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Abstract: A riverbed topographic survey is one of the most important tasks for river model experiments. To improve meas-
urement efficiency and solve the riverbed interference problem in traditional methods, this study discussed two measurement 
methods that use digital image-processing technology to obtain topographic information. A new and improved approach for 
calibrating camera radial distortion, which comes from originally distorted images captured by our camera, was proposed to 
enhance the accuracy of image measurement. Based on perspective projection transformation, we described a 3D reconstruction 
method based upon multiple images, which is characterized by using an approximated maximum likelihood estimation method 
(AMLE) considering the first-order error propagation of the residual error to compute transformation parameters. Moreover, a 
theoretical derivation of 3D topography according to grey information from a single image was carried out. With the diffuse 
illumination model, assuming that the ideal grey value and topographic elevation value are positively correlated, we derived a
novel closed formula to explain the relationship of 3D topographic elevation, grey value, grey gradient, and the solar direction 
vector. Experimental results showed that our two methods both have some positive advantages even if they are not perfect.
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1  Introduction

The riverbed topographic survey is one of the 
most complex tasks in river model experiments. Tra-
ditional topographic surveying tools, such as elec-
tronic level, electronic transit, and full-station in-
struments, are difficult to apply in a riverbed topog-
raphic survey. At present, the resistive topography 
meter is the device generally used. It has good
adaptability and can measure many kinds of topog-
raphy. It is suitable for different sediment concentra-

tions and sandy conditions. However, its low meas-
urement efficiency and the riverbed interference 
problem are its major shortcomings.

To meet the needs of dynamic measurement, a 
wide range of topographic measurement methods 
have been evolved. Terrestrial laser scanning, aerial 
light detection and ranging (LiDAR), multibeam 
sonar, real-time kinematic (RTK) GPS, and total 
station surveys (Heritage and Hetherington, 2007; 
Alho et al., 2009; Notebaert et al., 2009; Brasington, 
2010; Höfle and Rutzinger, 2011; Hohenthal et al., 
2011) are continuously being developed to satisfy 
increasing research interest and engineering applica-
tions in the geomorphic sciences. However, such 
methods are much more suitable for large-scale river 
models, even actual rivers. Moreover, much software 
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and hardware resource, especially, time, is called 
for. In recent years, with the development of meth-
ods allowing for the accurate calibration of 
non-metric cameras and the increasingly reliable 
automation of the process, photogrammetry is be-
coming accessible to a wide user base (Butler et al., 
2001; Chandler et al., 2002; Lohry and Zhang, 2012; 
Feng et al., 2013; Zwick et al., 2013). Using an online 
structure-from-motion (SfM) program, Fonstad et al.
(2013) created high-resolution digital elevation 
models of a river environment from ordinary photo-
graphs produced from a workflow that takes ad-
vantage of free and open source software. Bouratsis et 
al. (2013) used a pair of commercial cameras to rec-
ord the evolution of the bed, and a computational 
approach that consisted of a set of computer-vision 
and image-processing algorithms was employed to 
analyze the videos and reconstruct the instantaneous 
3D surface of the bed. James and Robson (2012)
integrated SfM and multiview-stereo (MVS) algo-
rithms to study topographic measurements in a 
method requiring little expertise and enabling auto-
mated processing. Astruc et al. (2012) studied a ste-
reoscopic technique to measure sand-bed elevation in 
the swash zone at the wave time-scale. This method is 
non-intrusive, leading to an accuracy of height esti-
mation of the order of a sand grain size whilst tem-
poral resolution allows the wave cycle to be captured. 
In addition, Lu et al. (2008) made some related re-
search about thematic mapper imagery of plain and 
highland terrains.

Image data are simply 2D. However, many clues 
might be found in single images or multiple images 
through 3D reconstruction of the image scene. Typi-
cal reconstruction methods under sunlight conditions
include the shape from shading method (Zhang et al., 
1999), the shape from texture method (Forsyth and 
Ponce, 2002), and the manual interaction method 
(Shashua, 1997). There are also some methods based 
on multiple images, such as the stereo vision method, 
the motion image sequence method, and the photo-
metric stereo method (Li, 1991; Zhang Y.J., 2000; 
Pollefeys and Gool, 2002). It is also worth noting that 
the 3D reconstruction application is widespread as 
well as the topographic survey. There are some sig-
nificant applications in other fields. Gomez et al.
(2013) carried out a new method for reconstructing a
3D+t velocity field from multiple 3D+t color Doppler

images. Miks et al. (2013) focused on scanning beam
deflectometry for surface reconstruction, and pro-
posed and analyzed a new mathematical method to
solve the 3D surface shape reconstruction problem
from measurements of a surface gradient of specular
surfaces. Yoo (2013) proposed a novel depth extrac-
tion method for 3D objects using the windowing
technique in computation integral imaging with a
lenslet array. Moreover, image analysis techniques
have also been used for retrieving water surface ele-
vation fields spatially and temporally from charge-
coupled device (CCD)-images and CCD-image-
sequences (Benetazzo, 2006; Gallego et al., 2011). To
a certain extent these techniques are similar to the 
topographic survey. They use binocular stereogram-
metry to recover topographic information from a
sequence of synchronous, overlapping video images.

