) ) .i i i i

N T

i i j i i j
i j

F       

 

        

(12) 
 
The total cost function for the mechanical sys-

tem is defined as 
 

c , ,
1 1

, ,
1 1 1 1

, ,
1 1

cf ((et ) (et ) )

cm ma cr ra

ci 1 (1 (ma ra )) .

i i i

N T

i i i j i j
i j

N T N T

i i j i i j
i j i j

NT

i j i j
j i

F     

 

   

 

   

   

 
     

 



 

 

        (13) 

 

According to the reliability function and the total 
cost function, the two-objective optimization model 
of the PM schedule is established as  

 

R cminimize:   ( ) [1 , ],F x F F   

, ,subject to:   ma ra 0.i j i j   

,1

1 1 2 2

, , 1 , 1 , 1

, 1 , 1

, ,

, ,

 et 0,

 ( ) ,  ( ) ,

et (1 ma ) (1 ra ) et

            +ma ( et ),

 et et / ,

 et 0, et 0,

i

i j i j i j i j

i j i i j

i j i j

i j i j

f x f f x f

T J





 
  


 

 

 



  

    

 

 

 

            (14) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Conceptual modeling of the multi-principle PM scheduling method 
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where f'1 is the required rate of occurrence of failure 
and f'2 is the given budget. The first set of constraints 
indicates that only one kind of PM activity occurs in 
the previous period j. The second set mentions that the 
initial effective age for each SC is equal to zero. The 
third set means that the overall rate of occurrence of 
failure should be kept below f'1 and the total cost 
cannot exceed the given budget f'2. The other con-
straints correspond to the basic assumptions given in 
Section 2.1. 

 
 

3  Multi-objective optimization method based 
on ISPEA2 

3.1  Presentation of the ISPEA2 algorithm 

Unlike solving a single-objective problem, 
solving a multi-objective problem will result in a set 
of “equally good” alternative solutions. Due to the 
trade-off between objectives, it is impossible to de-
termine which solution is the best in an objective 
(mathematically sound) manner. Therefore, this set of 
solutions is also called Pareto, non-dominated, or 
efficient solutions. 

Once the set of Pareto-optimal solutions is iden-
tified, the designer can choose the overall optimum 
design scheme based on particular requirements and 
past experience. In the past, many GAs have been 
prescribed to solve multi-objective optimization 
problems (Andersson, 2001; Chakraborty et al., 2003; 
Qiu et al., 2014). Among different multi-objective 
genetic algorithms (MOGA), the strength Pareto 
evolutionary algorithm (SPEA2) is commonly re-
garded as one of the best in terms of search perfor-
mance. SPEA2 consists of several important opera-
tions, such as archiving of individuals with good 
fitness, density estimation, and fitness assignment 
(Zitzler et al., 2001). It is commonly believed that 
SPEA2 can lead to a population with both “precision” 
and “diversity”. However, the weakness of SPEA2 is 
that it lacks adequate capability to perform effective 
crossover. As a result, it can maintain a wide variety 
of individuals only in the objective space. However, 
the population distribution in the design variable 
space is often ignored. 

In contrast, ISPEA2 is a new model of MOGA 
that features more effective crossover, and results in 

diverse solutions in both objective and variable 
spaces. ISPEA2 can be regarded as a particular type 
of SPEA2 with three additional mechanisms (Kim et 
al., 2004): (i) neighborhood crossover that allows 
crossing over individuals located near each other in 
the objective space; (ii) mating selection that reflects 
all good solutions within the archive; (iii) application 
of two archives to maintain the diversity of solutions 
in both the objective and variable spaces. 

3.1.1  Neighborhood crossover 

Effective crossover is difficult to perform, be-
cause the search directions of each parent individual 
are often completely different. As a result, the search 
efficiency is always considered a great challenge. 
Therefore, neighborhood crossover is proposed in-
stead. In neighborhood crossover, individuals within 
the same search direction are crossed over to generate 
an offspring that is similar to the parent. Within the 
sorted population based on arbitrary function values, 
individuals that are next to each other are defined as 
neighboring individuals. To avoid crossing over of the 
same individual, the neighborhood shuffling opera-
tion is applied after sorting; neighborhood shuffling 
counterchanges individuals in the randomized range, 
which is less than 10% of the population size. The 
effectiveness of neighborhood crossover in MOGAs 
has been demonstrated in previous studies (Watanabe 
et al., 2002). A complete neighborhood crossover 
consists of three steps: 

Step 1. Sort the population with one of the 
function values which are altered in each generation. 

