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Abstract:    The ultimate load and collapsing modes of steel frames under combined vertical and horizontal forces are investigated 
through finite element (FE) modelling and limit analysis. Consideration is given to a frequently overlooked problem which is the 
kinematics arising from the actual rotation of the plastic hinges under axial force and bending moment. This fact draws attention to 
the necessity of a careful assessment of the limit analysis approaches, a fact that might be seen as somewhat in line with the 
outcome from famous paradoxes, such as the one by Stüssi and Kollbrunner (1935), which can only be solved by making reference 
to both elastic and plastic deformations. As a result, it can be shown that in such a manner, it is possible to obtain a handy tool 
capable of competing with much more computationally expensive methodologies. The approach may be relevant to practising 
engineers dealing with code prescriptions and standardization committees. 
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1  Introduction 

 
The collapse factor represents an important 

outcome of a plastic structural analysis and it is a 
significant parameter in the framework of the safety 
assessment and economical design of ductile  
structures. 

From this point of view, classic limit analysis is 
concerned with the problem of finding how resistant a 
given structure is with the aim to estimate the factor 
by which the loads component needs to be amplified 
so that a structural crisis occurs, which takes the form 
of plastic collapse (Chen, 1988). A plastic collapse 
takes place when the structure is converted into a 
mechanism by the development of a suitable number 
and disposition of plastic hinges. To apply the 
methods of limit analysis, however, a very simplified 

and idealised model of the structure must be adopted 
and, notwithstanding the fact that hundreds of papers 
have been devoted to the topic, some consequences of 
apparently unimportant simplifications still seem to 
have not been properly and firmly highlighted. To get 
a perspective of the research made in this field and of 
the main issues concerning the real elastic-plastic 
behaviour of steel structures and of the influence of 
simplifying hypotheses adopted in the limit analysis 
methods, reference can be made to Petrolito and 
Legge (2012). They present a review of previous 
works related to different methods for plastic analysis 
of steel frames, including “various approximate the-
ories that can be derived from the general non-linear 
theory” and “high-accuracy solutions to a series of 
benchmark problems for a variety of modelling as-
sumptions”. Several different approaches for different 
types of plastic analysis are presented, discussed or 
referenced in some books and reports (Massonnet and 
Save, 1976; Halleux, 1981; Save et al., 1991). The 
effects of strain hardening, local buckling, limit  
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deformations, position of the neutral axis and bending 
moment-axial force interaction on the formation and 
position of plastic hinges, or on the spreading of the 
yielded zones are covered (Davies, 2002; 2006; Bap-
tista and Muzeau, 2006; 2008; Abbas and Jones, 
2012). 

Possible shortcomings of limit analysis clearly 
emerge from well-known paradoxes, such as the one 
by Stüssi and Kollbrunner (1935), which can gener-
ally be solved only by making reference to a meth-
odology comprising both elastic and plastic  
deformations. 

On the other hand, the collapse factor can also be 
computed in a step-by-step fashion by following the 
evolution of the inelastic structural response of a 
suitably discretized structure to a given loading his-
tory (Chen, 1988), but such time-stepping analyses 
are computationally demanding and unsuitable for 
design or assessment purposes in the normal engi-
neering practice. Additionally, they need accurate 
modelling and interpretation of results. For this rea-
son, many codes for the design of steel building 
frames, such as Eurocode 3 (EC3, 2005; Gardner and 
Nethercot, 2005; Trahair et al., 2008) make refer-
ences to limit analysis for design and assessment of 
the capacity loading of steel structures under com-
bined static and seismic loadings.  

In the present study it is shown, by means of 
some simple examples, that, if references are not 
made to the actual kinematics arising from the plastic 
hinges on account of the axial force-bending moment 
interaction, the safety factors of the frame structure 
may be significantly affected, and also in common 
loading cases. More importantly, different behaviours 
of the plastic hinges may give origin to different col-
lapse mechanisms, and thus render this primary in-
formation from limit analysis misleading for the de-
sign of new structures and for the strengthening of 
existing ones. 

