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Abstract:    For predicting the voltage and temperature dynamics synchronously and designing a controller, a control-oriented 
dynamic modeling study of the solid oxide fuel cell (SOFC) derived from physical conservation laws is reported, which considers 
both the electrochemical and thermal aspects of the SOFC. Here, the least squares support vector regression (LSSVR) is employed 
to model the nonlinear dynamic characteristics of the SOFC. In addition, a genetic algorithm (GA), through comparing a simulated 
annealing algorithm (SAA) with a 5-fold cross-validation (5FCV) method, is preferably chosen to optimize the LSSVR’s pa-
rameters. The validity of the proposed LSSVR with GA (GA-LSSVR) model is verified by comparing the results with those 
obtained from the physical model. Simulation studies further indicate that the GA-LSSVR model has a higher modeling accuracy 
than the LSSVR with SAA (SAA-LSSVR) and the LSSVR with 5FCV (5FCV-LSSVR) models in predicting the voltage and 
temperature transient behaviors of the SOFC. Furthermore, the convergence speed of the GA-LSSVR model is relatively fast. The 
availability of this GA-LSSVR identification model can aid in evaluating the dynamic performance of the SOFC under different 
conditions and can be used for designing valid multivariable control schemes.  
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1  Introduction 

 
A solid oxide fuel cell (SOFC) converts gaseous 

or gasified fuel chemical energy directly into elec-
tricity and heat at high temperatures (800–1000 °C). 
Among various types of fuel cells, SOFC is well 
known for its high energy conversion efficiency, fuel 
adaptability, high temperature exhaust gas, and solid 
state design. In addition, as a promising electricity 
generation technology, SOFC is particularly attractive 

for distributed or stationary power plants and mobile 
applications.  

The development of effective control systems is 
in great demand before achieving successful com-
mercialization of the SOFC. A good dynamic model 
is becoming a critical tool to study the dynamics of 
the SOFC, and to design and optimize the stack. 
Moreover, it is crucial for designing model-based 
control strategies. In recent years, abundant dynamic 
models of the SOFC have been developed and re-
searched (Li et al., 2008; Kim et al., 2011; Menon et 
al., 2012; Jiang et al., 2013; So-ryeok et al., 2013). 
Whereas, most of these models are unsuitable for 
model-based control design because they are too 
complex. 
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For control applications, a lot of first-principles 
models represented by first-order ordinary differential 
equations have been proposed (Salogni and Colonna, 
2010; Kazempoor et al., 2011; Hajimolana et al., 
2013). However, the solution to these differential 
equations is very difficult and time-consuming (Wang 
et al., 2008). By far, several identification models of 
the SOFC have been reported for predicting perfor-
mance and control-oriented applications (Jurado, 
2004; Huo et al., 2008; Yang et al., 2009; Zhang and 
Feng, 2009; Wu et al., 2011), which avoids using 
complicated differential equations to describe the 
stack. The SOFC dynamic identification models de-
veloped by Yang et al. (2009) and Wu et al. (2011) 
include temperature and heat transfer dynamics but 
no electrochemical dynamics. Jurado (2004), Huo et 
al. (2008), and Zhang and Feng (2009) considered the 
electrochemical characteristics in their identification 
models. However, it is assumed that the SOFC oper-
ating temperature is constant in (Jurado, 2004; Huo et 
al., 2008; Zhang and Feng, 2009). It is well known 
that electrochemical reactions are tightly coupled 
with mass transport, charge transport, and heat transfer 
(Bove and Ubertini, 2006; Entchev and Yang, 2007). 
Thus, in the present work, a control relevant dynamic 
identification model based on the least squares sup-
port vector regression with genetic algorithm (GA- 
LSSVR) by considering both electrochemical and 
thermal aspects of the SOFC will be presented.  

