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Abstract:    This paper proposes an extended design concept and mechanical description for cable-net structures, including 10 
states and 15 procedures which are defined according to their physical nature and analytical capabilities. In the pre-stress release 
analysis, an iterative computational method is developed for the inverse evaluation from the equilibrium state to the zero-stress 
state, which adopts the least norm least square approach (LNLS) to the compatibility equation because of the indeterminate 
property of a cable-net structure. In the pre-tensioning development analysis, another iterative computational method is developed 
for the positive problem from the zero-stress state to the actual pre-stress state by moving the boundary joints, in which the explicit 
governing equations are formulated based on the particular energy function and a feasible self-stress mode is adopted to avoid the 
singularity of the initial stiffness matrix. To implement these methods, Matlab algorithms are developed and two examples are 
investigated. By comparing the results of the iterative method with those of the dynamic relaxation method, this study determines 
that they are comparable with each other, which validates the efficiency and accuracy of these iterative methods. 
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1  Introduction 

 
Cable-net structures have attracted considerable 

interest from architects due to their lightweight, in-
novative forms, and environment-friendly character-
istics. Despite the advantages of cable material, such 
as high strength, high modulus, and low relaxation, 
cable-net structures cannot be stable without having 
enough pre-stress state which forms a specific shape 
for structures and develops stiffness to carry loads. 
Consequently, the structural performance and the 
design process become rather complex, which pro-
vides great challenges to structural engineers. 

As many analytical methods have been proposed, 
the common design process for cable-net structures 
consists of two basic steps. The first step is a form  
finding process to determinate the equilibrium con-
figuration of a prescribed pre-stress state within a 
certain boundary, in which no material parameter is 
needed, as the required form depends only on the 
pre-stress state. The second step is a static and dy-
namic analysis under various load conditions 
(pre-stress, self-weight, snow, wind, and so on), in 
which material parameters are assigned to structures.  

In the first step, extensive form finding methods 
have been developed, including those based on the 
dynamic relaxation method (Day and Bunce, 1970; 
Lewis et al., 1984; Barnes, 1994), the modified 
Newton-Raphson iteration (Argyris and Scharpf, 
1972; Argyris et al., 1974; Haber and Abel, 1982), 
the force density method derived from special  
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linearization techniques (Schek, 1974; Linkwitz and 
Grutndig, 1987; Gründig et al., 2000), the new adap-
tive force density method for particular tensegrity, 
and the updated reference strategy for membrane and 
cable structures (Bletzinger and Ramm, 1999; 
Bletzinger et al., 2010). In the second step, starting 
with the pre-stress analysis, loading analyses are car-
ried out in sequence. To explore the structural be-
havior with respect to various load conditions, many 
researchers studied the resistant capacity of cable nets 
(Castro-Fresno et al., 2008; Del Coz Diaz et al., 2009) 
and the slope stabilization of flexible systems 
(Blanco-Fernandez et al., 2011; 2013). 

Furthermore, the above two steps are assumed to 
be decoupled and carried out separately in the com-
mon design process; however, this assumption is 
applicable only if the differences between the final 
stress and the required stress are relatively small and 
negligible. The achievement of the required stress and 
shape has been investigated in extensive research. 
Argyris et al. (1974) found that the final stress was 
even 30% smaller than the required stress in an ex-
periment performed on the Munich Olympic Stadium 
cable-net roof. Chen and Zhang (2008) discovered 
large stress differences in the suspended cable net of 
the 2008 Beijing Olympic Games and the central sail 
cable-net roof of the China Maritime Museum. Fur-
thermore, Chen and Zhang (2011) also found that the 
final stress was even 16% smaller than the required 
stress in a 73.2 m span hyper cable-net roof. It appears 
that for a cable-net structure, the effect of the 
pre-stress discrepancy on the overall structural be-
havior is fairly enormous, which means the afore-
mentioned assumptions are actually invalid.  

To evaluate pre-stress discrepancies and describe 
their mechanical behavior, Wagner (2005) provided 
an enhanced design process for tension structures. 
Chen and Zhang (2008) and Zhao et al. (2012) also 
proposed an extended framework for the cable design 
process and developed an approximation method to 
minimize and eventually eliminate these discrepan-
cies. Furthermore, Eriksson and Tibert (2006) pro-
posed a routine for the pre-stress optimization of an 
offset tension truss antenna to reduce discrepancies. 
However, although many studies targeted the elimi-
nation of pre-stress discrepancies, substantial pro-
gress has not been completely achieved and there is 
still a need to extend the design process and clarify 

more clearly the mechanical behavior. Furthermore, it 
is also necessary that the design process should be 
standardized by modular procedures which can be 
carried out individually. 

Firstly, this paper proposes an extended concept 
for the cable design process based on our previous 
study. The corresponding flow chart, which allows a 
highly detailed description of the stress state and 
simulation procedure, is added to clarify the me-
chanical behavior. Sequentially, iterative computa-
tional methods for the theoretical zero-stress state and 
the “actual” pre-stress state are developed to imple-
ment the extended design concept. In addition, 
Matlab algorithms are developed accordingly and two 
examples are proposed to demonstrate the efficiency 
and accuracy of the algorithms. For simplicity, the 
main assumptions throughout this paper are as fol-
lows: the analyzed cable-net structure is always under 
the linear-elastic scope with a small strain and large 
deformation; and it is simplified to be a pin-jointed 
link assembly whose cable link is straight with a 
uniform cross-section. 