To this purpose, both the commercially available 
finite element (FE) package ANSYS® (ANSYS, 
2011) and a purposely written automatic implemen-
tation of the limit analysis procedures (Cohn and 
Maier, 1979) within the framework of the symbolic 
code MATHEMATICA® (Wolfram, 2003)  have 
been employed. The ultimate loading capacity of a 
few structures has been analysed and discussed. The 
methodology is presented in the form of a handy tool 

which can be acceptable to practising engineers and 
help them to analyse the effects of the design param-
eters of the cross section on the ultimate load and the 
actual kinematics at collapse in a direct and very 
effective way. This is done in much the same spirit of 
a simplified analysis of the influence of soil-structure 
interaction proposed in the past by one of the present 
authors (Guarracino et al., 1992). 

Through advancing classical procedures and 
focusing on a specific aspects, this paper highlights 
the need for engineers dealing with limit analysis 
within the framework of current European codes to be 
aware of the possibility that a local approximation in a 
very idealised model of a structure may unexpectedly 
give origin to different collapse kinematics, a fact 
which is acknowledged in stability analyses for a 
broad class of structural members (Guarracino and 
Walker, 2008). The intention is also to add practical 
knowledge to some recent theoretical investigations 
(Fraldi et al., 2010). 

 
 

2  Methods of plastic analysis of ductile 
frames 

 
Broadly speaking, engineers have two categories 

of methods at their disposal for the assessment of 
collapse analysis of ductile frames: the finite element 
nonlinear step-by-step methods and the limit analysis 
methods of plasticity. The FE analyses are more 
general, but can be very time-consuming, depending 
on the degree of discretization applied. In fact, di-
viding beams and columns into a fine mesh of ele-
ments may give indications about the actual localiza-
tion of plasticity and failure but also become rapidly 
unfeasible from a computational standpoint for the 
overall analysis of multi-story buildings. Also, con-
vergence and stability issues in very large problems 
may also lead to incorrect results. On the contrary, 
limit analysis methods are focused on the determina-
tion of the global safety margins of the structure and 
lead to the solution of much simpler convex optimi-
zation problems. 

Limit analysis is based on the rigid-plastic the-
ory in which the plastic collapse load is evaluated 
through a virtual work formulation and elastic de-
flection is ignored and, although there has been re-
strictions in its use, it has merits for the ultimate  
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assessment of ductile frames, especially in the case of 
extreme scenarios, propped by unforeseen events 
which are impossible to be incorporated in a compu-
tational model via usual loading concepts, given that 
any data for them are absent and the associated un-
certainties are significant. An inverse way of simula-
tion is therefore recommended by most guidelines 
and can often be effectively pursued by limit analysis 
methods, as it is the case, for example, of the so-called 
column loss, which suggests the analysis of the 
structural system incorporating the absence of an 
important part of the structure, like a column, im-
plying that the specific element is completely dam-
aged as a result of an abnormal event (Kim and Huh, 
2006; Kwasniewski, 2010).  

However, as anticipated in Section 1, all the 
simplifications at the basis of the procedures might be 
sometimes overlooked and not properly accounted in 
a much idealised modeling of the structure and as 
such they require careful attention. This is the case of 
the effects of the plastic hinges localization through 
the cross section on the collapse load and kinematics 
of the structure. 

To this purpose, in what follows, two elementary 
examples will be first discussed and a comparison 
will also be drawn between the results from a 
non-linear FE analysis and the limit analysis proce-
dure. Successively, the focus will be set on a partic-
ular automation of the static method by means of the 
symbolic code MATHEMATICA® which will show 
how it is possible to derive the collapse kinematics on 
account of actual positioning of the plastic hinges 
through the cross section in a very simple and direct 
manner. 

 
 

3  Design of steel structures according to 
EC3 and axial force-bending moment  
interaction 

 
The cross section of frame columns is usually 

biaxial symmetric because frame columns are often 
subjected to biaxial bending (Fig. 1). 