Support vector regression (SVR) is a novel 
machine-learning method, which is developed based 
on the principle of structural risk minimization (SRM) 
from statistical learning theory (SLT). SVR can 
minimize both evaluated errors and model complexity 
at the same time, which makes it possess good gen-
eralization ability and prevents over-fitting (Qu and 
Zuo, 2012). Lately, the least squares support vector 
regression (LSSVR) has grown as a new version of 
SVR (Suykens et al., 2002). Because it has better 
generalization capability and can accomplish a global 
optimal value in a shorter training time, LSSVR has 
been successfully applied to models in numerous 
fields (Ge and Song, 2008; Wang et al., 2011; Xu and 
Huang, 2011).  

However, to establish a more accurate LSSVR 
model, how to select the best hyper-parameters be-
comes a key problem. Generally, the cross-validation 
(CV) technique is widely used for optimizing the 
hyper-parameters of the regression model. Though 

the CV methods are simplicity, reliability, etc., their 
computational cost is high (Mao et al., 2011). For 
building a more accurate LSSVR model for the SOFC, 
genetic algorithm (GA) is chosen to search the opti-
mal hyper-parameters of the LSSVR in this study. 

 
 

2  Dynamic physical model of the SOFC 
 

A dynamic physical model of the planar SOFC 
fed with hydrogen and air mainly considers two dy-
namic responses: the electrochemical dynamics and 
the thermal dynamics. The main assumptions of the 
physical model are as follows (Padullés et al., 2000; 
Murshed et al., 2007): 

(1) All the gases are considered as ideal gases; 
(2) The internal operating pressure is constant; 
(3) Both anode and cathode channel exhaust 

gases pass through a single “choked” orifice;  
(4) Temperature in the SOFC stack is uniform; 
(5) The fuel and air temperatures at the exit of 

both channels are equal to the inside temperatures; 
(6) Heat exchange between the stack and the 

ambient environment is not taken into account. 

2.1  Electrochemical sub-model 

The SOFC basic reaction principle is depicted in 
Fig. 1 (Cao et al., 2010), where TBP is the triple phase 
boundary. When hydrogen is used as fuel, the SOFC 
electrochemical reactions are given by 

 

Anode:    2
2 2H O H O 2e ,            (1) 

Cathode:    2
2O 4e 2O ,                    (2) 

Overall reaction:    2 2 2

1
H O H O.

2
                  (3) 

 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 1  Basic operating principle of the SOFC 
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The SOFC electrochemical dynamics can be 
represented by the concentration changes of the 
chemical species, which take part in the cell reaction. 
For ideal gases, the changes of concentration and 
partial pressure are identical in a vessel with fixed 
volume (Lu et al., 2006).  

2.1.1  Calculation of the partial pressures  

Applying the perfect gas equation for hydrogen, 
we have 

 

2 2H an H s .p V n RT                            (4) 

 
Taking the time derivative of the above expression, 
we can obtain:  
 

2 2

s
H H

an

d d
.

d d

RT
p n

t V t
                        (5) 

Defining 

2 2H H

d
,

d
q n

t
                                  (6) 

we have  

2 2

s
H H

an

d
,

d

RT
p q

t V
                            (7) 

 

where pH2
, Van, nH2

, and Ts are the partial pressure of 
hydrogen, the anode compartment volume, the mole 
number of hydrogen in anode, and the stack temper-
ature, respectively. 

The hydrogen molar flow rate qH2 consists of 

three components: the input flow rate 
2

in
Hq , the reac-

tive flow rate 
2

r
Hq , and the output flow rate 

2

out
Hq . Thus, 

we can obtain 
 

2 2 2 2

in out rs
H H H H

an

d
( ).

d

RT
p q q q

t V
                   (8) 

 

Similarly, the partial pressure of the product water 
vapor inside the anode channel can be expressed as 
 

2 2 2

out rs
H O H O H O

an

d
(0 ).

d

RT
p q q

t V
                   (9) 

 

Inside the cathode channel, the oxygen partial 
pressure can be calculated as 
 

2 2 2 2

in out rs
O O O O

ca

d
( ),

d

RT
p q q q

t V
                 (10) 

where Vca is the cathode compartment volume. From 
electrochemical properties, we know that (Chakraborty, 
2011) 

 

2

r
H .