 
 

2  Extended design process and mechanical 
description of cable-net structures 

 
For mechanical detailed modeling of a cable-net 

structure, it is essential to provide a correct mechan-
ical description of its state and deformation process 
because of the arbitrarily large displacement which 
occurs in the loading state and in the building process. 
This study starts with a description of individual 
configurations throughout the entire life span of  
cable-net structures, before investigating the gov-
erning equations for each design step. 

As shown in Fig. 1, a new extended design 
concept is proposed based on our previous work 
(Chen and Zhang, 2008; 2011), including 10 states 
labeled S and 15 procedures labeled P, which are 
defined according to the physical nature and analyti-
cal sense of cable-net structures.   

The specific definition of every state is as fol-
lows: S1 defines the prescribed stress, boundary 
conditions, geometry, and topology; S2 is the equi-
librium state, i.e., the resulting shape of the form 
finding; S3 is the pre-stress state of the common  
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tensile structural analysis; S4 is the loading state (e.g., 
snow, wind, and so on); S5A and S5B are two as-
sumed zero-stress states for assembled cables without 
gravity and pretension, and S5B corresponds to the 
real state where the entire cable-link assembly has 
been assembled together with connector clamps and 
lying on the building site; S6A is a theoretically pre-
dicted construction state, i.e., “actual” pre-stress state, 
whereas S6B is the final construction pre-stress state 
in reality; S7A and S7B are the intermediate states 
from the zero-stress state to the pre-stress state. 

Accordingly, 15 procedures are designed to an-
alyze the transformation from state to state. P1 rep-
resents the form finding analysis, and P2 represents 
the pre-stress analysis with the assignment of a ma-
terial parameter and pre-stress on the equilibrium 
configuration of the form finding. Furthermore, P3, 
P3A, and P3B represent the loading analyses under 
various loads. In contrast to the common design 
process which merely includes the procedures from 
P1 to P3, the extended design concept also includes: 
P4A1 and P4A2 which represent the pre-stress release 
analyses; P5A, P5A1, and P5A2 which represent the 
pre-tensioning development analyses from the  
zero-stress state to the pre-stress state; P6B1 and 
P6B2 which are the actual manufacturing and as-
sembling processes; and P7B, P7B1, and P7B2 which 
are the actual construction pre-tensioning processes. 

In P6B1 and P6B2, the sequence of the actual 

manufacturing process can be summarized as follows: 
firstly, the unstressed link length is calculated and 
marked; then the cutting of each cable is carried out. 
As for the actual assembling process, the cables are 
carefully assembled together with connector clamps 
to form the entire cable-link assembly at the building 
site. Afterwards, in P7B, P7B1, and P7B2, the entire 
cable-link assembly is lifted integrally from the 
ground at the building site to the final design location 
and pre-tensioned sequentially from zero-stress to the 
final pre-stress state. 

As shown in Fig. 1, the central horizontal flow 
from S1 to S4 corresponds to the common design 
concept whose simulation processes P2 and P1 are 
decoupled and separately carried out. Obviously, this 
could lead to the discrepancy of shape and stress 
between states S2 and S3. Although it is necessary to 
perform P6B1 on account of this discrepancy, the 
construction pre-tensioning process simulation has 
not yet been performed from state S5B to state S6B. 
The state S6B therefore is only expected to achieve 
the design requirement with a specific construction 
path. 

In addition, our extended design process 
achieves not only the assumed theoretical states and 
processes over the central flow but also the assumed 
construction states and processes under the central 
flow. From S1, S2, and S5A to S6A, the pre- 
tensioning development analysis P5A is coupled with 
the form finding P1, which ensures state S6A has the 
same configuration and stress as state S2. This simu-
lation route is valuable in the evaluation of the “the-
oretically actual construction process” from states S2 
and S5B to state S6B, especially in the final stage of 
the construction pre-tensioning process from state 
S5B to state S6B. 

In reality, it is unnecessary as well as impossible 
to simulate an analytical model which is identical to 
the assembly due to the fact that the entire cable-net 
assembly always undergoes rather arbitrary states 
with large displacements during construction. 
Therefore, the assumed model S5B with the same 
topology and unstressed lengths, and some auxiliary 
cables are adopted to simulate the construction pro-
cess. However, the numerical simulation of the actual 
pre-tensioning process of the cable-net structures is 
still a great challenge to engineers due to the strong 
coupling between kinematic movement and elastic 

Fig. 1  Extended design concept of cable-net structures 
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deformation. For tensegrity structures, vibration 
health monitoring methods could be a quality control 
tool for the simulation and the manufacturing process 
(Ashwear and Eriksson, 2014). 

The following sections will focus on the proce-
dures P4A2, and P5A and the states S5A and S6A. 
After the theoretical zero-stress state is accurately 
obtained, conventional loading analyses can be per-
formed using the Lagrange formulation from a global 
prospective. 

2.1  Computational methods for the S5A zero- 
stress state 

Based on the equilibrium state of the form- 
finding S2, the calculation of assumed zero-stress 
state S5A is an inverse problem which is called 
pre-stress release analysis P4A2. It is inevitable to 
involve a singular system matrix in a standard non-
linear finite element approach to the assumed zero- 
stress state S5A. This numerical problem which has no 
unique solution results from the inverse nature of the 
given problem. Hence, in this study, an iterative nu-
merical method is developed based on the optimal 
least norm least square (LNLS) approach to a com-
patibility equation of cable-net structures. The method 
primarily consists of four steps: unstressed length and 
elongation calculation, optimal LNLS approach, nu-
merical iterative method, and implementation. 

