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Abstract: In this research, the process analytical technology (PAT) framework is used to optimize the performance of the
wastewater treatment process in poultry industry. Two responses, turbidity and sludge volume index (SVI), are of main manu-
facturer’s interest. Initially, the moving average (MA) and moving range (MR) control charts are established for each response. 
The 33 full factorial design with two replicates is then used for conducting experimental work. The weighted additive model in 
fuzzy goal programming is formulated, and then employed to determine the combination of optimal factor settings. Finally, con-
firmation experiments follow at the combination of optimal factor settings. The results show that the actual process index for 
turbidity is improved from 1.34 to 5.5, while it is enhanced from 1.46 to 1.93 for SVI. Moreover, the multiple process capability
index is improved significantly from 1.95 to 10.6, which also indicates that the treatment process becomes highly capable with 
both responses concurrently. Further, the process standard deviations at initial (optimal) factor settings are 2.16 (1.27) and 6.02 
(3.39) for turbidity and SVI, respectively. These values show significant variability reductions in turbidity and SVI by 41.22% and
77.75%, respectively. Such improvements will lead to huge savings in quality and productivity costs. In conclusion, the PAT 
framework is found to be an effective approach for optimizing the performance of the wastewater treatment process with multiple 
responses.
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1  Introduction

In recent years, there has been an increased in-
terest in wastewater treatment for environmental 
conservation. As a consequence, the industrial sector
is obligated to treat its own waste and lower its or-
ganic load to a level that the ecosystem can cope with. 
The efficient employment of engineering concepts in 
parallel with process knowledge can lead to tangible 
improvements in process capability and potential.

The industrial wastewater treatment process can 
be defined as chemical, biological and/or mechanical 
procedures applied to industrial discharge in order to 
increase the quality of wastewater by reducing its 
organic and inorganic pollutants. The treated water 
quality can be described by several physical parame-

ters, such as turbidity and sludge volume index (SVI), 
which are considered as vital quality responses that 
have large effects on effluent water quality. 

Process analytical technology (PAT) is a system 
that analyses and controls manufacturing processes 
based on timely measurements of critical quality 
characteristics and performance attributes of raw 
materials and in-process products to ensure accepta-
ble end-product quality (CDER, 2004). The PAT
framework is a combination of tools that, when used 
within a system, can provide useful means for ac-
quiring information resulting in continual process 
improvement, such as multivariate techniques, data 
acquisition and analysis, process analysis methods, 
process control tools, and continual improvement and 
a knowledge management approach. A summary of 
the tools that are commonly used in the PAT frame-
work is displayed in Fig. 1. 
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Recently, improving the performance of the 
wastewater treatment process has received significant 
research attention. Wang et al. (2007) used response 
surface methodology to optimize the coagulation-
flocculation process for paper-recycling wastewater 
treatment. Wang et al. (2011) applied a uniform de-
sign in parallel with response surface methodology to 
optimize the coagulation-flocculation process for 
pulp mill wastewater treatment. Furthermore, several 
approaches have been proposed for optimizing pro-
cess performance with multiple responses (Al-Refaie
et al., 2008; 2009; Al-Refaie, 2009; 2010; 2011; 2012; 
Al-Refaie and Al-Tahat, 2011; Muhammad et al.,
2012; Salmasnia et al., 2012). Among the efficient 
optimization approaches is the weighted additive 
model in fuzzy goal programming, which considers 
the preferences for quality responses when deter-
mining the combination of optimal process factor’s 
settings. The weighted additive model has been ap-
plied to optimize process performance in several 
industrial applications (Yaghoobi et al., 2008; Yücel
and Guneri, 2011; Al-Refaie and Li, 2011; Al-Refaie 
et al., 2012). This research aims at applying the PAT 
framework, including the weighted additive model, to 
optimize the performance of the coagulation-
flocculation process in wastewater treatment. 

2 PAT framework

The PAT framework was implemented to im-
prove the performance of the wastewater treatment 
process and is described as follows.

2.1 Identifying critical process attributes

The wastewater treatment process is mapped as 
shown in Fig. 2. The inflow stream is screened at first 
using two rotary screens to remove coarse materials 
that could damage the subsequent process equipment. 
The screened flow is then physically treated in a 
dissolved air flotation unit (DAF) where it is exposed 
to a pressurized air stream in order to float its oil and 
fat content. The floating fat layer is then scraped off 
by a skimming device. The treated stream is passed 
through an aeration process using a selector tank to 
enhance the growth of floc-forming bacteria instead 
of filamentous bacteria to provide an activated sludge 
with better settling and thickening properties. The 
aerated stream is then biologically treated in a treat-
ment tank where the dissolved and particulate con-
stituents are biologically degraded. The last treatment 
process is coagulation-flocculation in which sludge is 
separated from water by adding certain coagulant and 
flocculant agents. The flocculated sludge will float by 
means of a pressurized air stream where it is scraped 
by a skimming device. On the other hand, the treated 
water is then chlorinated and stored, to be used for 
irrigation purposes.
 
