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Abstract: To investigate the displacement and stress distributions for deep circular tunnels with liners in saturated ground, an 
analytical model is proposed. For a deep tunnel with drainage conditions, plane strain conditions at any cross-section of the tunnel 
and the elastic regime of the linear elasticity for the remaining liner are assumed, while the ground is assumed to be linearly elastic 

-Coulomb criterion. The post-yield behavior of the ground follows 
the non-associated flow rule defined by the dilation angle. To solve the proposed problem, two procedures are presented. An
axisymmetric model for a deep circular tunnel with a steady-state seepage condition is considered, and then a simple closed-form 
analytical solution is obtained with a common theoretical framework for the boundary conditions of a constant total head along the 
tunnel circumference. Assuming that certain ground displacements along the tunnel circumference have occurred before the 
installation of the liner, analytical solutions of stresses and displacements are derived with particular emphasis on the seepage and 
the stress release effect induced by tunnelling. The proposed analytical model is validated by numerical simulation.
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1  Introduction

One of the important issues during the 
construction of deep tunnels in saturated ground is the 
appropriate design of the tunnel liners. The 
convergence-confinement method (CCM) has become 
very popular for tunnel construction throughout the 
world due to its technical feasibility, safety, and 
economic competitiveness (Carranza-Torres and and 
Fairhurst, 2000; Oreste, 2003a; 2003b; González-

Nicieza et al., 2008). According to the concept of the 
CCM, the tunnel liners should be designed to sustain 
the loads transmitted from the surrounding ground 
during excavation as well as the seepage forces due to 
the water flow towards the tunnel, if any (Lee and 
Nam, 2001; Bobet, 2003; Nam and Bobet, 2006). The 
effects of seepage force and in-situ stress on 
displacements and stress distributions for deep 
tunnels in saturated ground have been investigated by 
numerous researchers (Schweiger et al., 1991; Lee 
and Nam, 2001; Bobet, 2001; 2003; Arjnoi et al.,
2009; Li, 2011).

Although there are a lot of numerical procedures 
capable of estimating the ground displacements and 
liner stresses, analytical solutions are still desirable in 
direct applications or in the validation and
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verification of numerical models for their advantages 
of conciseness and convenience (Huangfu et al.,
2010).

Analytical solutions of the distribution of the 
pore pressure in the rock mass for steady seepage of
deep tunnles are also obtained in previous studies. For 
instance, based on the theory of complex potentials, 
the theory of Cauchy integrals, and of singular 
integral equations, the steady-state fluid flow solution 
for fractured porous media was obtained by Liolios 
and Exadaktylos (2006). They also provided a 
numerical method for the accurate estimation of pore 
pressure and pore pressure gradient fields due to 
specified hydraulic pressure or pore pressure gradient 
acting on the lips of one or multiple non-intersecting 
curvilinear cracks in a homogeneous and isotropic 
porous medium, but there is a fly in the ointment for 
which they could not provide the complete analytical 
solutions of displacements and stresses for tunnels in 
saturated ground.

Complete analytical solutions of displacements 
and stresses for tunnels in saturated ground are 
obtained by Bobet (2001; 2003) and Nam (2006).
These solutions cover different construction 
processes and ground conditions, including dry or 
saturated ground, shallow or deep, with or without air 
pressure, and with or without a gap between the 
ground and the liner. However, these solutions are 
restricted to cases where ground displacements are 
small, since the ground and the liner are assumed to 
behave elastically. 

Based on the assumptions that circular tunnels 
are excavated in elasto-plastic homogeneous ground 
under hydrostatic stress conditions, a series of 
analytical or semi-analytical analyses have been 
performed (Fenner, 1938; Brown et al., 1983; 
Carranza-Torres and Fairhurst, 2000; Sharan, 2005; 
Lee et al., 2000; Fang et al., 2013; Han et al., 2013).
All these studies have contributed to the 
understanding of the surrounding ground-liner 
interaction mechanism, but the results do not apply to 
the tunnels in saturated ground. 