2.1.1  Unstressed length and elongation of cable links 

Let the vectors x, l, and s denote the configura-
tion, cable length, and cable tension, respectively, 
where the subscript t represents the state S2 and 
subscript 0 represents the state S5A. For the cable-net 
structure, E is the elastic modulus, A is the cross- 
sectional area, and the matrix C is the connectivity 
matrix which defines the specific topology.  

For a single cable link i and the cable-net struc-
ture, the mechanical description model is illustrated in 
Fig. 2 for the pre-stress release process P4A2 from 
state S2 to state S5A. 

The unstressed length l0,i of the link i can be 
formulated as 

 

0, ,
,

,
( )

i i
i t i

i i t i

E A
l l

E A s



                        (1) 

where, for link i, Ei is the elastic modulus, Ai is the 
cross-sectional area, lt,i is the stressed cable length and 
st,i is the cable tension. 

Then the elongation vi of the link i can be written 

as 

 

0, t , t ,
t ,

Δ 1 .i i
i i i i i

i i i

E A
v l l l l

E A s

 
       

           (2) 

 
By calculating the unstressed length and elon-

gation for all cable links, the unstressed length vector 
l0 and the elongation vector v(Δl) of the cable-net 
structure are obtained. 

2.1.2  Optimal LNLS approach 

In this study, the governing equations are de-
veloped for the pre-stress release analysis which is an 
inverse solution. Consider a free joint j connected 
with joints h and k in a cable-net assembly (Fig. 3), 
the equilibrium equation of joint j can be expressed as 
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Fig. 2  Pre-stress release procedure of a cable-net and 
one cable link i
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Fig. 3  Joint equilibration state in a cable-net
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where s is the cable tension, l is the force cable length, 
and p is the external load. 

Considering a cable-net structure with n joints 
and m cables, the global equilibrium equation can be 
written in the matrix form: 

 

,A s p                                     (4) 
 

where 3n mA   is the equilibrium matrix, ms   is 

the cable tension vector, and 3np   is the external 

load vector. 
Similarly, the compatibility equation can be es-

tablished as follows: 
 

, B x v                                  (5) 

 
where 3m nB   (

TB A ) is the compatibility ma-

trix, 3n x   is the joint displacement vector, and 
mv   is the elongation vector of the cables. 

According to the matrices theory, when the 
number of equations m is less than the number of 
variables 3n, the solution to Eq. (5) can be expressed 
as follows (Nashed, 1976): 

 

Null( ) ( ) ,       +x B v B α B v I B B α    (6) 

 
where Null(B) is the basis for the nullspace of the 

compatibility matrix B, 3n m B   is the Moore- 

Penrose inverse, 3n rα  is a vector consisting of the 
participation coefficients of the mechanisms, and r is 
the rank of B. 

The second part of Eq. (6) results in infinite so-
lutions, which is not only independent from the cable 
elongation but also orthogonal to the first part. To 
obtain the optimal solution, some constraints should 

be supplemented. In general, ( ) 0 +I B B α  and the 

property of the matrix norm is 
2 2
+ +B v B v  

   2 2

.    + + +I B B α B v I B B α  The LNLS is 

assumed, thus the solution to Eq. (5) is 

 
, x B v                               (7) 

 
which implies that the movement mechanism is ex-

cluded in Eq. (7). Therefore, the cable-net structure is 
a first-order infinitesimal mechanism (Calladine and 
Pellegrino, 1991; Vassart et al., 2000). It is valid for 
small deformations near the equilibrium state; 
moreover, the deformation is minimal with a given 
elongation and the work of the external force is 
minimal relative to the joint displacement in terms of 
physical meaning. 

2.1.3  Numerical iterative method and implementation 

At first, the unstressed length vector l0 and the 

elongation vector v  can be calculated from Eqs. (1) 

and (2), respectively. Then the joint displacement can 
be computed from Eq. (7) after the compatibility 
matrix B is determined. Based on the above formula-
tion, a numerical iterative method can be developed to 
perform pre-stress release procedures.  

The configuration of the cable link assembly, i.e., 
the joint coordinates, can be updated by  

 

0 t Δ . x x x                                      (8) 

 
Substituting Eq. (7) into Eq. (8), the configura-

tion of the zero-stress state can be expressed as 

 

0 t . x x B v                                   (9) 

 
It is an inverse operation from the elastic equi-

librium state to the zero-stress state, in terms of 
physical meaning, the zero-stress state is the short-
ening of the cable link from the stressed state. 

Therefore, the components of vector v  in Eq. (9) 

should be negative corresponding to the shortening of 
the cable link from the zero-stress state to the stressed 
state. 

Theoretically the elements of the tension vector 
s0 should all be zero in the zero-stress state, corre-
spondingly the convergence criterion of the numerical 
calculation employed is 

 

0max(| |) ,s                           (10) 

 
where |*| is the absolute value of the components of 
the vector, the function max(*) is the maximum value 
of the components of the vector, and ε is the conver-
gence threshold value.  
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If Eq. (9) cannot be satisfied in the current state, 
the matrix B and vector v  should be regenerated in 

the current state, and the new configuration should be 
iteratively updated. When the convergence criterion is 
finally satisfied, the zero-stress state will be obtained. 

Based on the proposed iterative procedure, a 
Matlab algorithm is developed and the flow chart of 
the computation of the pre-stress release analysis is 
shown in Fig. 4. 

In fact, the pre-stress release procedure is real-
ized by releasing particular boundary constraints. As 
different release methods could result in different 
zero-stress states, even though some methods cannot 
completely release the pre-stress state, there is a need 
to investigate the pre-stress release method using the 
minimum constraints to release the pre-stress com-
pletely and effectively limit the global rigid move-
ment. In addition, this case illustrates the non-unique 
solution of the inverse problem. 