2 Camera distortion calibration

Image non-linear distortion calibration is the 
essential step for image surveying and 3D recon-
struction. It is the geometric model of the CCD cam-
era that determines the relationship of 3D geometry 
information of object surfaces and the corresponding
image matching points. Due to the difference between 
the structure of an optical lens and the ideal linear 
pinhole imaging model, non-linear geometry distor-
tion is generated in the images captured from a CCD 
camera. It seriously affects the accuracy of 3D in-
formation gained through 2D images.

2.1 Mathematical model

In the process of design and manufacture, a lens 
inevitably produces aberrations in images. The gen-
eral effects can be expressed by mathematical mod-
els: radial distortion, decentering distortion, and thin 
prism distortion. The lens distortion can usually be 
expressed as

du d d d( , ),xx x x y                       (1)

du d d d( , ),yy y x y                       (2)

where xd and yd are the original distorted image co-
ordinates, and xu and yu are the ideal undistorted 
image coordinates.

dx and 
dy are the distortion in 
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the x and y directions, respectively and can be de-
scribed by

d
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(4)

where the first term is the radial distortion, the second 
term is the decentering distortion, and the third term is 
the thin prism distortion; k1, k2, p1, p2, s1, and s2 are the 
nonlinear distortion parameters (Weng et al., 1992; 
Ahmed and Farag, 2005; Wang et al., 2008).

Previous studies (Zhang Z.Y., 2000; Jiang et al., 
2001; Perš and Kovacic, 2002; Miks and Novak, 
2012) indicated that lens radial distortion is much 
more severe than the other aberrations. Tangential
distortion and prism distortion need not be consid-
ered. Too many non-linear parameters will not im-
prove the accuracy of the solution but, rather, will 
cause instability in it.

The polynomial model (PM) that is most com-
monly used to describe radial distortion can be written 
as

2 4
u d 1 d 2 d(1 ),r r k r k r      (5)

where rd and ru are the respective distances from the 
distorted point (xd, yd) and the undistorted point (xu,
yu) to the distorted center P; ki (i=1, 2, …) is the radial 
distortion parameter. Devernay and Faugeras (1995)
showed that the first-order radial symmetric distortion 
parameter, k1, can achieve some accuracy. To achieve 
a higher accuracy, we use the first- and second-order 
distortion parameters, k1 and k2, to measure the dis-
tortion degree of distorted images. Since the image 
center is a good approximation of the center of dis-
tortion (Tordoff and Murray, 2000), we simply take 
the center of an image as the distortion center P(xc,
yc). The correction formula for image coordinates can 
be expressed as

u c d c 2 4
1 d 2 d

u c d c

(1 ).
x x x x

k r k r
y y y y

(6)

Then, after reformulation, the undistorted coor-
dinates and distorted coordinates are given by

2 4
u d d c 1 d 2 d

2 4
u d d c 1 d 2 d
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                       (8)

2.2 Calibration process

To find the distortion parameters, we use 
Devernay and Faugeras (1995)’s straight line method  
and make some new improvements. This method uses 
the fundamental property (Devernay and Faugeras, 
2001) that the projection of every straight line in 
space onto a pinhole camera is a straight line. As a 
result, if we can find a transformation on a radial 
distorted image so that every straight line in space is 
viewed as straight line in the transformed image, then 
we can estimate the distortion parameters of an im-
age. By using this property, an iterative process is 
employed to estimate the distortion parameters k1 and 
k2.

2.2.1 Edge detection

An image edge has two properties: direction and 
magnitude. The edge pixels change gently along the 
edge direction; however, there is a dramatic change in 
the direction perpendicular to the edge. Firstly, a
Canny edge detector with a new arithmetic (Mo-
hammed et al., 2013) was used to obtain the magni-
tude and orientation of the edge, and then the data 
were processed by Gaussian low-pass filter. Second-
ly, non-maxima suppression and hysteresis thresh-
olding were used for the precise location of the edge
with sub-pixel accuracy. This method can improve 
the resolution of the detected edge, protect the low 
intensity edge, and enhance noise immunity.