Step 2. Perform a neighborhood shuffle for the 
sorted population. 

Step 3. Select the ith and (i+1)th items as par-
ents, then perform the crossover. 

3.1.2  Mating selection 

In SPEA2, a binary tournament selection is used 
for mating selection, and individuals with higher 
fitness are added to the search population of the next 
generation. By doing so, a population of individuals 
with high precision can be obtained. However, this 
will often result in an increase of non-dominated 
individuals, and in many cases all individuals will 
become non-dominated at later stages. Alternatively, 
the use of binary tournament selection often sacrifices 
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the diversity of non-dominated individuals. There-
fore, in ISPEA2, an additional copy operation is 
added to duplicate all archives to the population being 
searched. This copy operation maintains the diversity 
of the population and makes the global search  
possible. 

3.2  Process of the ISPEA2 algorithm 

ISPEA2 creates a design variable archive to 
store good solutions in the variable space. The pur-
pose is to maintain sufficient diversity in both the 
objective and variable spaces. Environmental selec-
tion of SPEA2 is used to renew the design variable 
archive. When the number of non-dominated solu-
tions exceeds the archive size, the proximity of indi-
viduals is calculated using the Euclidean distance 
according to the value of the design variables. Based 
on the proximity result, the archive truncation method 
is used to reduce the number of individuals. The al-
gorithm flow of ISPEA2 is as follows: 

 
Procedure: ISPEA2 
 
Parameters: N, population size; N′, archive size; T, maximum 

number of generations 
Begin 
//Initialization: 

Generate an initial population P0 and N random individuals. 

Create two empty archives: 0
OA  and 0

VA  

Main loop 
Repeat 

//Fitness assignment: 

For each individual in Pt, ,O
tA  and V

tA  

//Environmental selection: 

From Pt, ,O
tA  and V

tA  creating new archives 

1,
O
tA  1

V
tA   

If 

The number of individuals in 1
O
tA   and 1

V
tA   N′ 

Then 

Archive truncation in the objective space 1,
O
tA   

and archive truncation in the variable space 1
V
tA   

//Neighborhood crossover and mutation operation: 

Generate 1tP  by copying 1
O
tA   

t=t+1 
Until t≥T 
Print all non-dominated solutions in the final population 

and archive 
End 

3.3  Best compromise solution based on fuzzy set 
theory 

Fuzzy set theory has been implemented to derive 
efficiently a candidate trade-off solution for the deci-
sion makers (Abido, 2006). Having acquired the final 
non-dominated set, the proposed approach uses a 
fuzzy-based mechanism to extract a single non- 
dominated solution from the trade-off front as the best 
compromise solution. Due to the imprecise nature of 
the decision maker’s judgment, the ith objective 
function of a solution in the non-dominated set Fi, is 
represented by a membership function μi defined as  

 
min

max
min max

max min

max

1,                     ,

, ,

0,                    ,

i i

i i
i i i i

i i

i i

f f

f f
f f f

f f

f f



 


  


 

        (15) 

 

where max
if  and min

if  are the maximum and mini-

mum values, respectively, of the ith objective  
function. 

For each non-dominated solution k, the normal-
ized membership function μk is calculated as 

 
obj obj

1 1 1

,
N NM

k k j
i i

i j i  

                           (16) 

 

where M is the number of non-dominated solutions. 
The best compromise solution is the one having the 
maximum μk. Arranging all solutions in the trade-off 
front in descending order according to their mem-
bership function provides the decision maker with a 
priority list of non-dominated solutions. This will 
guide the decision maker in light of the current oper-
ating conditions. 

 
 

4  Computational results 
 

A dual-platen mold closing mechanism (DMCM) 
includes ten SCs: (1) SC1, head plate, (2) SC2, gim-
bals, (3) SC3, boot, (4) SC4, drag link, (5) SC5, lift out 
attachment, (6) SC6, steadier, (7) SC7, base plate, (8) 
SC8, die blade, (9) SC9, oil cylinder, and (10) SC10, 
carriage. 