 

2.2 Real-time monitoring

A control chart plots the average of measured 
values of quality responses in samples taken from the 
process versus the sample number. The chart has a
center line (CL) as well as upper and lower control 
limits (UCL and LCL, respectively). The CL repre-
sents where this process characteristic should fall if 
no assignable causes for variability are present. The 
moving average (MA) and moving range (MR) con-
trol charts are found to be effective ones in detecting 
small process shifts and process variability, respec-
tively. The turbidity is measured using a portable 
DR/890 colorimeter instrument, while the SVI is 

Fig. 2 Process mapping of treatment process

Fig. 1 The PAT framework
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measured manually using the standard method. The 
MA and MR control charts for turbidity and SVI are 
constructed and depicted in Figs. 3 and 4, respec-
tively. In Fig. 3 for turbidity, the UCL, CL, and LCL
of the MA control chart are calculated and found 
respectively equal to 24.81, 20.22, and 15.64 NTU
(nephelometric turbidity units), while the corre-
sponding parameter values in the MR control chart 
are equal to 
7.964, 2.438, and 0 NTU, respectively. In MA and 
MR control charts, neither point falls outside the 
control limits nor does a significant pattern exist in 
the charts. Hence, it is concluded that the process is in 
control for turbidity and SVI. Furthermore, the cor-
responding lower limit (LSL) and upper specification 
limit (USL) for the turbidity are 0 and 30 NTU, re-
spectively, while the smaller SVI value is preferred 
within the specification range. Observing the CL
(=20.22 NTU) of the MA control chart for turbidity, it 
is noted that the turbidity is significantly larger than 
the above maximum allowable target value of 
15 NTU. From Fig. 4 for SVI, the UCL, CL, and LCL
of the MA (MR) control chart are estimated

respectively as 92.69 (22.19), 79.92 (6.79), and 67.15
(0) ml/g. The LSL and USL of SVI are 50 and 
100 ml/g, respectively, where it is preferred at the 
nominal value of 70 ml/g. Hence, the SVI is consid-
ered the nominal best type response. It is found that 
the CL (=79.92 ml/g) for SVI is shifted from the 
nominal value. Consequently, improvement actions 
are required to improve process performance.

2.3 Modeling and prediction

In the third step of the PAT framework, a 
mathematical relationship is developed for both tur-
bidity, y1, and SVI, y2, with the critical process fac-
tors. Based on process knowledge, the main control-
lable process factors thought to affect the wastewater 
quality characteristics are flocculant dose (x1, mg/L), 
coagulant dose (x2, mg/L), and pH (x3). The current 
process factor settings for the wastewater treatment 
process are: flocculant dose=8 mg/L, coagulant 
dose=50 mg/L and pH=6. Each factor is assigned at
three levels: 1: low, 2: middle, and 3: high. The 
physical values for factor levels are listed in Table 1.

Fig. 3 MA chart (a) and MR chart (b) for turbidity at initial factor settings
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Fig. 4 MA chart (a) and MR chart (b) for SVI at initial factor settings
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For the present process, 33 full factorial design 
with two replicates I and II, enables investigation of 
three three-level factors with their interactions with-
out the need to ignore the three-way interaction. The 
designed experiment is conducted and tested using jar 
test apparatus which is specially designed to be used 
with conventional wastewater treatment processes 
such as coagulation, flocculation, and sedimentation. 
Turbidity and SVI are measured once in each repli-
cate. Table 2 displays the experimental results for 
both quality responses.

2.4 Process adjustment

The weighted additive model will be employed 
to obtain the optimal values of process factor settings 
while considering the preferences of process/product 
engineers as follows.

Step 1: Estimate the relationship between each 
of y1 and y2 responses and the process factors x1, x2,
and x3 using statistical multiple linear regression as 
follows:

yk=f(x1, x2, …, xJ), k=1, 2,               (1)

where f is assumed to be a linear function, yk denotes 
the kth quality response, and xj represents the jth 
process factor, j=1, 2, …, J.