2.2.2 Extract distorted line segments

After edge detection, we need to extract distorted 
line segments which are most probably straight lines
in 3D space. Since some segments may be broken by 
the edge detector, we join broken segments together 
when the distances between edge ends are less than a 
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threshold of 0.5 pixels. We also put a minimum 
threshold of 2 pixels on the segment length, on the 
grounds that shorter segments may contain more 
noise than useful information about distortion.

2.2.3 Measure distortion error

To obtain the distortion parameters, the curva-
ture of a distorted line segment is calculated to 
measure by how much it is distorted. We use the 
points on a distorted segment to form a straight line 
by least square approximation. In general, the equa-
tion of the straight line joining end points (x1, y1) and 
(x2, y2) can be parameterized by

1 2 2 1 2 1 1 2( ) ( ) 0.x y y y x x y x y x (9)

For any point (x, y) of a line segment, we use 

1 2 2 1 2 1 1 2

2 2
1 2 1 2

( ) ( )

( ) ( )

x y y y x x y x y x

x x y y
as the distance 

from the point to the straight line, and then the dis-
tortion error is the sum of squares of all the distances. 
As a result, the distortion error is zero, when a dis-
tortion segment is a straight line. The larger the cur-
vature of the distorted segment is, the larger the dis-
tortion error will be.

2.2.4 Optimization method

We combined the golden section search method
(GSSM) and the quadratic interpolation method
(QIM) (Gong and Wang, 2009) to calculate the op-
timal distortion parameters. QIM is accurate, but not 
very efficient. Therefore, we first get a small extreme 
value range by GSSM, and then use QIM to get the 
solution that meets our accuracy requirements.

The whole optimization process is: firstly, we 
use the golden section of the range as the initial point 
and then do an iteration by GSSM, until there is little
difference from the f(x) values obtained from the 
adjacent two-step iteration. Then a single iteration by 
QIM is done. If there is not much difference between
the f(x) values obtained from the two methods, an-
other iteration by QIM is done. Again, if there is not 
much difference between the f(x) values obtained
from the adjacent two-step iteration by QIM, and the 
difference between independent variables is very 
small, iteration is continued until the accuracy re-
quirement is met. Otherwise, we change to GSSM. 

We set the precision as 1×10 10.
By minimizing the parameters when the data still 

contain many outliers, there is a risk of moving fur-
ther from the optimal parameters. For this reason, we 
first optimize on k1 only until it gives a stable solution. 
Then k2 is added, and finally full optimization on the 
distortion parameters is performed.

2.3 Calibration experimental result 

To verify the calibration effectiveness, we con-
duct the calibration experiment on two images. The 
original image coordinates are integral. However, 
after calibration, the image coordinates are non-
integral, and the new grey values of the integer coor-
dinates need to be estimated. Considering this prob-
lem, we use the cubic spline interpolation method for 
grey-level interpolation.

The image edge profile in Fig. 1 shows that the 
two images both produce barrel distortion. The ex-
perimental results by Devernay and Faugeras 
(1995)’s method are shown in Fig. 2, the computing 
times are 65.6 s and 32.9 s, the distortion parameters 
are k1=7.9415×10 7 and k1=8.6914×10 7, and the
residual errors are 24 and 1.8, respectively. The
experimental results by the proposed method are 
shown in Fig. 3, the computing times are 55.3 s and

Fig. 1 Two distorted images used for distortion calibration
(a) From our CCD camera; (b) From http://www.21tx.com/
dc/2007/11/05/11645.html (accessed on May, 2013)

(a)

(b)
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30.2 s, the distortion parameters are k1= 6.9464×10 7,
k2=4.6261×10 12 and k1=7.9267×10 7, k2=6.2357 
×10 13, the residual errors are 1 and 0.8, respectively.
The results look very reasonable and indicate that the 
proposed method is as effective as Devernay and 
Faugeras (1995)’s. We also improve the precision and 
computational efficiency of the distortion parameters
and therefore we can use the calibrated image infor-
mation to do a more precise image survey.

3 Mapping transformation between 2D image 
and 3D space coordinates

3.1 Perspective transformation

Considering that calibrated images can be 
viewed as ground central projections, then there ex-
ists a perspective projection transformation rela-
tionship between the image and the ground. In pho-
togrammetry, the commonly used mathematical
models include direct linear transformation (DLT) 
(Chen et al., 1994) and space resection method 
(Wang, 2007). The space resection method needs 
fewer control points, but it has higher requirements 
for the accuracy of the initial value in the actual it-
erative process. So we use DLT to calculate the 
transformation parameters.