2.2  Computational methods for the S6A pre-stress 
state 

Since cables can only carry tension in the pro-
cess of load transfer, the cable-net structure has to be 
pre-tensioned on site to activate geometric stiffness so 
that cables can carry compression by reducing 
pre-tension. The resulting configuration and pre- 
stress is the “actual” pre-stress rather than the pre-
scribed pre-stress. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Based on the S5A zero-stress state, the calcula-
tion of the pre-stress state S6A is a positive problem. 
Contrary to the pre-stress release analysis P4A2, this 
procedure is named pre-tensioning analysis P5A, as 
well as the intermediate procedures P5A1 and P5A2. 
Due to the existence of internal mechanisms 
(Calladine and Pellegrino, 1991), a standard nonlinear 
finite element (FE) approach to this problem inevita-
bly involves a singular system matrix. Firstly, to 
overcome the initial singularity of the stiffness matrix, 
a feasible self-stress model is adopted in this study. 
Then an iterative nonlinear analysis procedure is 
developed based on the particular formulation of the 
cable link. 

2.2.1  Governing equations 

For the cable-net structure with m elements and 
nf free joints, the total potential energy function can 
be established, as follows (Ströbel, 1997): 

 

T T T
0 0
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1
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where v, s, and x are independent unknowns; i  is 

the elastic strain energy of the cable links; a  is the 

external force potential energy; T
(1, )m v  

1 2( )mv v v  is the element elongation vector; 
T
(1, ) 1 2( )m ms s s s  is the element tension vec-

tor; T
0(1, ) 01 02 0( )m ml l l l  is the element un-

stressed length vector; 
f f

T
(1, ) 1 2( )n np p p p  is 

the external conservative load vector excluding the 
boundary pretension force, which is independent 

from the configuration; 
f f

T
(1, ) 1 2( )n nx x x x  is 

the vector of the joint coordinates in the current state, 

i.e., the current configuration; 
f

T
0(1, )n x  

f01 02 0( )nx x x  is the coordinate vector in the 

unstressed state, i.e., the initial configuration; f(x) is 
the cable link length function with respect to 

f f

T
(1, ) 1 2( ),n nx x x x  which is identical to the 

element stressed length vector T
(1, )m l  

1 2( )ml l l  in the current state; and m mK   
Fig. 4  Flow chart of the computation of the pre-stress 
release analysis 



Chen et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2014 15(10):813-828 
 

819

is a diagonal matrix of the element stiffness whose 
diagonal entry is kii=EiAi/l0i. 

Calculating the derivative of the total potential 

energy with respect to x, ,v  and s, respectively, and 

then setting them all equal to zero, the equilibrium, 
constitutive, and compatibility equations of the 
structure can be obtained as follows: 

 

 
T
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f x

f x l p
x x

       (12a) 

0,


  


K v s
v

                           (12b) 

0( ( )) 0.


    

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             (12c) 

 
Using the Taylor expansion of the equilibrium 

equation and neglecting the second-order term, 
Eq. (12a) can be formulated into: 
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By introducing the Jacobian matrix ∂f(x)/∂x=Ā, 

Eq. (13) can be simplified into: 

 

 T T
0( ( ) ) ,i       A A x G x A f x l p     (14) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where the global stiffness matrix G consists of two 

parts: the elastic stiffness TA A , and the geometric 
stiffness Z. 

The cable link length function fi(x) of the cable 
link i with start joint k and end joint j is written as 
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The derivative of fi(x) with respect to x is  
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The elastic stiffness matrix of the element i can 

be written as 

 
T .i i ii ikK = a a                                (17) 

In addition, 

0 0( ( ) ) ( ) .f     K x l K l l Kv s          (18) 

 
Solving the second-order derivative of fi(x) and 

multiplying the elemental tension si, the geometric 
stiffness matrix of the element i can be obtained as 
shown in Eq. (19): 
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With the linearization of Eq. (12c), the vector of 
the element elongation can be written as  

 

0 0

0

( )
( ) ( )

( ( ) ) ,

i
i

i


     


      

f x
v f x l f x x l

x

x + f x l x l 
       (20) 

 

where 0( )i l f x l  is a known vector of the ele-

mental elongation.  
To assemble the global stiffness matrix G, the 

elastic stiffness and geometric stiffness for all cable 
links could be calculated by Eqs. (17) and (18), re-
spectively. Normally the matrix G is non-singular due 
to the existence of geometric stiffness. Therefore, 
substituting Eq. (20) into Eq. (14), the basic equation 
of the pre-tensioning analysis by moving boundary 
joints can be obtained as 

 

  1T T( ).


   x = p l              (21) 

 
Although Eq. (21) provides an approach to the 

movement increment Δx of the boundary joints in the 
pre-tensioning process, it is invalid when the matrix 

T G     is singular. In other words, Eq. (21) 
cannot be temporarily solved in the initial unstressed 
state, since the initial stiffness matrix G is non- 
invertible without introducing the geometric stiffness. 

2.2.2  Initial tension of the feasible self-stress model 

To avoid the singularity of the initial stiffness 
matrix G, a small assumed initial tension is used to 
activate a certain geometric stiffness in the cable link 
structure. Therefore, Eq. (21) can be simulated at an 
assumed state which is infinitely close to the initial 
unstressed state. A feasible self-stress mode, in which 
all elements are greater than zero corresponding to all 
cables being under tension, is adopted as the assumed 
initial tension to ensure that the system satisfies 
equilibrium in the current state.  