Considering the effect of seepage forces, ground 
stresses are obtained by Li et al. (2004) and Liu et al.
(2009) for deep circular tunnels in elastic-perfectly 
plastic material with a Mohr-Coulomb type yield 
criterion while neglecting the existence of liners. 
Their studies were complemented by Lu and Xu

(2009), who proposed an analytical model to solve the 
stresses for a subsea tunnel with liner. Note that all 
these studies are not capable of providing the 
solutions of ground displacements in the plastic zone.

In this study, elasto-plastic plane strain solutions 
of the stress and displacement distributions around 
deep circular lined tunnels in isotropic saturated 
ground due to uniform ground loads and seepage 
forces are presented. The derivation process for the 
expression of displacements in the plastic zone is a 
highlight in this paper. A gap between the ground and 
the liner, which represents a certain ground displace-
ment along the tunnel circumference occurred before 
the installation of the liner is also considered. The 
proposed model is particularly suitable for the 
investigation of deep circular tunnels excavated in 
soft saturated ground.

2  Problem description

The fundamental objective of this paper is to
study the stresses and displacements of tunnels with 
liners in saturated ground considering the effect of 
both the seepage force and in-situ stress. To derive the 
analytical solution for the proposed problem, the 
following assumptions are made: (1) The circular 
tunnel is located in a fully saturated, homogeneous 
and isotropic aquifer subjected to uniform in-situ 
stress. (2) Plane strain conditions are applicable at any 
tunnel cross-section. (3) The liner behaves in a linear 
elastic manner. (4) The ground behaves in an elastic-
perfectly plastic manner, obeys the linear 
Mohr-Coulomb yield criterion, and is considered
weightless. (5) The water is incompressible, and 
Darcy’s law is applicable. (6) Before the installation 
of the liner, certain ground displacements along the 
tunnel circumference have already occurred. There-
fore, there is a constant gap between the ground and 
the liner along the perimeter of the tunnel (Bobet, 
2001), which can represent the displacements due to 
any physical gap, the unsupported tunnel face, the 
liner construction lag, or the time effect of shotcrete 
hardening process. For example, the installation delay 
of the support will inevitably cause certain ground
displacements. Moreover, even though the shotcrete 
lining is installed immediately after the excavation, 
certain ground displacements will gradually take 
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place as the shotcrete hardens (Oreste, 2003b).
A schematic model of the proposed problem is 

shown in Fig. 1. In this model, ri is the inner radius of 
the liner, rl is the outer radius of the liner, and r0 is the 
outer boundary of the problem. In this study, r0=20ri.
The outer boundary is far enough from the inner 
tunnel boundary, therefore the presence of the outer 
boundaries have limited impact on the solutions. This 
method has been adopted by numerous researchers
(Bobet, 2003; Li et al., 2004; Nam and Bobet, 2006;
Liu et al., 2009). There are no displacement con-
straints at the boundaries (Nam and Bobet, 2006). 
Ambient stresses i and 0 are the radial pressures 
(the tension is positive) at the inner boundary and the 
outer boundary, respectively. hi and h0 are the water 
head on the inner boundary and the outer boundary, 
respectively. kl is the hydraulic conductivity of the 
liner. kp and ke are the hydraulic conductivities of the
plastic zone and the elastic zone, respectively. El and

l are the elasticity modulus and the Poisson’s ratio of 
the liner, respectively. Ep and p are the elasticity 
modulus and the Poisson’s ratio of the ground in the 
plastic zone, respectively. Ee and e are the elasticity 
modulus and the Poisson’s ratio of the ground in the 
elastic zone, respectively. cp, p, and p are the cohe-
sion, the internal friction angle, and the dilation angle 
of the ground, respectively.

The yield zone radius, rp, the water head on the 
outer of the liner, hl, the water head on the plastic 
zone, hp, the radial stress at the ground-liner interface, 

l, and the radial stress at the plastic-elastic interface, 
p can be derived by using the seepage and mechan-

ical theory. 

The radial stress, r, the tangential stress, , the 
water head, h, the displacement, u, are the functions 
of the radial distance from the tunnel center, r, and 
will be given analytically by a theoretical model in 
this study.