2

I
q

F
                              (11) 

Similarly, 

2

r
H O ,

2

I
q

F
                             (12) 

and  

2

r
O ,

4

I
q

F
                              (13) 

 
where I is the stack current, and F is Faraday’s con-
stant. Defining a constant as follows:  
 

r

1
,

4
K

F
                               (14) 

we have  

2 2

r r
H H O r2 ,q q K I                        (15) 

and 

2

r
O r .q K I                               (16) 

 
The relation of gas molar flow through the valve 

and its partial pressure inside the channel can be given 
as (Padullés et al., 2000) 

 

2

2

2

out
H

H
H

,
q

K
p

                              (17) 

2

2

2

out
H O

H O
H O

,
q

K
p

                            (18) 

and  

2

2

2

out
O

O
O

.
q

K
p

                               (19) 

 
By substituting the expressions of the reaction flow 
rates and the output flow rates into Eqs. (8)–(10) and 
applying the Laplace transforms, the dynamic rela-
tionships of partial pressure for hydrogen, water, and 
oxygen can be expressed in the following forms: 
 

2

2 2

2

H in
H H r

H

1 /
( 2 ),

1

K
p q K I

s
 


              (20) 
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2

2

2

H O

H O r
H O

1 /
2 ,

1

K
p K I

s



                   (21) 

2

2 2

2

O in
O O r

O

1 /
( ),

1

K
p q K I

s
 


                (22) 

where  

2

2

an
H

H s

,
V

K RT
                           (23) 

2

2

an
H O

H O s

,
V

K RT
                          (24) 

2

2

ca
O

O s

,
V

K RT
                            (25) 

 
where KH2

, KO2
, and KH2O are the valve molar con-

stants for hydrogen, oxygen, and water, respectively; 
τH2

, τO2
, and τH2O are the response times for hydrogen 

flow, oxygen flow, and water flow, respectively; and s 
is the Laplace operator. 

2.1.2  Output voltage of the SOFC 

When only ohmic loss is considered, applying 
Nernst’s equation and Ohm’s law, the DC output 
voltage of the SOFC stack consisting of N0 cells in 
series is represented by  

 

s ,V E rI                                (26) 

 
and the open circuit voltage E is  

 

2 2

2

0.5
H O0 s

0 0
H O

ln ,
2

p pN RT
E N E

F p
                 (27) 

 
where E0, N0, and r are the standard reversible cell 
potential, the cell numbers in the stack, and the ohmic 
resistance, respectively.  

2.2  Energy balance sub-model 

Suppose the SOFC stack is an adiabatic opera-
tion. Therefore, the energy consumption into the en-
vironment is not considered. It is assumed that the 
electrode, interconnector, and gases inside the chan-
nels of the SOFC are isothermal in any case. Ignoring 
the gas heat capacities, the energy balance of the 
SOFC stack can be expressed as (Murshed et al., 
2007) 

in

ref

s

2
ref

ins
s ps p,

out r 0
p, H r s

d
( )d

d

ˆ( )d ,

T

i iT

T

i iT

T
m c q c T T

t

q c T T q H V I



   

 

 
  (28) 

 

where ms and psc  are the mass and average specific 

heat of the fuel cell solid materials; cp,i and 0
rĤ  are 

the specific heat of species i entering the stack and the 
enthalpy change of reaction of Eq. (3), respectively; 
Tin is the inlet temperature of the SOFC, and Tref is the 
reference temperature. Table 1 presents some key 
design parameters of the SOFC studied in this work 
(Sedghisigarchi, 2004; Murshed et al., 2007). 
 
 
 
 
 
 
 
 
 
 
 
 
3  GA-LSSVR for nonlinear system modeling 

3.1  LSSVR 

The aim of this study is to find a regression 
function f(x) based on the given training data set, 
which can be used to precisely predict the output 
property. A training data set is assumed to be {(xi, yi), 

i=1, 2, …, N} ,n    where xi is the input vector, 

and yi is the output vector. The regression function is 
usually formulated as  

 
T( ) ( ) ( ) ,i i iy f b  x x w x                (29) 

 

where (xi) is a nonlinear mapping function, which 
maps the original input data to a high dimensional 
space, w is the weight vector in the feature space, and 
b is the bias term. 