As illustrated in the matrix analysis, the 
null-space of A contains the self-stress modes which 
are element forces in the absence of an external load. 
The solution to find the bases for the null-space is not 
unique. The Gaussian elimination method is efficient 
but it has problems with handling matrices which are 
rank-deficient, while singular value decomposition 

(SVD) is a little time-consuming but robust and stable 
due to the orthogonal transformation. Herein we cap-

italize on SVD, in which the matrix A 
3( )n mA  

can be expressed as  
 

T0
,

0 0

 
  

 

Σ
A U W                       (22) 

 
where 1 2=diag( , , , )r  Σ  is the non-zero singu-

lar value of matrix A, 1 2 3[ , , , ]n U u u u  is the left 

orthogonal matrix, 1 2[ , , , ]m W w w w  is the right 

orthogonal matrix, and r is the rank of matrix A.  
The singular value matrix satisfies: 
 

,  1,2, , ,

0,   1, 2, , .  
ii i

i

i r

i r r m


 

  




Σ u
Aw                (23) 

 
According to the above formula, the matrix W 

can be partitioned into two parts: 
 

  1 2 1 2[ , , , ],  [ , , , ].r r m r r r m    W w w w W w w w      

(24) 
 
Thus, 
 

[ | ].r m rW W W                         (25) 

 
According to Eqs. (23) to (25), the following can 

be obtained: 

 
0.m r AW                             (26) 

 
As indicated in Eq. (26), the columns of matrix 

m rW  are the orthogonal bases for the nullspace of 

matrix A. In other words, the self-stress modes can be 

given by the matrix m rW . If there is a self-stress 

mode where all the elements are greater than zero, it is 
a feasible self-stress mode which can be interpreted as 

the assumed initial tension 0
s . If there is no feasible 

self-stress mode, the initial tensile forces of all the 
elements should be assumed to be very small (e.g., 

1 N). The assumed unstressed length vector 0
l  at the 

zero-stress state can then be calculated using Eq. (1). 
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2.2.3  Computational procedure and implementation 
 
In this pre-tensioning analysis P5A, the compu-

tational method imports a small assumed initial ten-
sion to avoid the singularity of the initial stiffness 
matrix G. Due to this import of assumed initial ten-
sion, the real theoretical unstressed state changes 
correspondingly. To eliminate this effect, the element 
length l0 at the initial unstressed state is always taken 
as the real unstressed length.  

As shown in Fig. 5, the computational procedure 
is summarized and the corresponding Matlab algo-
rithm is developed to implement the pre-tensioning 
analysis. 

In the iterative computation process, the release 
movement of boundary joints is discretized into small 
increments. In the calculation of the incremental 
movement, the pre-tensioning development can be 
determined step by step. In other words, the tension 
and the configuration can be evaluated step by step. 
The calculation stops when the released joints are 
moved to the expected position of the elastic equilib-
rium state. Finally, the pre-stressed state S6A is 
achieved. 

In the actual construction process of cable-net 
structures, the boundary joints can be stretched in 
different sequences (e.g., synchronously or non- 
synchronously). Moreover, different movement im-
ports of boundary joints can be adopted to simulate 
the actual pre-tensioning process. The intermediate 
configuration S7A can be obtained through the in-
termediate pre-tensioning processes P5A1 and P5A2. 
In addition, the pre-tensioning force of boundary links 
is dependent on configuration, which could be used to 
choose and control the hydraulic jack. 

 
 

3  Numerical examples 
 
To demonstrate the pre-stress release and 

pre-tension analysis, two typical examples are given 
based on the aforementioned algorithms. Moreover, 
two distinct methods have been performed to inves-
tigate the structural behavior in this analysis. 

3.1  Diamond cable-net example 

As shown in Fig. 6, the diamond cable-net con-
sists of 41 joints and 80 cable links with four fixed  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

corner joints. The lower corner joints are joint 1 and 
its symmetrical joint, while the upper one is joint 15 
and its symmetrical joint. The plan is 7.32 m×7.32 m, 
and the difference in elevation between the upper 
joint and the lower joint is 0.732 m. Due to symmetry, 
only the data of joints 1 to 15 are detailed in this 
example. 

Based on the force density method, the form of 
this structure was formed with a 50 kN/m force den-
sity in the boundary cables and a 10 kN/m force den-
sity in the inner cables. The material was assigned to 
the members, where the cross-section stiffness of the 
boundary cables was EA=15 000 kN, and that of the 
inner cables was EA=3000 kN. In the absence of ex-
ternal loads and self-weight, the distribution of ten-
sion is shown in Fig. 7. 

x

l 0l = l l

As

Fig. 5  Flow chart of the computation of the pre-
tensioning development analysis 
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3.1.1  Computation of zero-stress state S5A 

Based on the equilibrium state S2, the theoretical 
zero-stress state S5A can be achieved using two dif-
ferent pre-stress release methods: the four fixed joints 
release and the two lower fixed joints release. 

1. Four fixed joints release 
In the first method, the constraint in the y and z 

directions of the lower corner points and the con-
straints in the x and z directions of the upper one are 

released. When the convergence criterion is set at 

0 0.001s  kN, the zero-stress state can be obtained 

after only three iterations, which demonstrates the 
effectiveness of the aforementioned algorithm. 

The configuration and the displacements ob-
tained by the developed algorithm are listed in Table 1, 
and those obtained by the dynamic relaxation method 
(DRM) (Zhao et al., 2012) are also listed in Table 2 
for comparison. As anticipated, the results are in good 
agreement with those of DRM, which demonstrates 
the correctness of the algorithm. As illustrated in 
Table 1, the central joint 11 remained unchanged, and 
the others symmetrically retracted with respect to the 
x=0 and y=0 planes. 