DLT is an analytical expression that directly 
describes the perspective relationship between the 
image and the ground. It contains 11 unknown pa-
rameters (L1–L11) and can improve the image linear 
error. Let (u, v) be the image coordinates, (X, Y, Z) be 
the corresponding 3D space coordinates, then direct 
linear relationship can be expressed as

1 2 3 4

9 10 11

5 6 7 8

9 10 11

,
1

.
1

L X L Y L Z L
u

L X L Y L Z
L X L Y L Z L

v
L X L Y L Z

               (10)

When given n (n 6) control points, we usually 
calculate these 11 parameters by the method of least 
squares. The traditional method is 

T 1 T( ) ,B B B Y                         (11)

Fig. 3 Calibrated images using the parameters computed
by the proposed method
(a) Calibrated results on Fig. 1a; (b) Calibrated results on
Fig. 1b

(a)

(b)

Fig. 2 Calibrated images using the parameters computed 
by Devernay and Faugeras (1995)’s original method
(a) Calibrated results on Fig. 1a; (b) Calibrated results on 
Fig. 1b

(a)

(b)
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where
T

1 2 11, , , ,L L L
T

1 1, , , , ,n nu v u vY

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
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B

The minimum sum of residual squares is the 
objective function in the traditional method. Howev-
er, the statistical property between the image coor-
dinate and the corresponding 3D space coordinate is 
fatally ignored. The precision of the solution is not 
great enough, and it can only be used for low preci-
sion photogrammetry. In this study, we use an
approximated maximum likelihood estimation 
method (AMLE) and consider the first-order error 
propagation of the residual error (Zhou and Deng, 
2011) to compute transformation parameters. Also, a
simpler iterative algorithm is applied.

3.2 Transformation parameter solution based on 
AMLE method

Since each point brings two equations, use i to 
represent the point number, let 

T
1 2 11 1 ,L L L

1, 1 0 0 0 0 ,i i i i i i i i i i iX Y Z u X u Y u Z uA

2, 0 0 0 0 1 ,i i i i i i i i i i iX Y Z v X v Y v Z v
TT T T

1 2, , , ,nA B Y A A A…

then we have the governing equation:

0.A                                   (12)

Li=[Xi Yi Zi ui vi]T is the observed value. Supposing
that the observations are independent of each other, 

2 2 2
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i iu v
2 2 2 2 ,
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2 2 2 2 2

u udiag X X X is the observation co-

variance matrix. According to the error propagation 

law, the variance of A1,i can be expressed as
T
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2 2

2 2

2

( ) ( )

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

i i
i i

i i

u
u

u

u u X XY XZ X
u XY u Y YZ Y

u XZ YZ u

A A
C A C L

L L

2

2

,

0 0 0 0 0 0 0 0

X

Z Z
X Y Z

(13)

where 2 2
u/ ( )X s with s being the equivalent 

error factor determined by the camera photography 
scale. Because errors in spatial coordinates in photo-
grammetry are usually expressed in millimeters and 
image measurement coordinates are in pixels, the 
pixel error needs to be transformed to millimeters.

This is a semi-linear errors-in-variables (EIV) 
model parameter estimation problem (Muhlich and 
Mester, 2001). In tradition, the problem can be ex-

pressed as 
T T

T
1

arg min .
cov[ ]

n
i i

i i

A A
A

Ignoring the 

residual rights, i.e., cov[ ]iA being an identity matrix,
the AMLE problem is a general least squares problem 
(Yu et al., 1990) and the estimated parameters to be 
determined are the eigenvectors corresponding to the 
smallest eigenvalue of matrix ATA. Considering the 
relative complexity of various methods (Kanatani,
1996; Chojnacki et al., 2000; Matei and Meer, 2000; 
Muhlich and Mester, 2001), we use an iterative 
weighted total least square method (WTLS). Its pre-
cision can be 10% greater than that of the traditional 
method, and that will have a significant influence 
when the observation precision of the control points 
differs greatly.

The modified expression is as follows:
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T

T
1

arg min ,
n

i

S                    (14)

where
T

T
T

1
,

cov[ ]

n

i i
i i

S A A
A

               (15)

The parameter solution of the problem is the
eigenvector corresponding to the smallest eigenvalue 
of matrix S under singular value decomposition, 
while S is determined by the parameters. The detailed 
iterative process is described as follows:

1. Let the solution calculated by the traditional 
method be the initial value;

2. Use the initial value to calculate S according 
to Eq. (15);

3. Carry out a singular value decomposition on 
S; the solution is the eigenvector corresponding to the 
smallest eigenvalue;

4. Compare the solution with the initial value by 
the Euclidian 2-norm, if the difference is less than the 
threshold of 1×10 5, then the calculation stops; if not 
continue to do the iteration.