The optimization problem for the LSSVR model 
is formulated as 

 

T 2

, ,
1

1 1
min ( , ) , 0,

2 2

N

ib
i

J C e C


  
w e

w e w w      (30) 

Table 1  Design parameters of the SOFC 

Item Value 

Cell area (cm2) 100 

Electrode thickness (mm) 0.25 

Interconnector thickness (mm) 1.5 

Electrode density (g/cm3) 6.6 

Interconnector density (g/cm3) 6.11 

Fuel channel height (mm) 1 

Air channel height (mm) 1 
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s.t.  T ( ) , 1, 2, ..., ,i i ib e i N   y w x        (31) 

 
where C (a positive constant) is called the regulari-
zation parameter which is used for avoiding over- 
fitting, and ei is the error between the actual and the 
predicted outputs.  

To solve the optimization problem, we construct 
the Lagrangian as follows: 

 

T 2

1

T

1

1 1
( , , , )

2 2

{ ( ) },

N

i
i

N

i i i i
i

L b C e

b e 





 

   





w e α w w

w x y

    (32) 

 
where αi (i=1, 2, …, N) is called the Lagrange multi-
plier. The conditions for optimality can be obtained 
by solving the following partial differential equations: 
 

1

0 ( ) ,
N

i i
i

L  



  

 w x
w

 

1

0 0,
N

i
i

L

b





  

   

0 , 1, 2, , ,i i
i

L
Ce i N

e


   


  

T0 ( ) , 1, 2, , .i i i
i

L
y b e i N




     


w x 
 
(33)  

 
By some simple algebraic manipulations, after 

eliminating w and e, the matrix equation only relative 
to α and b  is obtained as  

 
T

1

0
,

b

C

     
           α yΩ I

0 1

1
                 (34) 

 
where  

T[1,1, ,1] , 1 T
1 2[ , , , ] ,Ny y yy  T

1 2[ , , , ] ,N  α   
and  

T
, ( ) ( ) ( , ),i j i j i jΩ K  x x x x

 
, 1, 2, , .i j N   

 
Therefore, the LSSVR model can be obtained by 

1

( ) ( , ) .
N

i i
i

K b


 y x x x                   (35) 

K(x, xi) is the kernel function. In this study, the 
radial basis function (RBF) kernel, i.e., K(x, xi)= 
exp(−||x−xi||2/(2σ2)), where σ is the kernel function 
parameter, is selected because the RBF kernel func-
tion has been widely used in a lot of nonlinear re-
gression problems. Furthermore, there exist few pa-
rameters to be determined. 

To achieve high regression performance, the 
hyper-parameters should be accurately chosen and 
this is a key issue in LSSVR modeling. To establish 
an efficient LSSVR model for the SOFC, two essen-
tial hyper-parameters, i.e., the regularization param-
eter C and the kernel function parameter σ, have to be 
carefully chosen in advance. The parameter C ascer-
tains the compromise between the training error and 
the model complexity. The kernel parameter σ defines 
the variance of the nonlinear mapping function. A too 
small σ will lead to over-fitting, while a too big σ will 
result in lower modeling accuracy but higher gener-
alization performance.  

Generally, the CV techniques are widely adopted 
to choose the values of the LSSVR’s hyper- 
parameters, but they are computationally expensive. 
GA is a kind of evolutionary algorithm. It has been 
successfully used to solve a great number of optimi-
zation problems in different fields. To build a more 
accurate LSSVR model for the SOFC, GA is used 
simultaneously to optimize the LSSVR’s hyper- 
parameters for increasing the modeling accuracy and 
generalization ability. 

3.2  Optimization of the LSSVR’s parameters 
based on GA 

The hyper-parameters optimization process of 
the GA-LSSVR model is depicted in Fig. 2. GA is 
adopted to seek the optimal combination of the 
LSSVR’s parameters so as to obtain a smaller root 
mean square error (RMSE) during the LSSVR mod-
eling. The detailed description of the optimization 
steps for the LSSVR’s parameters is as follows (Hsu 
et al., 2006; Yan, 2009; Yang et al., 2010; Yang and 
Shieh, 2010; Qu and Zuo, 2012): 

Step 1. Both LSSVR’s hyper-parameters, C and 
σ2, are directly coded in binary to randomly construct 
the chromosome. Here, each chromosome consists of 
20 bit binary numbers.  