Over the years several criteria for the analysis of 
steel I-sections subjected to axial forces and bending 
moments have been proposed (Baptista, 2012), but 
for the present purposes the initial yielding surface of 
a column section can be determined by linear su-

perimposition of normal stresses within the elastic 
scope and can be written as follows: 

 

o o o

1,
yx

x y

MM N

M M N
                       (1) 

 
where Mx and My are the bending moments applied 
about the x-axis and y-axis, respectively, N  is the 
axial force applied, and Mxo, Myo, and No are the full 
yielded cross-section resistances when Mx, My, and N 
are applied alone, respectively. For simplicity, Fig. 2 
shows the linearized yield domain when only one 
bending moment, either about the x-axis or the y-axis, 
is applied. It is worth noticing that the yield domain of 
Fig. 2 corresponds to a full yielded cross-section 
resistance criterion and is in actual fact a linearization 
of an intrinsically non-linear interaction curve. As a 
matter of fact, this linearized approach can be gener-
ally regarded as conservative even if the additional 
resistance reserve, up to the real non-linear criterion, 
is larger in the case of a cross-section subject to 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  A typical steel member 

Fig. 2  Idealized yield domain in the M-N plane for an I 
section 
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a small axial force and a considerable bending mo-
ment, than in the case of a cross-section subject to a 
large axial force and a small bending moment. Addi-
tionally, the formation of the plastic hinge is more 
gradual in the first case than in the second one. As a 
consequence, this simplifying hypothesis may render 
the cross-section bending mechanizms more frequent 
in the limit analysis than they really are in practice. 
However, the yield domain of Fig. 2 is customarily 
employed in limit analyses (Massonnet and Save, 
1976; Chen, 1988) and its adoption allows a substan-
tial simplification of all the calculations. Given that 
such a simplification has been proven reliable in a 
large number of real-world cases and is normally 
prescribed by several codes, the present treatment will 
be based on its implementation with the explicit 
warning that all the results, as it is normally the case 
in limit analysis, must be carefully judged and as-
sessed in the factual practice. 

It is worth noting that the Eurocode 3 (EC3, 
2005) requires that the plastic hinges must ensure the 
real capacity to develop the necessary rotations, but it 
does not explicitly make reference to the M-N inter-
action with respect to limit mechanisms. 

In fact, the EC3 (2005) states that the global 
plastic analysis can be performed by means of rigid- 
plastic or elastic-plastic analyses and that the plastic 
hinge can occur in the column or beam with sufficient 
rotation capacity. 

Conversely, EC3 explicitly deals with M-N in-
teraction with reference to transverse sections of the 
structural elements of classes 1 and 2 and with ref-
erence to the interaction M-N-T, albeit without any 
kinematic consideration. 

Overall, it is important to realize that this fact 
may lead to an incorrect evaluation of the problem, 
especially if the collapsing behavior is drawn from the 
elastic solution, as shown in the elementary examples 
which follow. 

3.1  Example 1: axial force-bending moment in-
teraction in a statically determined horizontal 
beam  

The collapse factor for a simply supported beam 
considered under pure bending (that is, neglecting the 
effects of the axial force on the ultimate resistance of 
the cross section) (Fig. 3), can be straightforwardly 
obtained by means of the static theorem of limit 

analysis (Neal, 1963) by prolonging the vector rep-
resenting the M-N status at the section B in the elastic 
range until the horizontal line through Mo is met, as 
shown in Fig. 4. 

Thus, it is  
 

o .
(1 )M

M

FL


 
                             (2) 

 
Conversely, the collapse load multiplier for the 

same simply supported beam but accounting for both 
bending and axial forces is obtained in the same 
fashion by prolonging the vector representing the 
M-N status at the section B in the elastic range until 
the yield locus is met (Fig. 4). 