2. Two lower fixed joints release 
In the second method, the pre-stress release 

analysis is carried out by releasing the constraints in 
the y and z directions of the lower corner points. 
When the convergence criterion is set to 

0 0.0 N,01 ks  the theoretic zero-stress state can be 

obtained after only five iterations, which also 
demonstrates the effectiveness of the algorithm. 

The configuration and the displacement obtained 
by the developed algorithms are listed in Table 2, and 
the results of DRM are also listed in Table 2 for 
comparison. As illustrated in Table 2, the central joint 
11 is found at the left, and the other joints symmetri-
cally retracted with respect to the x=0 and y=0 planes. 
It is found that the displacement in Table 2 was much 
greater than that in Table 1. 

Fig. 8 (p.824) plots the cable shape at y=0 ob-
tained by the first method, while Fig. 9 (p.824) shows 
the results obtained by the second method. Compar-
ing Fig. 8 and Fig. 9, there are considerable differ-
ences between the cable shapes in the zero-stress 
states. Similar property is observed by comparing the 
configurations of joints in Table 1 and Table 2, which 
means that different methods of pre-stress release 
could result in different zero-stress states. In other 
words, the zero-stress state for the equilibrium state is 
not unique, which implies that the cable structures can 
be constructed in various ways. 

3.1.2  Pre-tensioning development analysis 

Based on the zero-stress state S5A, the 
pre-tensioning development analysis herein is con-
ducted in two different methods: the first method is 
moving four released joints synchronously; the  

Fig. 7  Distribution of tension at the equilibrium state 
S2 (unit: kN) 

Fig. 6  Equilibrium configuration of form finding (unit: m) 
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second one is moving two released lower joints syn-
chronously. The movement direction of each joint is 
opposite to that of the corresponding displacement 
which is achieved in the above pre-stress release 
analysis. The displacement is divided into five equal 
increments, which means the pre-tensioning devel-
opment is completed in five steps. 

1. Moving four released joints synchronously  
Taking the equilibrium convergence criterion,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the joint unbalance force 0.001As  kN, and the 

changes of tension in cables 1 to 5 during the 
pre-tensioning development process are illustrated in 
Fig. 10. The configuration coordinates of joints in 
equilibrium state S2 and the “actual” pre-stressed 
state S6A are listed in Table 3 with three decimals. As 
indicated in Table 3, there is no obvious difference 
between these two states, which means that state 6A is 
the same as state S2. 

Table 1  Coordinates and displacements of joints 1 to 15 (four fixed joints release) 

Joint 
No. 

Equilibrium state S2 Zero-stress state S5A Zero-stress state S5A (DRM) Displacement (mm)

x (m) y (m) z (m) x (m) y (m) z (m) x (m) y (m) z (m) ∆x ∆y ∆z 

1 0.000 3.660 −0.366 0.000 3.646 −0.356 0.000 3.646 −0.358 0 −14 10 

2 0.000 2.594 −0.201 0.000 2.588 −0.167 0.000 2.588 −0.168 0 −6 35 

3 0.708 2.521 −0.175 0.706 2.515 −0.158 0.706 2.515 −0.159 −1 −6 17 

4 0.000 1.671 −0.089 0.000 1.668 −0.058 0.000 1.668 −0.058 0 −3 31 

5 0.765 1.636 −0.066 0.763 1.633 −0.045 0.763 1.633 −0.044 −2 −3 21 

6 1.545 1.545 0.000 1.543 1.543 0.000 1.543 1.543 0.000 −2 −2 0 

7 0.000 0.820 −0.022 0.000 0.818 −0.010 0.000 0.819 −0.010 0 −2 12 

8 0.805 0.805 0.000 0.803 0.803 0.000 0.803 0.803 0.000 −2 −2 0 

9 1.636 0.765 0.066 1.633 0.763 0.045 1.633 0.763 0.044 −3 −2 −21

10 2.521 0.708 0.175 2.515 0.706 0.158 2.515 0.706 0.159 −6 −1 −17

11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 0 

12 0.820 0.000 0.022 0.818 0.000 0.010 0.819 0.000 0.010 −2 0 −12

13 1.671 0.000 0.089 1.668 0.000 0.058 1.668 0.000 0.058 −3 0 −31

14 2.594 0.000 0.201 2.588 0.000 0.167 2.588 0.000 0.168 −6 0 −35

15 3.660 0.000 0.366 3.646 0.000 0.356 3.646 0.000 0.358 −14 0 −10

 
 

Table 2  Coordinates and displacements of joints 1 to 15 (two lower fixed joints release) 

Joint 
No. 

Equilibrium state S2 Zero-stress state S5A Zero-stress state S5A (DRM) Displacement (mm)