Step 2. To obtain the optimal LSSVR’s parame-
ters, a fitness function must be specified in advance 
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for assessing the performance of each chromosome. 
In this study, the RMSE is selected as the fitness 
function for evaluating the modeling accuracy of the 
GA-LSSVR model. The fitness function is defined as 

 

2

1

1
ˆRMSE ( ) ,

N

i i
i

y y
N 

                 (36) 

 

where yi and iŷ  are the actual and the predicted val-

ues, respectively. 
Step 3. The roulette wheel selection (fitness- 

proportional selection) strategy is adopted to select 
the chromosomes with the highest fitness values to 
reproduce. 

Step 4. After duplicating, the single-point 
crossover is applied to generate a new population by 
exchanging the parent chromosomes information at 
the assigned positions. 

Step 5. The mutation operation with a smaller 
mutation operator, which is beneficial to the diversity 
of the population, is carried out after the crossover 
operation. The mutation probability is usually chosen 
within the limit of [0.001, 0.1]. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 6. The maximum evolutional generation is 
selected as the termination criterion in this study. If 
the stopping condition is not reached, we must repeat 
steps 2 to 5 until the termination criterion is met. 

Step 7. When the termination condition is satis-
fied, the optimal combination of the hyper-parameters, 
C and σ2, is used to construct the desired SOFC dy-
namic model. 

 
 

4  Modeling the SOFC based on GA-LSSVR 

4.1  Identification structure of the SOFC stack  

A nonlinear autoregressive model with exoge-
nous inputs (NARX) is usually used to describe a 
wide class of discrete-time nonlinear systems. 
Therefore, the thermal and electrochemical dynamic 
characteristics of the SOFC can be represented by the 
following NARX model: 

 
( 1) [ ( ), ( 1), ..., ( ),

( ), ( 1), ..., ( )],

y

x

k f k k k n

k k k n

   

 

y y y y

x x x
      (37) 

 
where y(k) and x(k) are the output and input vectors at 
the time step k of the SOFC, respectively, ny is the 
output lag, nx is the input lag, and f(·) is a unknown 
nonlinear function needed to be identified. To analyze 
the load tracking performance and the temperature 
dynamic characteristics of the SOFC simultaneously, 

we choose 
2 2

in in
H O( ) [ ( ), ( ), ( )]k q k q k I kx  (i.e., the gas 

molar flow rates of the inlet hydrogen and inlet oxy-
gen, and the stack current) as the input vector and 

s s( ) [ ( ), ( )]k V k T ky  (i.e., the stack voltage and the 

operating temperature) as the output vector. 
Providing that  
 

( ) [ ( ), ( 1), , ( ), ( ),

( 1), , ( )], 1, 2, , ,

y

x

k k k k n k

k k n k N

  

  

x y y y x

x x

 
   

(38) 

we have 
( 1) ( ( )).k f k y x                         (39) 

 
Based on the collected training data set ( ( ),kx  

( 1)),k y  the following LSSVR model can be con-

structed using the LSSVR theory: 
Fig. 2  Process of optimizing the LSSVR’s parameters
based on GA 
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1

ˆ( 1) ( ( ), ) .
N

i i
i

k K k b


  y x x              (40) 