It follows  
 

o o
,

o o

.
[ (1 )]M F

M N

F M N L
  


 

          (3) 

 
The same results are obtained by means of the 

kinematic theorem (Neal, 1963) (Fig. 5). In fact, un-
der pure bending, the result Eq. (2) is given again by 
the virtual work equation. It is worth noticing that in 
such a case the rotation at the plastic hinges must be 
assumed to take place with the pins at the center of the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Example 1: a simple supported beam 
α is the axial force multiplier 

N

M

Mo

No-No

-Mo

Mu

Nu

Nu

No

Mu

Mo
1

λM

λM,αF

Fig. 4  Example 1: yield condition at a section for pure 
bending or combined bending and axial forces 
Nu and Mu are the values of N and M on the yielding locus 
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mass of the cross section, as shown in Fig. 5 (C1, C12, 
C2). 

In the same fashion, the influence of the axial 
force, ,F  can be taken into account by consider-

ing that the rotations at the plastic hinges must take 
place about the pins at the neutral axis of the fully 
plastic cross section at section B (Fig. 6). 

Therefore, the virtual work equation yields 
Eq. (3) again. 

3.2  Example 2: axial force-bending moment in-
teraction in a statically undetermined horizontal 
beam 

Different from the case of a statically determined 
system, for which the statically admissible stress 
status is unique and derives from the solution of the 
equilibrium equations, in the case of a statically un-
determined system, as the supported cantilever of 
Fig. 7, the collapse factor under pure bending cannot 
be obtained by means of the static theorem by pro-
longing the vectors representing the M-N elastic sta-
tus at the sections A and B until the horizontal line 
through Mo is met, as shown in Figs. 8a and 8b. 

In fact, in such a case, either the prolongation of 
the vector representing the elastic solution at section 

A (for 2 2   ) or at B (for 2 2   ) will first 

meet the horizontal line for ±Mo. At this point, the 
structure changes configuration on account of the 
presence of a plastic hinge at section A or B, respec-
tively, and the attainment of the collapsing status 
takes place following a different path, as shown in 
Figs. 8a and 8b. It is 

 

o (2 )
.

(1 )M

M

FL








                              (4) 

 

The same line of reasoning can be applied when 
both bending and axial forces are taken into account 
for determining the yield status of the cross section 
and the situation is shown in Figs. 8c and 8d. The 
collapse factor results are different from the one ob-
tained by prolonging the vector representing the M-N 
status at the sections A and B in the elastic range  
until the yield locus is met.  

In fact, it is given in Eq. (5) that 
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     (5) 

o o
,

2
,M F

M N

F                                             (6) 

 
where we can obtain from Eq. (7) that 
 
 
 
 

Fig. 5  Example 1: kinematics at collapse for pure bending

Fig. 7  Example 2: a supported cantilever
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Fig. 6  Example 1: kinematics at collapse for bending 
moment and axial force interaction  
h is the height of the cross section 
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The results Eqs. (4) and (6) can be straightfor-

wardly obtained though the kinematic theorem and 
the virtual work equation with references, as shown in 
Figs. 9 and 10 and yet again it is clear that the rota-
tions at the plastic hinges must take place about the 
pins at the neutral axis of the fully plastic cross sec-
tion. 

It is worth mentioning that the difference be-
tween the limit load multipliers Eqs. (5) and (6) varies 
with the position of the force F, as shown in Fig. 11 
for the specified parameters. 

 
 

4  An assessment of kinematics at collapse 
through nonlinear finite elements  

 
To assess the results from a highly idealized 

limit analysis of the statically undetermined frame of 
Fig. 12 by means of a refined nonlinear FE analysis 
and to discuss its kinematics at collapse, the com-
mercially available finite element package ANSYS® 
has been employed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9  Example 2: kinematics at collapse for pure bending

Fig. 10  Example 2: kinematics at collapse for bending 
moment and axial force interaction 

Fig. 8  Example 2: different yield conditions at sections A and B. 
(a) and (b): pure bending; (c) and (d): bending and axial force interaction  
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The mesh and the loading of the structure are 
shown in Figs. 13 and 14, respectively. The simple 
portal has been modeled by means of 42 000 SOLID 
185 elements. SOLID 185 is defined by eight nodes 
with three degrees of freedom (DOFs) at each node: 
translations in the nodal x, y, and z directions. The 
element has plasticity, large deflection, and large 
strain capabilities (ANSYS, 2011).  