3 Proposed analytical model

3.1  Analytical solutions of the seepage field

It follows from the symmetry with respect to the 
axis of the tunnel that the flow is radial, and the dis-
charge vectors at all points are directed toward the 
center of the tunnel. According to Bear (1972), fol-
lowing the continuity equation, there is 

d d 0,
d d

hr
r r

                               (1)

then

1 2ln ,h C r C                            (2)

where C1 and C2 are two integration constants. 
The corresponding boundary conditions for the 

problem are

i l

p 0

i l
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, .
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h h h h
                 (3)

Substituting Eq. (3) into Eq. (2), we can obtain:
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Let Ql, Qp, and Qe be the water discharge through 
the ground in the elastic zone, in the plastic zone, and 
the liner, respectively. According to Wang et al.
(2008), when ri r rl, there is 

l l l i l i2 ( ) / ln( / ),Q k h h r r                 (5a)

analogously,Fig. 1 Schematic illustration of the analytical model
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lp p p l p pl2 ( ) / ln( / ), ,Q k rh r rh r r           (5b)

pe e 0 p 0 0p2 ( ) / ln( / ), .Q k rh r rh r r       (5c)

For Ql=Qe=Q, we can obtain:

p 0l l l
0 i

i p l e p
l

p 0l l l

i p l e p

ln ln ln
,

ln ln ln

r rr k kh h
r k r k r

h r rr k k
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     (6)
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ln ln ln

k h hQ rr k k r
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                   (8)

3.2  Analytical solutions of stresses and 
displacements

3.2.1  Basic equations and boundary conditions

The seepage force is a body force (Lambe and 
Whitman, 1969), of which the direction is radial due 
to the symmetry of the flow. The seepage force per 
unit volume is

r w
d( ) ,

d
hf
r

                    (9)

where w is the specific weight of the water, is the 
equivalent surface porosity of the fractured mass.
Terzaghi (1936) and Leliavski (1947) determined 
from field and laboratory studies that , the surface 
porosity, is generally close to unity and always greater 
than 0.85.

The solution of a deep tunnel in saturated ground
must satisfy the equilibrium equation as follows: 

w
d d( ) 0,
d d

rr h
r r r

(10)

where the subscripts r and denote the radial and 
tangential directions, respectively. Eq. (10) can be 
solved with the following boundary conditions:

i

l
= i ,r r r                          (11a)

0

e
0 ,r r r                                       (11b)

l l

l p
l ,r r r r r r                        (11c)

p p

p e
p ,r r r r r r          (11d)

l l l l

l l p p ,r r r r r ru u u w u w (11e)

p p p

p e ,r r r r ru u u                   (11f)

where l
r , l , and lu are the radial stress, the tan-

gential stress, and the radial displacement of the liner, 
respectively; p ,r

p , and pu are the radial stress, 
the tangential stress, and the radial displacement of 
the ground in the plastic zone, respectively; e ,r

e ,
and eu are the radial stress, the tangential stress, and 
the radial displacement of the ground in the elastic 
zone, respectively. w is the gap between the ground 
and the liner. 

3.2.2  Stresses and displacements of liner

The analytical solutions of stresses and dis-
placements acting on the liner due to the ground loads 
and seepage forces are obtained by a theoretical 
model based on the solutions of Li (2004):

l 2
1 2 3= (1 / ) ln ,r K K r K r            (12)

l 2
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2
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l l i

( )= ,
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l l w i l
7
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2 (1 )(ln ln )
h h

K
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w i l i ll l
1 i

l l i l
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2(ln ln )(1 )

h h r
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2(ln ln )(1 )

h h r
A

E r r
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3.2.3  Stresses and displacements of the ground in the 
plastic zone

The excavation produces unloading in the radial 
direction and loading in the tangential direction ac-
cording to the proposed problem. Therefore, the ma-
jor principal stress is the tangential stress and the 
minor principal stress is the radial stress in the plastic 
zone. At failure, the 2D Mohr-Coulomb criterion can 
be expressed as f( r, )=0, i.e.,

p p pp p

p p

1 sin 2 cos
( , ) 0.

1 sin 1 sinr r

c
f (24)

According to the equilibrium equation
(Eq. (10)), the boundary conditions (Eqs. (11c) and 
(11d)), and the failure criterion (Eq. (24)), the ground 
stresses in the plastic zone are:

p p

l

2sin /(1 sin )p
l( )( / ) ,r rB B r r (25)

p

p

l

2sin
1 sin

p p pp

p l p

1 sin 2 cos
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where B is a constant and can be expressed as follows:

p w l p
p p

p p l

1 sin ( )
cot .