 
4.2  Preparation of the simulation data 

In this study, the SOFC stack can be regarded as 
a system with three inputs and two outputs. The 
nominal operating parameters of the SOFC are given 
in Table 2 (Padullés et al., 2000; Murshed et al., 
2007). Using the physical dynamic model, the mod-
eling data for the GA-LSSVR model can be gathered. 
When the load step changes from 500 A to 600 A at 
t=200 s and from 600 A to 450 A at t=600 s, a group of 

input/output data 
2 2

in in
H O s s([ ( ), ( ), ( ), ( ), ( )],q i q i I i V i T i  i=1, 

2, …, 1000) is collected by means of simulation when 
the sampling time is set as 1 s. The database consist-
ing of 1000 cases with five dimensions is also divided 

into two sets. Here, the data 
2 2

in in
H O s[ (1), (1), (1), (1),q q I V  

2 2 2

in in in
H O s s H(1); (2), (2), (2), (2), (2); ; (800),sT q q I V T q

2

in
O s(800), (800), (800),q I V Ts(800)] is selected as the 

training set to identify the GA-LSSVR model of the 
SOFC, and the data [Vs(2), Ts(2); Vs(3), Ts(3); …; 
Vs(1000), Ts(1000)] is chosen as the testing set to 
validate the established GA-LSSVR model. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
To eliminate the dimension differences, all the 

training and testing data should be normalized in the 

range of [0, 1] by  
 

min
norm

max min

.ix x
x

x x





                       (41) 

 
4.3  Selection of the optimal LSSVR parameters  

To build an efficient LSSVR model for the 
SOFC, two parameters of the LSSVR, C and σ2, must 
be carefully determined. In contrast with the CV 
methods, GA is adopted to seek the optimal combi-
nation of the LSSVR’s parameters in this study.  

During the LSSVR modeling, the extents of the 
parameters C and σ2 are distributed in (0, 100] and 
[0, 1000], respectively. The original population size 
of GA is P=20, the maximum iterations is 200, each 
chromosome consists of 20 bit binary numbers, and 
the probabilities of the crossover and the mutation are 
selected as pc=0.4 and pm=0.01, respectively. Then, 
the identification model of the SOFC can be con-
structed using the optimal LSSVR’s parameters for 
predicting. 

4.4  Identification results of the GA-LSSVR model 

By minimizing the RMSE, a GA-LSSVR model 
of the SOFC is established based on the training data 
using the optimal parameters obtained in Section 4.3. 
To further assess the predicting performance of the 
GA-LSSVR model, the voltage and the temperature 
dynamic characteristics of the SOFC will be simu-
lated under different conditions. For comparison, the 
standard LSSVR whose parameters are determined by 
a simulated annealing algorithm (SAA-LSSVR) is 
used to model the same plant. During the modeling, 
the initial temperature of the SAA is set to 280°, the 
length of the MapkoB chain is 300, and the step 
lengths for parameters C and σ2 are both selected as 
0.2. In addition, the corresponding results of the 
LSSVR with a 5-fold cross-validation (5FCV- 
LSSVR) model are also presented. 

When the load changes from 500 A to 600 A at 
t=200 s and from 600 A to 450 A at t=600 s, it exe-
cutes the simulations for the output voltage and the 
temperature dynamics of the SOFC. Fig. 3a depicts 
the output voltage of the physical model and the pre-
dicting results of the GA-LSSVR model. Furthermore, 
the simulation results for the output voltage of the 

Table 2  Nominal operating parameters of the SOFC 

Item Value 

N0  384 

Tin (K)  973 

Irate (A)  500 

E0 (V)  1.18 
KH2

 (mol/(s·atm))  0.843 
KO2

 (mol/(s·atm))  2.52 
KH2O (mol/(s·atm))  0.281 
τH2

 (s)  26.1 
τO2

 (s)  2.91 
τH2O (s)  78.3 

r (Ω) 0.126 

2

in
H ,rateq  (mol/s)  5 

2

in
O ,rateq  (mol/s)  10 

0
rĤ  (J/mol)  −0.2418×106 

psC  (J/(g·K))  0.4 
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SAA-LSSVR and the 5FCV-LSSVR models under 
the same load conditions are also shown in Figs. 3b 
and 3c, respectively. Fig. 4a gives the temperature 
comparison between the GA-LSSVR and the physical 
models in this load situation. At the same time, the 
predicted temperature of the SAA-LSSVR model and 
the 5FCV-LSSVR model are described in Figs. 4b 
and 4c, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figs. 3a and 4a show that the prediction results 
of the established GA-LSSVR model almost agree 
with those of the physical model, indicating that the 
GA-LSSVR model is valid for dynamic performance 
prediction of the SOFC. 