In general, numerical investigation of the non-
linear behavior of structures must follow the equilib-
rium path, identifying and computing the singular 
points like limit or bifurcation points, whose second-
ary branches in the equilibrium path must be exam-
ined and followed and this procedure can be adversely 
affected by any kind of approximation, as shown even 
in the simplest examples (Guarracino, 2007). To 
overcome difficulties with limit points, displacement 
control techniques were introduced and for this rea-
son the modified arc-length method was used in  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ANSYS to follow the load-deformation path (Forde 
and Stiemer, 1987; Crisfield, 1997). 

In fact, the modified arc-length method is suita-
ble for nonlinear static equilibrium solutions of un-
stable problems and its applications involve the trac-
ing of a complex path in the load-displacement re-
sponse into the buckling/post buckling regimes. 
Mathematically, the modified arc-length method can 
be viewed as the trace of an equilibrium curve in a 
space spanned by the nodal displacement variables 
and the total load factor. During the solution, the 
modified arc-length method varies the arc-length 
radius at each arc-length substep according to the 
degree of nonlinearities that is involved. 

ANSYS® calculates the reference arc-length 
radius from the load increment of the first iteration of 
the first substep, and if an arc-length solution fails to 
converge within the prescribed maximum number of 
iterations, the program automatically bisects and 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 13  Finite element model of the simple portal of 

Fig. 12: loading and constraints 
Fig. 14  Finite element model of the simple portal of 
Fig. 12: mesh details 

Fig. 11  Variation of multipliers ,M αFλ  and ,M αFλ  for the 

supported cantilever of Fig. 7 according to the position of 
the point load 
(Section: HE160A, σo=440 MPa, Mo=150.34 kN·m, No= 
2302.08 kN, Fo=150 kN, L=5 m, and =0.2) 

λFv

λFo

L

βL

λq

A

B

Fig. 12  A simple portal frame 
(Section HE140A, σo=355 MPa, Mo=59.16 kN·m, No=
1071.4 kN, L=5 m, H1=3.5 m, H2=1.75 m, q=10 kN/m, Fo=
150 kN, Fv=7 kN, β=0.3, and γ=0.25) 
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continues the analysis. Bisection continues until a 
converged solution is obtained or until the minimum 
arc-length radius is used. 

By means of this technique and by assuming the 
same linear elastic-perfect plastic behavior of the 
material from the limit analysis, the results shown in 
Fig. 15 were obtained. 

The collapse load multiplier, λ, was found equal 
to about 1.85 and the localization of the plastic re-
gions at some critical sections clearly suggests the 
initiation of a mechanism which can be thought as 
activated by plastic hinges (Fig. 15). The collapse 
mechanism (Fig. 15a) is in very good agreement with 
that of Fig. 16b from limit analysis. 

Fig. 16 shows the results for the same problem of 
Fig. 12 from the methods of limit analysis. It is worth 
noting that, as it was easily expected, both the results 
from the limit analysis overestimate the load collapse 
factor. This can be attributed to different factors 
which are taken into account in the more refined FE 
analysis, such as the role of geometric nonlinearities, 
a different stress distribution, and local instabilities of  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the I beam flanges, as visible in Fig. 15c. 
One could therefore wonder about the actual 

dependability of a limit analysis which, by its own 
nature, deals, as illustrated, with an extremely sim-
plified model of the structure. However, without 
indulging in considerations which have been con-
veyed in a number of studies during the last decades, 
for the purposes of the present work it can be noted 
that, on the whole, the kinematics at collapse which 
can be derived from the FE results of Fig. 15 is es-
sentially the same as Fig. 16b. This suffices to sug-
gest that, albeit the strong idealization at the basis of 
any limit analysis approach, the key point in repli-
cating what can be thought as the actual collapse 
mechanisms lies in properly accounting for the axial 
force-bending moment interaction at the plastic 
hinges. 