Analyses of variance (ANOVA) for the experi-
mental values of y1 and y2 are conducted to determine 
significant main and interaction effects. ANOVA 
results for both responses are displayed in Table 3.
Obviously, all main two-way interactions and 
three-way interactions are found to be significant for 
both responses. Moreover, the corresponding signif-
icance tests of linear regression coefficients are listed 
in Table 4. 

Finally, the normality tests for turbidity and SVI 
are constructed in Figs. 5 and 6, respectively. Obvi-
ously, in the plots of fitted values versus the normal-
ized residual and the normal probability plots for 
residuals, there is no obviously significant pattern or 
outliers or a relationship between the fitted values and 
their corresponding residual values. Consequently, 
mathematical relationships for y1 and y2 are expressed 
in Eqs. (2) and (3), respectively.

1 1 2 3 1 2

1 3 2 3 1 2 3

84.6 4.71 1.83 12.8 0.0962
      0.716 0.184 0.011 ,
y x x x x x

x x x x x x x
(2)

2 1 2 3 1 2

1 3 2 3 1 2 3

31.5 0.28 1.24 7.11 0.0363
      0.241 0.0631 0.00424 .
y x x x x x

x x x x x x x
(3)

Step 2: Select proper membership function (MF) 
for y1, y2, and xj. Let the MFs for turbidity and SVI be 
denoted as

1y and 
2
,y respectively, which are de-

Table 1 Physical values for factor levels

Level
Factor

x1 x2 x3

1 6 40 4
2 12 60 6
3 18 80 8

Table 2 Experimental results for both quality responses

Exp.
No.

Process 
factor

Turbidity (y1)
replicate

SVI (y2)
replicate

x1 x2 x3 I II I II
1 6 40 4 9.3 9.2 89.2 90.1
2 6 40 6 25.7 24.0 101.6 102.2
3 6 40 8 23.2 24.6 103.2 105.3
4 6 60 4 20.8 20.1 107.9 108.2
5 6 60 6 29.1 28.7 106.7 107.5
6 6 60 8 26.5 28.2 121.3 123.4
7 6 80 4 45.3 46.4 122.4 121.8
8 6 80 6 36.6 35.2 133.6 132.8
9 6 80 8 40.2 39.7 136.9 137.1

10 12 40 4 4.5 4.2 78.8 77.2
11 12 40 6 10.1 9.8 98.6 96.4
12 12 40 8 13.3 12.9 104.3 103.9
13 12 60 4 14.5 14.3 106.0 104.2
14 12 60 6 19.1 18.3 103.1 101.3
15 12 60 8 16.6 17.2 101.9 105.2
16 12 80 4 20.2 21.8 115.0 118.1
17 12 80 6 30.2 29.4 124.1 119.2
18 12 80 8 25.4 24.3 126.3 129.8
19 18 40 4 8.2 8.9 76.1 79.8
20 18 40 6 9.5 10.2 73.3 75.2
21 18 40 8 10.3 9.6 83.8 87.9
22 18 60 4 8.1 7.7 79.2 79.4
23 18 60 6 10.7 10.2 92.4 92.6
24 18 60 8 12.2 12.6 101.1 100.6
25 18 80 4 15.8 15.2 95.8 103.5
26 18 80 6 16.3 15.5 101.6 105.1
27 18 80 8 17.8 17.3 115.7 116.3
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cided as follows.
Table 3 Analysis of variance for turbidity

Term Degrees of 
freedom

Turbidity (y1) SVI (y2)
Sum of 
squares

Mean sum of 
squares F P Sum of 

squares
Mean sum of 

squares F P

x1 2 2571.40 1285.70 3321.91 0.000 4389.11 2194.56 627.35 0.000
x2 2 2027.67 1013.83 2619.48 0.000 7837.79 3919.40 1120.42 0.000
x3 2 212.80 106.41 274.94 0.000 1758.74 879.37 251.38 0.000

x1x2 4 348.00 87.00 224.78 0.000 51.54 12.89 3.68 0.016
x1x3 4 38.68 9.67 24.98 0.000 61.09 15.27 4.37 0.007
x2x3 4 133.17 33.29 86.02 0.000 64.19 16.05 4.59 0.006

x1x2x3 8 304.93 38.12 98.48 0.000 678.18 84.77 24.23 0.000
Error 27 10.45 0.39 94.45 3.50
Total 53 5647.12 14936.09

*R2=99.81%, R2 (adjusted)=99.64% R2=99.37%, R2 (adjusted)=98.76%
*R2: coefficient of determination 