We can get all the 11 parameters of Eq. (10) by 
this method. If we want 3D coordinates of some point, 
we can take pictures of the same place from different
angles with two different CCD cameras, then use the 
method to calculate the 11 parameters of the two 
images and thus obtain the 3D coordinates through 
the coupled equations. As shown in the following 
original and derived equations:

1 2 3 4

9 10 11

5 6 7 8

9 10 11

1 9 2 10 3 11

5 9 6 10 7 11

4

8

,
1

,
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,

i i i i
i

i i i

i i i i
i

i i i
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u

L X L Y L Z
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v
L X L Y L Z

XL L u L L u L L u
Y

L L v L L v L L v Z

u L
v L

(16)

where (ui, vi) is the image coordinates of objective 
point from one CCD camera, Lji (j=1, 2, …, 11) are 
the solved perspective transformation parameters for
the ith image.

From Eq. (16), it is obvious that, based on cou-
ples of image coordinates, the 3D coordinates can be 
easily obtained. Additionally, we can get a higher 
measurement precision from three or more cameras. 
If we capture significant images from two or more 
positions, and have at least six non-coplanar control 
points, a single camera can also have a similar effect.

3.3 Experimental results

To validate the result, two river model experi-
mental images are employed (Fig. 4). They are cap-
tured at different positions by a single camera, pro-
vided by Microvision (MV-1394). The images are 
640×400 pixels. The river model is the one built for 
the experimental study of bed topography evolution 
in alluvial meandering rivers (Xu and Bai, 2013). The
experiment was carried out in a small scale water 
basin with a size of 4 m×1.5 m×0.3 m (length×width×
depth). The basin was filled with sand up to a thick-
ness of 10 cm. The images display a stable curved 
reach shaped by the flow. The area of this reach is 
about 2 m2. The images have been done with distor-
tion calibration and skew correction (Omar et al., 
2012). The control points are the hotspots of images.

Fig. 5 shows the measured topographic contour 
(h). A fiber optic fluid level measuring instrument (IH 
type) was employed in the measurements. The cal-

(a)

(b)

Fig. 4 Two images captured at different positions
(a) From angle 1; (b) From angle 2
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culated topographic contour by the proposed method 
is shown in Fig. 6. A bilinear interpolation algorithm 
was applied in a scattered data interpolation. From the 
two images, we can see that the topographic change 
tendencies of these two images are basically identical.
They match almost perfectly in the control region, 
with some errors just outside that region.

We selected 10 control points from the control 
region, that is (xi, yi) (i=1, 2, …, 10). Let hi be the ith 
point interpolated measured elevation value, h1i be the 
ith point calculated elevation value using 10 control 
points, h2i be the ith point calculated elevation value
using eight control points, and h3i be the ith point
calculated elevation value using six control points. 
The confusion matrix for elevation coordinates from 
different methods is shown in Table 1.

From Table 1, we can observe that, with more 
control points, the calculated value and the experi-
mental value are closer. The bias results between

measured and calculated data, i.e.,
10

2

1
( )ji i

i
h h (j=1, 

2, 3), are 3.1101, 43.8393, and 47.8101, respectively. 
Considering hi comes from the measured data inter-
polation, and differs little from the exact actual value,
h1i can meet the precision requirements of the river 
model experiment. However, as the maximum dif-
ferences for three occasions are 1.049, 4.422, and
3.316, h2i and h3i are obviously not practical. In the 
actual experiment, many factors could influence the 
precision of computation, such as the computation 
precision of perspective transformation parameters, 
the number and position of control points, the accu-
racy of the objective point central coordinates, and so 
on. Zhou and Deng (2011) compared the classical 
least square method and the AMLE method through 
an experiment that superimposed Gaussian noise on
image coordinates, and demonstrated that if the points 
in the calculation have unequal accuracy, the results 
driven by AMLE can be better. In that case, we may 
reduce the noise more as shown in Fig. 6. In addition, 
it is also necessary to make further optimization and 
improvement, and establish improved error correction 
and compensation mechanisms.