This is also confirmed with references to 
Figs. 17 and 18. Fig. 17 shows the stress distribution 
in the section at the bottom of the right pillar from the 
FE analysis, while Fig. 18 shows the same stress 
distribution from the limit analysis. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15  Finite element results from nonlinear elastic-plastic analysis with indication of the plastic stress ratio [0-1] 
(b), (c) and (d). The collapse mechanism (Fig. 15a) is in agreement with that of Fig. 16b from limit analysis 
 

(a) (b) 

(c) (d) 
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5  A simple limit analysis procedure by 
means of MATHEMATICA® 

 
On the basis of the previous observations, a 

simple procedure for the limit analysis of ductile 

plane frames has been written, which accounts in a 
straight and direct manner for the kinematics stem-
ming from the axial force-bending moment interac-
tion at the plastic hinges. 

From the authors’ standpoint, its merit resides in 
being a simple and efficient tool to assess the ultimate 
loading capacity which can help to figure out the 
actual kinematics at collapse as a result of the inter-
action of the bending moment and axial force in a 
very straightforward manner and within the frame-
work of the current European codes. 

Following what has been previously illustrated, 
the condition of admissibility at the beam cross sec-
tions is taken in the form of Eq. (1)  

 

o o

( , ) 1 0,
M N

N M =
M N

                       (8) 

 
so that the deformation at the fully plastic sections can 
be written according to the normality rule 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17  Results from nonlinear FE analysis at section A: 
plot of axial stress at impending collapse (unit: daN/cm2) 

Fig. 18  Results from limit analysis at section A: axial 
stress at impending collapse (a) and M-N vector in the 
limit domain (b) 

(a) 

(b) 

λFv

λFo

λq

λFv

λFo

λq

Fig. 16  Kinematics at collapse for pure bending (a) and for 
bending moment and axial force interaction (b) 

λM=2.25 

λMN=2.12 

(a) 

(b) 
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,i

i

S
S C e N                                   (9) 

where 
p

p , ,i

i

S
S C

N
M

   
            

  


e N           (10) 

 
where   is the plastic rate deformation magnitude, 

iSe  is the vector representing the plastic deformation 

at the section iS , and iS
CN  is the corresponding nor-

mal to the yield surface ( , ).N M  

Once an appropriate number of critical sections 
have been chosen, an equilibrated status of general-
ised stress can be written as 

 

Fcc

Fcc

ˆ ,
ˆ ,

X

X



 
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Mcc

Ncc

M f M x

N f N x
                 (11) 

 

where the vectors Mcc  and Ncc  collect the values 
of the bending moments and of the axial forces at the 
critical sections, f collects the applied loads, and   is 
the load multiplier. x collects the redundancies, i.e., 

the indeterminacy parameters, FccM  and ˆ
XM  are the 

basic and redundant load matrices, respectively, for 

bending, and finally FccN  and ˆ
XN  are the basic and 

redundant load matrices, respectively, for the axial 
stress.  

The optimization problem simply consists, as 
known, in maximizing the load multiplier λ within the 
constraints represented by Eq. (8) at all critical sec-
tions (Cohn and Maier, 1979). 

The implementation of this limit analysis pro-
cedure has been made with the aid of a symbolic 
package, MATHEMATICA®, as shown in Fig. 19, 
where 

1. Mcck (Ncck) are the n-dimensional array of 
bending moments (axial forces) at the chosen control 
sections in equilibrium with the external actions for 
each different load case (LC); 

2. MFcck (NFcck) are the n-dimensional array of 
bending moments (axial forces) at  the chosen control 
sections for each different load case (LC) in the frame 
made statically determined; 

3.
 