x (m) y (m) z (m) x (m) y (m) z (m) x (m) y (m) z (m) ∆x ∆y ∆z 

1 0.000 3.660 −0.366 0.000 3.631 −0.344 0.000 3.630 −0.347 0 −29 22 

2 0.000 2.594 −0.201 0.000 2.580 −0.117 0.000 2.579 −0.122 0 −14 84 

3 0.708 2.521 −0.175 0.706 2.504 −0.124 0.706 2.503 −0.127 −2 −18 50 

4 0.000 1.671 −0.089 0.000 1.666 0.035 0.000 1.666 0.033 0 −5 124

5 0.765 1.636 −0.066 0.763 1.631 0.046 0.763 1.630 0.039 −2 −5 112

6 1.545 1.545 0.000 1.544 1.537 0.062 1.544 1.536 0.056 −1 −8 62 

7 0.000 0.820 −0.022 0.000 0.818 0.110 0.000 0.819 0.116 0 −2 132

8 0.805 0.805 0.000 0.803 0.803 0.125 0.803 0.803 0.128 −2 −2 125

9 1.636 0.765 0.066 1.633 0.763 0.168 1.633 0.763 0.170 −3 −2 102

10 2.521 0.708 0.175 2.521 0.706 0.219 2.522 0.706 0.216 0 −1 44 

11 0.000 0.000 0.000 0.000 0.000 0.122 0.000 0.000 0.119 0 0 122

12 0.820 0.000 0.022 0.818 0.000 0.132 0.819 0.000 0.130 −2 0 110

13 1.671 0.000 0.089 1.669 0.000 0.166 0.169 0.000 0.169 −2 0 78 

14 2.594 0.000 0.201 2.592 0.000 0.243 2.592 0.000 0.241 −2 0 42 

15 3.660 0.000 0.366 3.660 0.000 0.366 3.660 0.000 0.366 0 0 0 
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2. Moving two released lower joints  

synchronously 
Taking the same equilibrium convergence crite-

rion 0.001As  kN, the changes of tension in ca-

bles 1 to 5 during the pre-tensioning development 
process are illustrated in Fig. 11.  

As shown in Fig. 10, the trend of tension was 
approximately linear in the first movement step; 
however, it apparently became nonlinear in the sec-
ond movement step. In these two movement steps, the 
relative tension deviations between the “actual” 
pre-stressed state S6A and the equilibrium state S2 

Table 3  Coordinates and differences of joints 1 to 15 (unit: m) 

Joint 
No. 

Equilibrium state S2 Actual pre-stressed state S6A 

x y z x y z 

1 0.000  3.660 −0.366  0.000  3.660  −0.366  

2 0.000  2.594  −0.201  0.000  2.594  −0.201  

3 0.708  2.521  −0.175  0.708  2.521  −0.175  

4 0.000  1.671  −0.089  0.000  1.671  −0.089  

5 0.765  1.636  −0.066  0.765  1.636  −0.066  

6 1.545  1.545  0.000  1.545  1.545  0.000  

7 0.000  0.820  −0.022  0.000  0.820  −0.022  

8 0.805  0.805    0.000  0.805  0.805    0.000  

9 1.636  0.765    0.066  1.636  0.765    0.066  

10 2.521  0.708    0.175  2.521  0.708    0.175  

11 0.000  0.000    0.000  0.000  0.000    0.000  

12 0.820  0.000    0.022  0.820  0.000    0.022  

13 1.671  0.000    0.089  1.671  0.000    0.089  

14 2.594  0.000    0.201  2.594  0.000    0.201  

15 3.660  0.000    0.366  3.660  0.000    0.366  
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Fig. 10  Change of tension in cables 1–5 (moving four 
released joints synchronously) 

Fig. 8  Cable shape at y=0 (four fixed joints release) 
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were all less than 0.2%. According to the data ex-
pressed with three decimals in Table 3, the configu-
rations of the joints in the state S6A are identical to 
those in the state S2. Therefore, the “actual” 
pre-stressed state can be realized using the interme-
diate state, namely, the theoretical zero-stress state. In 
other words, combining the pre-stress release and 
pre-tensioning development analyses together could 
successfully eliminate the shape and pre-stress  
discrepancy. 

 
 
 
 
 
 
 
 
 
 
 
 

 

3.2  Rectangular cable-net example 

As shown in Fig. 12, the rectangular cable-net 
consists of 117 joints and 180 cable links. The grid 
size is 1 m×1 m, the plan is 10 m×10 m, and the ele-
vation difference is 2 m. Based on the force density 
method, the form of this structure was formed with a 
20 kN/m force density in all the cables. The section 
stiffness EA=5000 kN was assigned to all the cables. 
In the absence of external loads, the tension distribu-
tion of the main cables is shown in Fig. 13.  

The theoretical zero-stress S5A is evaluated by 
releasing the constraints in the y and z directions of all 
lower boundary fixed joints at both sides. Based on 
this zero-stress state, the corresponding pre- 
tensioning development analysis is conducted by 
moving all the released lower fixed joints. The direc-
tion of movement of each joint is opposite to that of 
the corresponding joint displacement. Every dis-
placement is divided into five equal movement in-
crements. Because the displacements of the joints 
were different, the movement increments of the joints 
were not identical to each other. 

Taking the residual tension of cable link 

0 0.001 kNs  as the convergence criterion, the 

theoretical zero-stress state S5A can be obtained after 

three iterations. The change of configuration from 
equilibrium state S2 to the theoretical zero-stress state 
S5A is shown in Fig. 14, in which the solid line is 
equilibrium state S2, and the dashed line is the theo-
retical zero-stress state S5A. 

Taking the joint unbalance force 0.001As  

kN as the equilibrium convergence criterion, the 
changes of tension in cables 1 to 5 during the 
pre-tensioning development process are illustrated in 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 13  Tension distribution of main cables at the 

equilibrium state (unit: kN) 

0 1 2 3 4 5 6
-10

0

10

20

30

40

50

60

70

80

Cable 5

Cable 3
Cable 4

Cable 2

T
en

si
on

 (
kN

)

Movement step

Cable 1
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in cables 1–5 (moving two released joints simultaneously)
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Fig. 15. The coordinates of joints 1 to 5 in the equi-
librium state S2, zero-stress state S5A, and the “ac-
tual” pre-stressed state S6A are listed in Table 4 with 
three decimals. It is apparent that the coordinates of 
the state S2 and the state S6A are virtually identical. 