4 Transformation between 2D image grey 
value and 3D space coordinates

4.1  Theoretical assumption and mathematical 
model

The grey feature is one of the most important 
characteristics of 2D images. The image grey value 
obtained from CCD image sensor is influenced by 

Table 1 Confusion matrix for elevation coordinates from different data processing methods
Control point xi (m) yi (m) hi (cm) h1i (cm) h2i (cm) h3i (cm)

1 4.716 1.802 6.574 6.309 3.692 8.420
2 4.423 1.731 7.875 7.566 5.607 9.249
3 4.841 1.713 6.663 5.993 3.685 9.799
4 4.699 1.832 6.715 5.666 2.293 9.175
5 5.310 1.458 5.245 4.837 5.631 7.017
6 5.098 1.638 7.171 7.076 6.018 7.590
7 5.394 1.634 5.471 5.951 4.983 8.243
8 5.603 1.467 6.503 6.171 6.682 8.890
9 5.594 1.577 5.004 5.776 5.244 7.695
10 5.255 1.452 5.352 4.820 5.753 6.992

h (cm)

Fig. 5 Measured topographic contour
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Fig. 6 Calculated topographic contour
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various conditions. The main influencing factors 
include the illumination, the atmospheric environ-
ment (determined by atmospheric properties: at-
mospheric attenuation, the scattering of suspended 
particles in the atmosphere, etc.), the object surface 
(determined by the object temperature, the object 
surface characterization, the observation direction, 
the angle of incidence, etc.), and the optical imaging 
system (He et al., 2008).

Assuming an ideal optical lens, an ideal optical 
imaging system, a scene region without a radiation 
source, and that the illumination of the region is the 
same as the illumination from the atmosphere, then 
the image grey value is only related to the position of 
each point and the climate conditions (i.e., time). 

The grey value is proportional to the illumina-
tion of the corresponding object surface. Assuming no
outside influences, at a given moment the ideal grey 
value and the topographic elevation value have a
positive correlation, described as follows:

0 ( ),P PI f h                              (17)

where IP0 is the ideal grey value of point P, hP is the 
corresponding elevation coordinate, and f is a positive 
correlation function.

To study the effect of object surface reflection, 
an illumination model is usually needed. The exist-
ing illumination model includes a global and a local 
illumination model. Global illumination models use 
ray-tracing technology and have strong sense of 
reality, but have heavy calculation requirements.
Local illumination models mainly include the dif-
fuse reflection Lambertian model and the further 
added specular reflection Phong model (He et al., 
2008). In this study, we use the diffuse reflection 
illumination model. Let SP be the diffuse reflection 
grey coefficient,

e e[(1 )cos ],P PS C K K             (18)

where CP is the reflection coefficient of a specific 
wavelength of light at point P, is the incidence an-
gle, and Ke is the diffuse reflection attenuation coef-
ficient.

Then the actual image grey value can be ex-
pressed as

0P P PI kS I ,                            (19)
where k is the attenuation coefficient considering
climatic factors and indoor factors. Then substituting
Eqs. (17) and (18) into Eq. (19), we have:

e e[(1 )cos ] ( ),P P PI kC K K f h (20)

where cos can be derived according to the normal-
ized inner product of the object surface normal vector 
[ p, q, 1] and the light source (the sun) direction 
vector [ ps, qs, 1]:

s s

2 2 2 2
s s

1
cos ,

1 1

pp qq

p q p q
(21)

where hp
x

and hq
y

represent the gradients in 

the x and y directions, respectively. In this study, we 
use h=h(x, y) to represent the object surface equation.

4.2 Sun direction vector calculation model

The sun direction vector is determined by the 
position of the sun:

s

s

sin cos ,
cos cos ,

p
q

               (22)

where is the sun azimuth angle, and is the sun
elevation angle.

The sun elevation angle changes with solar dec-
lination and local time (Wang and Tang, 2001). We
use to represent solar declination, and to repre-
sent the latitude of the observation location, which are 
both defined so that north latitude is positive and 
south latitude is negative. Solar hour angle is ex-
pressed by . Then the calculation formula for the sun 
elevation angle is

sin sin sin cos cos cos . (23)

The sun azimuth angle can be calculated by
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sin sin sincos ,
cos cos

sintan .
cos sin tan cos

(24)

For the above equations, we can consult “the 
ground meteorological observation specification”
(Yu et al., 2003) for solar declination and solar hour 
angle but to avoid that time-consuming operation we 
used a real-time solution method for calculating them.

The solar hour angle (Zhang et al., 2010):

(TT 12) 15,                       (25)

where TT is real solar time,

TT ( / 60 LC / 60 Eq / 60)S M , (26)

where S and M are the respective hour value and 
minute value of the observation time, LC is the lon-
gitude modified value, and Eq is the equation of time.

LLC 4 ( 120),D                        (27)

where DL is the degree value of observed longitude.