ˆ
jXM  ˆ( )

jXN  is the n-dimensional array of 

self-equilibrated bending moment (axial force) at the 
chosen control sections in the frame made statically 

determined SE( {1, }),j n  nSE is the number of con-

trol sections; 
4. jX  are multipliers of the self-equilibrated 

stress distributions ˆ
jXM  ( ˆ

jXN ) SE( {1, });j n  

5. AccMk or AccNk are the relationships which 
represent the yield loci for the control sections in case 
of bending only (M) or axial force-bending interac-
tion (M-N); 

6. SoluzOptccMk or SoluzOptccM Nk is the so-
lution to the constrained linear optimization problem 
under bending only (M) or axial force-bending in-
teraction (M-N), which makes the load multiplier, λ, a 
maximum. 

It is clear that, according to the procedure of 
Fig. 19, the rotations at the plastic hinges take place as 
expected about the pins at the neutral axis of the fully 
plastic cross sections. 

 
 

6  Analysis of a multi-story plane frame 
 
The procedure presented in Section 5 has been 

used to analyze the plane frame of Fig. 20, subject to 
vertical and horizontal loads. The limit load multi-
plier, λ, and the displacement at collapse are shown in 
Figs. 21–24 (p.493) for a pure bending (λM) mecha-
nism and a bending moment and axial force interac-
tion (λMN) mechanism for different span lengths. Red 
dots show plastic hinges in columns, and green dots 
show plastic hinges in beams. 

It is evident that the collapse kinematics can vary 
significantly and the difference between the respec-
tive collapse load multipliers, λM and λMN, ranges from 
1.97% to 19.05%. 

In the case of Fig. 21, it is L1=L2=5 m and the 
collapse mechanism arising from the plastic hinges 
located at the center of the mass of the cross sections 
involving the top three stories, while the mechanism 
arising from the plastic hinges located at the neutral 
axis of the cross sections involves the whole frame 
and is therefore a global one. This fact gives origin to 
a 19.05% difference between the corresponding val-
ues of the load multipliers. 

In the case of Fig. 22, it is L1=7 m and L2=5 m and 
both collapse mechanisms involve the whole frame 
with a difference between the corresponding values of 
the load multipliers which reduces to a mere 1.97%. 
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Beam Section type Column Vertical load (kN/m) Horizontal force (kN) 

1st floor HE200B H1 p1=26.7 Fo1=21.6 

2nd floor HE180B H2 P2=26.7 Fo2=30.0 

3rd floor HE160B H3 P3=18.6 Fo3=43.4 

Yield stress σo=3.55×105 kN/m2 

Fig. 20  A plane frame under vertical and horizontal loads 
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Solution of  the constrained optimization problem

k k Sk k j E LC

k k Ek k j S

(*Minteraction *)

(*MNinteraction*)

Do[ = N[Maximize[ ,AccM ,SoluzOptccM λ λ X n n

SoluzOptccMN λ

{ , ,{ , }}]],{ , }];

Do[ = N[Maximize[ ,AccMN ,{λ X n

j k

, ,{ ,j }}]] LC, ,n{k }];

Fig. 19  Implementation of core limit analysis procedure by MATHEMATICA® 
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(a) 

(b) 

Fig. 23  Load multiplier and kinematics at collapse for 
pure bending (λM) (a) and for bending moment and axial 
force interaction (λMN) (b)  
L1=8 m, L2=5 m, λM=2.55, λMN=2.35, and Δλ=8.08% 

(a) 

(b) 

Fig. 22  Load multiplier and kinematics at collapse for 
pure bending (λM) (a) and for bending moment and axial 
force interaction (λMN) (b)  
L1=7 m, L2=5 m, λM=4.55, λMN=4.46, and Δλ=1.97% 

(a) 

(b) 

Fig. 24  Load multiplier and kinematics at collapse for 
pure bending (λM) (a) and for bending moment and axial 
force interaction (λMN) (b)  
L1=10 m, L2=8 m, λM=1.67, λMN=1.57, and Δλ=5.89% 

Fig. 21  Load multiplier and kinematics at collapse for 
pure bending (λM) (a) and for bending moment and axial 
force interaction (λMN) (b)  
L1=5 m, L2=5 m, λM=4.66, λMN=3.78, and Δλ=19.05% 

(a) 

(b) 
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In the case of Fig. 23, it is L1=8 m and L2=5 m 
and the collapse mechanisms are again different: the 
one arising from the plastic hinges located at the 
center of mass of the cross sections involves the top 
three stories and the one arising from the plastic 
hinges located at the neutral axis of the cross sections 
is again a global mechanism. In this case the differ-
ence between the corresponding values of the load 
multipliers is 8.08%. 