To illustrate the models and the proposed solu-
tion procedure, the data for parameters of the DMCM 
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for the PM schedule are shown in Table 1. The plan-
ning horizon is defined as 1080 d and ci=25 USD is 
assumed as the fixed cost, f'1=0.05 as the required rate 
of occurrence of failure, and f'2=18 000 USD as the 
given budget for the multi-objective optimization 
model. Finally, the MATLAB R2008a programming 
environment is used to develop ISPEA2. 

The optimal PM and replacement schedule for 
the multi-objective optimization model are presented 
in Fig. 4. When an SC is maintained, the effective age 
of that SC drops, based on the value of improvement 
factors ηi and βi (Table 1). For example, comparing 
the variation in the effective age of SC6 and SC8 in 
Fig. 4, we can see that SC8 is just replaced and no 
maintenance activity is performed on this SC. On the 
other hand, SC6 is just maintained, and replaced only 
once. This relates to the values of ηi and βi for each SC. 
Therefore, it is necessary that SC8 receives more 
replacement activities than SC6 to satisfy the required 
rate of occurrence of failure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 shows the rate of occurrence of failure of 
the DMCM with an optimal PM schedule and without 
a PM schedule. The rate of occurrence of failure 
without a PM schedule increases to over 0.05 at 270 d. 
The rate of occurrence of failure of the DMCM with a 
PM schedule is lower than 0.05. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 illustrates the reliability of the DMCM 
under the optimal PM schedule and Fig. 7 shows the 
reliability of SCs of the DMCM under the non- 
optimal PM schedule. The reliability curve of the 
optimal PM schedule is smoother and the reliability of 
each SC is almost the same at each stage in Fig. 6. 
Therefore, the system under the proposed PM policy 
is safer than the non-optimal PM schedule considered. 

To test the efficiency and distribution of ISPEA2 
solutions, we compared ISPEA2 with NSGA-II and 
generational GA. To handle multiple objectives using 
generational GA, the two objective functions are dealt 
with using a weighted-sum approach. The multi- 
objective optimization model Eq. (14) is defined as 

 

 1 1 2 2 2

1 R

2 c

( ) / max( ) ,

 1 ,

.

F x f f f

f F

f F

  


 
 

         (17) 

 

A set of values for the weights in the first fitness 
function was developed to determine the Pareto op-
timal front. These values were randomly generated in 
the range of 0 to 1 for both objectives with a condition 
of ω1+ω2=1. 

In addition, the parameters for ISPEA2, 
NSGA-II, and the generational GA were set as pre-
sented in Table 2. The MATLAB R2008a program-
ming environment was used to develop ISPEA2, 
NSGA-II, and generational GA. 

Table 1  Data for parameters of the PM schedule 

SCs hi(t) εi cfi (USD) cmi (USD) cri (USD)

SC1 0.0406(t/53)2.15 0.67 318.75 68.75 312.50

SC2 0.0429(t/49)2.1 0.65 350.00 47.50 293.75

SC3 0.0436(t/47)2.05 0.55 337.50 81.25 306.25

SC4 0.0275(t/69)1.9 0.50 262.50 52.50 225.00

SC5 0.0478(t/46)2.2 0.62 312.50 43.75 250.00

SC6 0.0208(t/89)1.85 0.52 268.75 60.00 262.50

SC7 0.0377(t/53)2 0.58 300.00 40.00 262.50

SC8 0.0119(t/151)1.8 0.68 281.25 37.50 268.75

SC9 0.0182(t/96)1.75 0.48 275.00 62.50 256.25

SC10 0.0450(t/50)2.25 0.75 250.00 56.25 218.75

Fig. 4  PM schedule for the Pareto solution 
I: inspection; M: maintenance; R: replacement 
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Fig. 5  The failure rate of DMCM with an optimal PM
schedule and without a PM schedule 
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Figs. 8 and 9 show the reliability and total cost 
progress of the three algorithms during the genera-
tional GA (ω1=0.7, ω2=0.3). The convergence of the 
generational GA was not very consistent compared 
with that of ISPEA2 and NSGA-II with a fitness 
function Eq. (20). On the other hand, the convergence 
of ISPEA2 seemed to be faster than that of NSGA-II 
and generational GA in the first iterations. Although 
the three algorithms reached almost the same 
near-optimal solutions at the end, the solutions of 
ISPEA2 were better than those of the other algorithms. 
An advantage of ISPEA2 is its ability to search 
neighborhoods to find both global and local optimum 
solutions. 