2sin ln ln
h h

B c
r r (27)

Under the axisymmetric plain strain condition, 
the strains and the displacements are given by

d , .
d

r r
r

u u
r r

                       (28)

The compatibility condition is expressed as

d
.

d
r

r r
                            (29)

Assuming a small strain deformation analysis, 
the total strains are decomposed into elastic and 
plastic components, as follows:

e p e p, ,r r r (30)

where the superscripts e and p denote elastic and 
plastic strains, respectively.

Hooke’s law is applied to determine the radial 
and tangential strains in the elastic region under the 
plane strain condition:

e 2
e e e e

e 2
e e e e

[ / (1 )](1 ) / ,

[( / (1 )](1 ) / ,
r r

r

E

E
(31)

where Ee and e denote the elastic modulus and 
Poisson’s ratio, respectively.

The elastic strains in the plastic zone can be 
readily obtained by substituting the stresses in the 
plastic zone into Hooke’s law (Eq. (31)). The plastic 
strains in the plastic zone are instead governed by an 

be-
havior
strain increment d p to the plastic potential g is gov-
erned by

pd d ,g
                     (32)

where d is a non-negative scalar function present 
throughout the plastic loading process. With the 
Mohr-Coulomb model, it is often assumed that the
plastic potential takes the same form as the yield 
function while the friction angle is replaced by the 
dilation angle (which is commonly a smaller angle). 
The plastic potential can therefore be written as

p p p p
p p

p p

( , ) (1 sin ) (1 sin )
2 cos ,

r rg
c

(33)

where p is the dilation angle.
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By substituting the plastic potential (Eq. (33)) 
32)), radial and tangential 

plastic strain increments can be obtained:

p pd d , d d ,r N                   (34)

where N =(1+sin p)/(1 sin p). Integration for 
(Eq. (34)), there is

p p p, .r N N (35)

By substituting Eqs. (35) and (31) into Eq. (30), 
then into Eq. (29), a differential equation can be 
obtained:

p
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The solution is 
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where Kx is a coefficient which can be determined by 
the plastic strain at the plastic-elastic interface,

p

p 0r r , as follows:

1
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By substituting Eq. (38) into Eq. (37), the plastic 
strain can be written as

p p

2
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2
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The tangential strain in the plastic zone can be 
derived as follows:

12
p p
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By substituting Eq. (40) into Eq. (28), the solu-
tion of displacements Up can be written as

p

12
pp

l
p l p
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2
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Note that for the proposed problem, the initial 
radial displacement of ground in the plastic zone u0

p

induced by the initial stress 0 should be subtracted 
from the total displacement in order to calculate the 
net displacements induced by tunnelling alone. The 
expression of u0

p is given by

p p 0p
0

p

(1 )(1 2 )
.

r
u

E          (42)
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The expression for displacements due to tunnel-
ling in the plastic zone can be derived as follows:

l

l

12
p pp

p l p

1 1 1
p p p
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p l l

1
p p p p
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3.2.4  Stresses and displacements of ground in the 
elastic zone

Note that the initial radial displacement of 
ground in the elastic zone u0

e induced by the initial 
stress 0 should be subtracted from the total dis-
placement to calculate the net displacements induced 
by tunnelling alone (Fang et al., 2013). The expres-
sion of u0

e is given by

p p 0 pe
0

e e 0 p

e

(1 )(1 2 )

(1 )(1 2 ) ( )
.

p

r
u

E
r r

E

(44)

The ground stresses and displacements in the 
elastic zone can be derived by using the same meth-
ods as calculating the distributions of liner stresses 
and displacements. Therefore, the solutions can be 
written as

e 2
1 2 3= (1 / ) ln ,r K K r K r (45)

e 2
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where K'1–K'7 have the same expressions as K1–K7

but replacing ri, rl, hi, hl, l, i, and l by rp, r0, hp, h0,
e, p, and 0, respectively. 

3.2.5  Expressions of ri, rp, and rp

The solutions in this study must satisfy the 
equilibrium equations, the strain compatibility equa-
tions, and the boundary conditions (Eqs. (11c)
–(11f)).