As shown in Fig. 15, the change of tension be-
came greater as the cable became closer to the 
boundary. In addition, the maximum relative devia-
tion of the tension between the “actual” pre-stressed 
state S6A and the design equilibrium state S2 was 
barely 0.13%. According to the data expressed with 
three decimals in Table 4, the coordinates of the joints 
in the “actual” pre-stressed state S6A are identical to 
those at the equilibrium state S2. 

 
 

4  Conclusions 
 
According to the previous research, the common 

design concept for cable-net structures consists of two 
basic stages: the first is form finding and the second is 
static and dynamic analyses. Based on the equilibrium 
state of form finding, the static and dynamic analyses 
are carried out to investigate the structural behavior 
without introducing the influence of the pre- 
tensioning process. It has been discovered that this 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

separation of design process is associated with the 
discrepancy in stress distribution and configuration 
between the numerically found structure and the real 
one. 

Aimed at minimizing this highly non-uniform 
discrepancy, in this paper an extended design concept 
is proposed and the corresponding flow chart is sim-
ulated, suggesting a highly detailed description of the 
stress state and simulation procedure. Unlike the 
common design concept, this extended concept pro-
vides clear clarifications of mechanical behavior by 
considering the integrity of the design process, which 
means the form finding analysis, pre-stress release 
analysis, and pre-tensioning development analysis 
should be consecutively carried out.  

In this paper, for the inverse problem from the 
equilibrium state of form finding S2 to the theoretical 
zero-stress state S5A in the pre-stress release analysis, 
an iterative computational method is developed, 
which capitalizes on the LNLS approach to the 
compatibility equation on account of the indetermi-
nate nature of the cable-net structures. Moreover, for 
the positive problem from the S5A to the “actual” 
pre-stress state S6A in the pre-tensioning develop-
ment analysis, another iterative computational 
method is developed by moving the boundary joints, 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4  Coordinates of joints 1 to 5 (unit: m) 

Joint 
No. 

Equilibrium state S2 Zero-stress state S5A Pre-stressed state S6A 

x y z x y z x y z 

1 0.000  0.000  0.000  0.000  0.000  0.078  0.000  0.000  0.000  

2 1.000  1.000  0.000  0.996  0.996  0.071  1.000  1.000  0.000  

3 2.000  2.000  0.000  1.991  1.990  0.057  2.000  2.000  0.000  

4 3.000  3.000  0.000  2.985  2.984  0.045  3.000  3.000  0.000  

5 4.000  4.000  0.000  3.978  3.978  0.035  4.000  4.000  0.000  

Equilibrium state S2

Theoretical zero-
stress state S5A
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Fig. 14  Perspective view at equilibrium state S2 and 
zero-stress state S5A 
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in which the governing equations are explicitly for-
mulated according to the particular energy function, 
and the feasible self-stress mode is adopted to avoid 
the singularity of initial stiffness matrix. 

This study found that the configuration of the 
zero-stress state obtained herein compares well with 
those obtained by the dynamic relaxation method, 
which validates the efficiency and accuracy of our 
computational method. It also found that the “actual” 
pre-stress and configuration predicted by our com-
putational methods are consistent with the prescribed 
pre-stress state, suggesting that the combination of the 
pre-stress release and pre-tensioning development 
analyses could successfully eliminate the shape and 
pre-stress discrepancies. In other words, this study 
has made some substantial progress in the elimination 
of the discrepancy; it also provides a superior and 
integral approach to the final pre-stress state and 
configuration. With this integral approach, a thorough 
numerical investigation for cable-net structures be-
comes available, even including the analysis of 
common wind-induced effects. 

In addition, another improvement noted herein is 
that these computational methods are formulated as 
modular procedures in order to be a standard design 
process. As the realization of each design procedure is 
strongly affected by the underlying design problem, 
appropriate computer methods should be adopted. 
Most notably, all the aforementioned methods and 
their respective combinations are advanced tools that 
enable the realization of even more complicated and 
more challenging structures, which are definitely 
within the scope of modern tensile structure design. 
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中文概要： 
 
本文题目：张力索网结构零应力态与预应力态计算方法 

Computational methods for the zero-stress state and the pre-stress state of tensile cable-net 
structures 

研究目的：减小张力索网结构所求实际预应力与预期预应力之间的差异，并更完善地描述结构力学行

为。 

创新要点：提出张力索网结构全过程分析概念,并用 10 个状态描述了其物理或分析的状态,以及 15 个

过程揭示了状态间内在的逻辑关系和力学分析理论；在应力释放分析中，采用逆分析法提

出了一种用于求解合理零应力状态的迭代计算方法；在预应力成形分析中，为获取预应力

状态建立了另一种迭代计算方法。 

研究方法：应力释放分析主要包括四个步骤：构件无应力长度及伸长量计算，最小范数最小二乘法，

数值迭代方法，和执行程序（图 4）；预应力成形分析在能量方程的基础上提出了控制方程

的显式表达式，并为避免初始刚度矩阵的奇异问题而采用了合理自应力模态（图 5）。 

重要结论：比较本文提出的计算方法与动力松弛法得到的零应力态，发现结果吻合良好，证明计算过

程收敛性良好且结果准确。在预应力成形分析中，采用本文迭代方法可以有效消除所求实

际预应力与预期预应力之间的差异。此外，提出的所有计算方法都符合模块化流程，具有

广泛适用性。 

关键词组：张拉索网结构；零应力态；预应力态；预应力释放分析；预应力成形分析；找形分析；逆

问题 