In the case of Fig. 24, it is L1=10 m and L2=8 m 
and the collapse arising from the plastic hinges lo-
cated at the center of the mass of the cross section is 
localized at an horizontal beam, while the one arising 
from the plastic hinges located at the neutral axis of 
the cross sections is once again a global mechanism. 
However, in this case the difference between the 
corresponding values of the load multipliers is 5.89%. 

From the few cases shown in Figs. 21–24, it is 
evident that inaccurately accounting for the location 
of the plastic hinges through the cross section can 
point to different kinematics at collapse, and therefore 
great care must be adopted in foreseeing the actual 
collapse mechanisms. In fact, an incorrectly calcu-
lated collapse mechanism may lead to an improper 
design of new structures or to an inadequate 
strengthening of existing ones. 

 
 

7  Conclusions 
 

The sensitivity of the limit load and of the col-
lapsing modes of the ductile frames to the actual 
kinematics arising from plastic hinges on account of 
the axial force-bending moment interaction in pres-
ence of combined vertical and horizontal forces, has 
been pointed out by means of two elementary exam-
ples and successively assessed by means of a non-
linear FE analysis and of a straightforward imple-
mentation of limit analysis procedures, with the aid of 
the symbolic code MATHEMATICA®. 

It has been shown that even in the simplest cases, 
the main outcome from limit analysis should consider 
the kinematics at collapse, which is relevant for both 
design and reinforcement purposes, within the 
framework of some standardization codes. If proper 
accounting is not made for the axial force-bending 
moment interaction for all the elements of the struc-
ture, the calculated localization of the plastic hinges 

may give origin to incorrect collapse mechanisms and 
to misleading safety factors. Though focusing on a 
specific aspect, the study clearly shows that great care 
must be adopted in the design of new structures or in 
the strengthening of existing ones, even when using 
seemingly well-established classical procedures. The 
proposed approach may be relevant to practising 
engineers dealing with code prescriptions and stand-
ardization committees. 
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中文概要： 
 
本文题目：实际塑性铰链位置对延性框架行为的影响 

Influence of actual plastic hinge placement on the behavior of ductile frames 
研究目的：通过有限元分析和极限分析，研究了在纵向和横向载荷下钢框架的最大负荷和坍塌模式，并

考虑了塑性铰链在轴向力和弯曲力矩的作用下在实际旋转时的运动学。 

研究方法：在垂直和水平方向载荷共存的情况下，基于轴向力和弯曲力矩的交互作用，研究延性框架的

极限载荷和坍塌模式对产生于塑性铰链的真实运动学的敏感性。通过两个基本的案例和通过

成功地评估非线性有限元分析和直接实施的极限分析步骤，并利用 MATHEMATICA®，揭

示了其敏感性。 

重要结论：在标准规程的框架下，即使在最简单的案例中，极限分析的主要结果也会考虑在坍塌时的运

动学，这与设计和加固的目的都是相关的。如果没有对所有的结构元件的轴向力和弯曲力矩

的交互作用进行合理的计算，塑性铰链的定位计算可能得出不正确的坍塌机理和误导性的安

全系数。就具体方面而言，本文清楚地表明，在设计新的结构或者为现有结构进行加固时，

即使是使用看起来已经非常完备的经典步骤，也必须非常小心。本文的模型可以为处理规程

设计的执业工程师和标准化委员会提供参考。 

关键词组：钢框架；极限分析；实际塑胶铰链位置；坍塌运动学 