By comparing the simulation results of the out-
put voltage among Figs. 3a–3c, and the prediction 
results of the temperature among Figs. 4a–4c, one  
 

 
 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3  Output voltage responses of the physical model and
the models of GA-LSSVR (a), SAA-LSSVR (b), and
5FCV-LSSVR (c) 
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Fig. 4  Temperature responses of the physical model and
the models of GA-LSSVR (a), SAA-LSSVR (b), and
5FCV-LSSVR (c) 
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will notice that the prediction performance of the 
GA-LSSVR model for the SOFC has been greatly 
improved. 

To further evaluate the modeling accuracy of the 
GA-LSSVR model, the mean relative error (MRE) 
and the RMSE of the GA-LSSVR, the SAA-LSSVR, 
and the 5FCV-LSSVR models for the output voltage 
and the temperature are given in Tables 3 and 4, re-
spectively. Moreover, in our study, the prediction time 
of the GA-LSSVR, the SAA-LSSVR, and the 
5FCV-LSSVR models are also recorded in Table 5. 
The results indicate that compared with the 5FCV- 
LSSVR technique, the GA-LSSVR can simultane-
ously predict the output voltage and the temperature 
dynamics of the SOFC with a higher accuracy and a 
faster convergence rate. In addition, in comparison 
with the SAA-LSSVR method, the GA-LSSVR model 
needs a little more time to predict the output voltage 
characteristics of the SOFC; however, the GA-LSSVR 
has a higher precision accuracy in appropriating both 
the output voltage and the temperature.  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

5  Conclusions 
 

To investigate the dynamic behaviors of the 
SOFC and facilitate the model-based controller de-
sign, the LSSVR identification model whose param-
eters are optimized by GA is proposed to simultane-
ously describe the electrochemical and thermal 
characteristics of the SOFC. The performance of the 
GA-LSSVR model has been tested and compared 
with the SAA-LSSVR and the 5FCV-LSSVR models. 
The results indicate that the prediction accuracy of the 
GA-LSSVR model has been immensely improved; in 
addition, its convergence rate is much faster. These 
results verified the applicability of the GA-LSSVR 
model in modeling the transient behaviors of the 
SOFC. It provides the foundation for further study of 
the dynamic characteristics of the SOFC under dif-
ferent conditions considering valid control strategies. 
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中文概要： 
 

本文题目：基于遗传算法优化最小二乘支持向量回归机的平板型固体氧化物燃料电池的控制相关动态

辨识建模 
Control-oriented dynamic identification modeling of a planar SOFC stack based on genetic 
algorithm-least squares support vector regression 

研究目的：为了同时预测固体氧化物燃料电池（SOFC）的电压、温度动态特性和设计控制器，建立 SOFC

的控制相关动态辨识模型。 

创新要点：为了建立 SOFC更精确的最小二乘支持向量回归机（LSSVR）动态模型，采用遗传算法（GA）

优化 LSSVR 的参数。所建 GA-LSSVR 模型可同时预测 SOFC 的电压和温度动态特性。 

研究方法： 1. 分析 SOFC的电化学和能量平衡子模型。2. 利用所选择的最优 LSSVR参数，建立了 SOFC

的 GA-LSSVR 动态辨识模型。通过仿真分析和比较，验证了所建模型的有效性

（图 3 和 4）。3. 利用所建模型的预测结果，与模拟退火算法优化最小二乘支持向量回归机

（SAA-LSSVR）和 5 折交叉验证最小二乘支持向量回归机（5FCV-LSSVR）模型的预测结

果进行了比较，表明所建立的 GA-LSSVR 模型具有较高的预测精度（表 3 和 4）。 

重要结论：通过比较 SAA-LSSVR 和 5FCV-LSSVR 模型的预测结果，发现所建 GA-LSSVR 模型具有较

好的预测性能和精度。基于所建立的 GA-LSSVR 模型可进行有效的多变量控制器设计。 

关键词组：固体氧化物燃料电池（SOFC）；控制相关；动态建模；最小二乘支持向量回归机 