The computational efficiency of the algorithms 
in terms of CPU time was also examined using a 
laptop computer (Intel/Core 2, 1.67 GHz, and 2 GB 
RAM). Table 3 shows the comparisons of ISPEA2, 
NSGA-II, and generational GA, where the ratio of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

non-dominated individuals was used to evaluate the 
accuracy of the obtained solution set. The computa-
tional time was less than 3 min for the ISPEA2 and 
almost 3 min for NSGA-II. ISPEA2 showed better 
performance than NSGA-II and generational GA in 
terms of both computing efficiency and accuracy. 

Table 2  Parameters and objective functions of the algorithms 

Algorithm Objective function Parameter name Parameter value 

ISPEA2 
F(x)=[minf1, minf2], 
f1=1−FR, 
f2=Fc 

Terminal generation 400 
Population size 200 
Archive size 100 
Crossover rate 0.80 
Mutation rate 0.03 

NSGA-II 
F(x)=[minf1, minf2], 
f1=1−FR, 
f2=Fc 

Terminal generation 400 
Population size 200 
Crossover rate 0.80 
Mutation rate 0.20 

Generational GA 
 

F(x)=ω1f1+ω2(f2/max(f2)), 
f1=1−FR, 
f2=Fc, 
ω1=0.7, ω2=0.3 

Terminal generation 400 
Population size 200 
Crossover rate 0.20 
Mutation rate 0.40 
Probability of situation 0.40 

Fig. 7  The reliability of SCs of DMCM under the non-
optimal PM schedule 
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Fig. 6  The reliability of SCs of DMCM under the optimal
PM schedule 
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Fig. 8  The reliability progress of ISPEA2, NSGA-II, and
generational GA

Generational GA (ω1=0.7, ω2=0.3)



Gao et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2014 15(11):862-872 
 

871

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

5  Conclusions 
 

In this paper, we attempted to integrate two prin-
ciples to support the PM scheduling of mechanical 
systems: (1) the total cost principle, and (2) the system 
reliability principle. A multi-objective optimization 
model is presented, which considers the two principles 
simultaneously. The multi-objective optimization 
method is used to find an optimal solution that satisfies 
all principles. Both the conceptual and mathematical 
models of the proposed multi-principle PM scheduling 
method are explained. Furthermore, a case study of PM 
scheduling of a DMCM is provided to illustrate how 
this new method can be implemented in practice. 

The proposed new method is expected to deepen 
understanding of PM of mechanical systems in theory, 
and to enhance the effectiveness of PM scheduling in 
practice. The two underlying principles, when treated 
individually, are not unfamiliar in engineering design. 
Nevertheless, little effort has been devoted to inte-
grating them as a whole to guide the PM process. In 
particular, each principle was purposefully selected to 
address a unique aspect of mechanical systems: total 
cost and system reliability. From the theoretical de-
velopment perspective, this paper points out a new 
direction for addressing the PM of mechanical sys-
tems by means of abstracting and integrating funda-
mental PM scheduling principles. From the practical 

application perspective, the method presented enables 
engineers to address multiple aspects of a mechanical 
system comprehensively (as opposed to separately) 
and simultaneously (instead of sequentially). Future 
research will include the application of the proposed 
method to a more mechanical system than the DMCM. 
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中文概要： 
 

本文题目：复杂机械产品多准则预防性维护设计 
Multi-principle preventive maintenance: a design-oriented scheduling study for mechanical systems 

研究目的：为复杂机械产品提供满足整机可靠性指标和维护成本指标的预防性维护方案多准则规划方法。 

创新要点：1. 分析了检查、维修、更换等对复杂机械产品零部件工作寿命变化的作用机理；2. 提出了复杂机械

产品预防性维护多准则规划方法。 
研究方法：1. 基于非完美维修理论，建立不同模式下零件间工作寿命模型，定义维修效能因子，表征检查、维

修、更换对零件寿命的影响；2. 通过求解获得复杂机械产品指定时间区间的预防性维护方案，根据

零部件工作寿命，采取维修和更换等预防性维护措施，减少零部件故障的发生。 

重要结论：零部件的预防性维护次数与其故障因子相关；机械产品尤其是复杂机械产品实施定期预防性维护能

够减少或消除故障的发生。 
关键词组：预防性维护；多准则优化；工作寿命 