Eq 0.0028 1.9857sin 9.9059sin(2 )
7.0924cos 0.6882cos(2 ),

(28)

where
2 / 365.2422,t                      (29)

and t is made up of two parts:

0 ,t N N                (30)

where N is the day according to coordinated universal 
time and 

0 79.6764 0.2422( 1985)
floor[( 1985) / 4],

N Y
Y

where Y is the year, and floor is INT function.
The solar declination (Zhu and Hu, 2012) is

0.3723 23.2567sin 0.1149sin(2 )
0.1712sin(3 ) 0.758cos
0.3656cos(2 ) 0.0201cos(3 ).

(31)

Thus, if we know the longitude, latitude, and 
time of image acquisition, we can calculate the solar 
declination and solar hour angle according to Eqs. (25)
and (31), and then derive the sun direction vector 
according to Eqs. (22)–(24).

4.3  Formula reformulation and derivation

In the specific experiment, the sun direction 
vector changes over time. If we let the image acqui-
sition time be T, then the sun direction vector will be
[ ps(T), qs(T), 1]. For any image point (x, y), ac-
cording to Eqs. (20) and (21), we have:

e s s

2 2 2 2
s s

( , ) (1 ) 1 ( , ) ( ) ( , ) ( )

/ ( 1 ( , ) ( , ) 1 ( ) ( ))

I x y kC K p x y p T q x y q T

p x y q x y p T q T

e ( , ) .K f h x y                                         (32)

We can make the following reformulation:

2 2
s s s

2 2
s s s

2 2
s s

( ) / 1 ( ) ( ),

( ) / 1 ( ) ( ),

1 / 1 ( ) ( ),

A p T p T q T

B q T p T q T

H p T q T

( , ) ( , ) ( , )( , ) ,
( , )

( , ) ( , ) ( , )( , ) ,
( , )

x

y

Gh x y h x y I x yp x y
x I x y x r

Gh x y h x y I x yq x y
y I x y y r

and substituting the above formulas into Eq. (32), we 
have

e e2 2 2
( , ) (1 ) ( , ) ,x y

x y

rH AG BG
I x y kC K K f h x y

r G G

(33)

where ( , )
( , )

I x yr
h x y

is the partial derivative of I to h,

and Gx and Gy are the grey gradients of the x and y
directions, respectively, which can be expressed as
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1

1

1

1

( , ) ( , )
,

( , ) ( , )
.

i i i i
x

i i

i i i i
y

i i

I x y I x y
G

x x
I x y I x y

G
y y

               (34)

Assuming f is a linear function, expressed as
f(x)=Dx+E, according to Eq. (33), we can obtain:

e e2 2 2

( , ) (1 )
( , )

.

x y

x y

rH AG BGI x y kCD K K
h x y r G G

r

(35)

Let kCD=F, and Ke=0. Thus, after reformulation we 
can obtain:

4 2 2 2 2 2 2

2 2

( ) 2 ( )

( ) 0.
x y x y

x y

r G G F H r F H AG BG r

F AG BG
(36)

Solving Eq. (36), we can obtain the solutions of the 
fourth-order equation:

1 3 2 ,r R R 2 3 2 ,r R R

3 3 1,r R R 4 3 1,r R R              (37)

where

2 2/3
1 12 5 7 5 11 5

1/3 1/2
12 7 5 4

1/6 2 1/3 2/3
6 12 12 6 6

2 1/4
9 8

2 2/3
2 12 5 7 5 11 5

1/3 1/2
12 7 5 4

1/6 2 1/3 2/3
6 12 12 6 6

2 1/4
9 8

( 9 12

12 )

/ [6 ( 6 9

24 ) ],

( 9 12

12 )

/ [6 ( 6 9

24 )

x y

x y

R R R R R R R

R R R R

R R R R R

R R ABF G G
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R R ABF G G

5
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6

1/2 2 1/2
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2 3
13 12
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,
6

3 (27 3

2 72 ) ,

( 6 9
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3 (16 27 256 4

128 144 ) / 18

2 27

x y

R
R

R

R R R R R R

R R R

R R R R R R R

ABF G G
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x x y y
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According to Eqs. (33), (35), and (37), we can 
obtain:

( , )( , ) I x y Eh x y
r D

,                      (38)

where r is the characteristic quantity that indicates the 
relationship between the grey gradient and the sun 
direction vector. Eq. (38) explains the relationship of 
topographic elevation coordinate, grey value, grey 
gradient, and the sun direction vector. It is obviously
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of great significance if we can get the precise analyt-
ical expression of Eq. (38).