According to Eqs. (11c), (11d), and (11f), we can 
obtain
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where 
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By substituting Eqs. (48) and (49) into Eq. (11e),
a transcendental equation can be obtained to find the 
value of rp. By substituting the value of rp into Eq. (6) 
and Eq. (7), the values of hl and hp can be obtained. 
Then, ( r

l, l, ul), ( r
p, p, up), and ( r

e, e, ue) can be 
obtained, and so forth.

4  Validation of the analytical solutions

4.1  Parameters used in validation

To validate the analytical model, the results of
the analytical model are compared with those 
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obtained from numerical computations. A MATLAB
program is used to carry out the computations for the 
analytical model. The numerical computations are 
carried out by using a 3D finite difference code 
FLAC3D (Itasca Consulting Group, Inc., 1997; 2002) 
which can address 3D continuum problems with 
coupled groundwater flow. This comparison is in-
tended to validate the solutions. A group of typical 
parameter values are employed, w=0, 7.5, 15, 23, 
30.5, 38, 46, 53.5, 61, 68.5, and 76.5 (unit: mm), 
varied to simulate different stress releases before liner 
construction, and the others are shown in Table 1.
Only a quarter of the geometry needs to be modeled 
due to symmetry. The geometry of the mesh and the 
boundary conditions are shown in Fig. 2. The normal 
velocities of the gridpoints along the bottom, vertical 
lateral, front and back boundary planes are fixed to be 
zero (Fang et al., 2013).

4.2  Relationship between rp rl and w

The results of the calculations for the relation-
ship between rp rl and w are given in Fig. 3. It is clear 
from the plot that the solutions of the study and 
FLAC3D match well. All illustrative comparisons of 

the solution and the numerical results show little ef-
fect on the FLAC3D boundary constraints along the 
edges of the mesh. The yield zone radius increases 
significantly with the increase of w. This shows that 
the earlier the liner is carried out, the more significant 
the decreases in the plastic zone.

4.3  Results of the calculation 

Results of the calculation for the stresses and 
displacements are given in Figs. 4 and 5. The solu-
tions of the study and FLAC3D are matched well. 

From the relationship between rl/ 0 and w in 
Fig. 4, it is clear that contrary to rp, the effective radial
stress at the ground-liner interface, rl decreases sig-
nificantly with the increase of w, and rl when 
w=76.5 mm. This shows that the earlier the liner is 
carried out, the more significant will be the increase in
the liner stress. Thus, appropriate time for the liner 
construction should be selected for a safe and eco-
nomical design.

Fig. 5 shows stresses distributions around the 
tunnel when w=15 mm. We can find that: (1) with the 
increase of distance from the tunnel centerline, the 

Table 1  Parameters used in the validation
Parameter value Parameter value

ri (m) 5 1
rl (m) 5.3 l 0.2
r0 (m) 100 p 0.35
hi (m) 0 e 0.35
h0 (m) 80 p 40
i (MPa) 0 p 0
0 (MPa) 2 kl (m/s) 1 10 8

El (GPa) 10 kp (m/s) 1 10 6

Ep (GPa) 1 ke (m/s) 1 10 6

Ee (GPa) 1 cp (kPa) 100
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radial stress increases until it ceases to the in site 
stress, and yet the tangential stress in the ground in-
creases to the maximum equaling two times that of
the in site stress and then decreases until it ceases to 
the in site stress; (2) The tangential stress in the liner 
decreases with the increase of the distance from the 
tunnel centerline, and the discontinuity appears at the 
ground-liner interface because of different elastic 
moduli between the ground and liner.

5  Conclusions

The analytical solutions presented in this paper 
expand and complete previous studies, in that we 
have now obtained complete analytical solutions for a
deep tunnel in saturated ground. Although the ana-
lytical solutions are valid only for cases under the 
given assumptions, it appears to be useful for a pre-
liminary design of deep tunnels under high water 
levels to predict the water pressure, stresses and dis-
placement distributions around the tunnel. Stresses 
and displacement distributions using the proposed 
analytical solutions are compared to the numerical
solution of FLAC3D, which appears to match well. For 
more complicated scenarios, a numerical model 
would be flexible. Nevertheless, the theoretical ex-
pressions derived in this study can be used in vali-
dating the numerical models. 
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