4.4  Tentative fitting experiment

We conducted a tentative experiment upon the 
above derivation. The sample image is shown in Fig. 7
(the same curved reach as shown in Fig. 4). Accord-
ing to Google Earth, we get the longitude and latitude 
coordinates of our experiment place: 39°06 37 N, 
117°10 03 E. According to the time of image acqui-
sition of 4:55 pm on June 1, 2013, we obtain
ps= 0.8782 and qs=0.1042. After a lot of tentative
simplifications (reasonable or maybe unreasonable), 
we obtain the following fitted expression by use of 
partial measured data:

5 2 2

( , ) 7.1777

3.9411 10 ( , ) 1 ( , ) ( , )
.

1 0.8782 ( , ) 0.1042 ( , )
x y

x y

h x y

I x y G x y G x y
G x y G x y

(39)

The topographic contour calculated by the fit-
ted Eq. (39) is shown in Fig. 8. Compared with 
Figs. 5 and 6, we can only observe the basic ten-
dency of topographic change, and there is consid-
erable numerical error. It is clear that the represent-
ativeness of tentative fitted Eq. (39) is far from 
enough. This tentative fitting experiment is not 
proven very successful. Later in the study, we make 
extensive attempts to obtain a more precise expres-
sion of Eq. (38); unfortunately, we have not got a 
very satisfactory result. In summary, the main rea-
sons are: (1) we used a local illumination model 
which only considered diffuse reflection, but did not
consider hidden surface removal; (2) we assumed in 
the derivation process that the unknown positive 

correlation function f is linear that might not be the 
case; (3) the image grey value and grey gradient of 
the corresponding 3D space point obtained through 
projection transformation were erroneous; (4) the 
solved sun azimuth angle and sun elevation angle 
were erroneous; (5) there were some high reflecting 
discrete noise points in the actual image, whose
impact is difficult to eliminate; (6) various reflection 
coefficients and attenuation coefficients were diffi-
cult to determine, due to the complexity of the object 
materials, environment, and climate. In addition, an 
equation such as Eq. (39) is only fitted by use of 
specific image data, i.e., Fig. 7 in this study. Our 
future work will focus on how to obtain a more 
precise and more generalized formula.

5 Conclusions

In this study, we present two 3D topography 
reconstruction methods, and make attempts to apply 
them to a river model experiment. Conclusions can be 
drawn as follows.

1. Due to the difference between the structure of 
optical lens and the ideal linear pinhole imaging 
model, non-linear geometrical distortion is gener-
ated in the images captured from a CCD camera. To
get more precise 3D topographic information from 
2D image information, we used a distortion cali-
brated method based on Devernay and Faugeras, 
(1995)’s linear method with some significant im-
provements, such as a Canny edge detector with new 
arithmetic supported by Matlab (2013a), to obtain 
edge magnitude and orientation, with a combined 
golden section search method and quadratic inter-
polation method to calculate the optimal distortion 
parameter, etc. The experimental results show that 

Fig. 7 Experimental sample image captured by a CCD
camera Fig. 8 Fitted topographic contour calculated by Eq. (39)
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our method is as effective as Devernay and Faugeras 
(1995)’s method, and improves the precision and 
computational efficiency of distortion parameters to 
some extent.

2. The perspective projection relationship be-
tween the image and the ground is one of the most 
important relationships between a 2D image and 3D 
space. We viewed the calibrated images as a ground 
central projection, and used direct linear transfor-
mation to calculate the transformation parameters. To
improve parameter precision, based on traditional 
methods, we used the AMLE considering the 
first-order error propagation of the residual error, to 
compute transformation parameters, and used an 
iterative weighted total least square method to do an 
iterative computation. We draw some conclusions.
Control points in the control region should be dis-
tributed as uniformly as possible; and the more con-
trol points, the better. By those means, the calculated
value is closer to the experimental value and can meet 
the precision requirements of a river model experi-
ment. Experimental results show that the method may 
have some practical value.

3. The grey feature is one of the most important 
characteristics of 2D images. This study assumes
that the image grey value is only related to the actual 
spatial position of each point and the climate 
conditions (time); under that condition, without any 
external influences, at a given moment there is a 
positive correlation between the ideal grey value and 
the topographic elevation value, and the actual grey 
value is the deformation value of the ideal grey value 
under the effect of various grey factors. We derived a
closed formula relating topographic elevation to 
actual image grey value, grey gradient, and solar 
direction vector, with some intermediate variables. 
However, for various complicated reasons, the ob-
tained fitted formula under limited conditions was
not very satisfactory, although we have made ex-
tensive attempts. The focus for future work in the 
field must be on how to get a more precise and more 
generalized formula. 
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