Table 4 Results of test of significance for factor coefficients

Predictor
Turbidity (y1) SVI (y2)

Coefficient Standard 
Error T P Coefficient Standard 

Error T P

Constant 84.59 18.03 4.69 0.000 31.46 25.58 1.23 0.225
x1 4.718 1.391 3.39 0.001 0.279 1.974 0.14 0.888
x2 1.8324 0.2900 6.32 0.000 1.2419 0.4114 3.02 0.004
x3 12.767 2.900 4.40 0.000 7.111 4.114 1.73 0.091

x1x2 0.09618 0.02237 4.30 0.000 0.03627 0.03174 1.14 0.259
x2x3 0.18417 0.04664 3.95 0.000 0.06312 0.06616 0.95 0.345
x1x3 0.7160 0.2237 3.20 0.002 0.2408 0.3174 0.76 0.452

x1x2x3 0.011042 0.003598 3.07 0.004 0.004245 0.005105 0.83 0.410
*R2=90.3%, R2 (adjusted)=88.80% R2 =92.6%, R2 (adjusted)=91.50%

*R2: coefficient of determination 

Fig. 6 Normality test results for SVI (y2)
(a) Residual versus the fitted value; (b) Normal probability plot of the residuals
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Fig. 5 Normality test results for turbidity (y1)
(a) Residual versus the fitted value; (b) Normal probability plot of the residuals
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1. For the turbidity, y1, the suitable 
1y is de-

picted in Fig. 7a and is defined as

1

1

1 1 1 1

1

1 1

1

1
1

1

1, 0 ,

1 , ,

0, ,

y

y
y y y y

y

y y

y g

y g
g y g

y g

(4)

where
1yg is the imprecise fuzzy value of y1 specified

by process engineers, and
1y is the maximal positive 

admissible violation from
1
.yg The corresponding 

goal constraints are given by

1

1 1 1 1 1

1

1 , 1, 0 ,y
y y y y y

y

y g (5)

where
1y denotes the positive deviation of y1 from

1yg . Based on the engineers’ preferences, the values

of 
1yg and

1y are decided to be 15 NTU, while the 

maximal acceptable value of y1 is 30 NTU. 
Consequently,
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2. Similarly, the suitable MF, 
2
,y for SVI is 

shown in Fig. 7b, or mathematically
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(6)

where 
2yg is the target of y2. 2y and 

2y denote the 

maximal negative and positive admissible violations 
from 

2yg , respectively. The corresponding goal con-

straints are expressed as

2 2

2 2 2 2

2 2

2 2 2 2

2 , 1,

0 , 0 ,

y y
y y y y

y y

y y y y

y g
(7)

where 
2y and 

2y represent the negative and posi-

tive deviations from 
2yg , respectively. The process 

engineer decided that the values of 
2yg ,

2
,y and 

2y

are 60, 20, and 40 ml/g, respectively. The minimal 
and maximal acceptable values of y2 are 50 and 
100 ml/g. Then,

2
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y

3. Similarly, there is no information on the exact 
target of x1, x2, and x3. Then, the suitable MF,

jx , is

described in Fig. 7c and is defined as
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where l
jxg and u

jxg are the lower and the upper limits 

of xj, respectively. 
jx and

jx are the maximal 

negative and positive admissible violations from l
jxg

and u
jxg , respectively. The corresponding constraints 

are then formulated as

l u, , 1,

0 , 0 ,

j j

j j j j j

j j

j j j j

x x
j x x j x x x

x x

x x x x

x g x g
(9)

where
jx and

jx represent the negative and posi-

tive deviations from l
jxg and u

jxg , respectively. It is 

decided that the values of 
jx and

jx equal 0.1. For 

example, 
1x

is defined as

1
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The corresponding constraints are defined as
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The MFs with their corresponding constraints for x1

and x2 are formulated in a similar manner.
Step 3: The objective function of the weighted 

additive GP model is to minimize the sum of 
the weighted deviations of responses and process 
variables. 

Accordingly, the objective function is to 
minimize

1 2 2
1 2

1 2 2

3

1
.j j

j

j j

y y y
y y

y y y

x x
x

j x x

Z w w

w

(10)

Substituting the values of deviations weights, Eq. (10) 
is formulated as

Fig. 7 MFs for responses and process factors
(a) MF for y1; (b) MF for y2; (c) MF for xj
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1 2 2
3

1
0.2 0.2 0.2 .

15 20 30 0.1 0.1
j jx xy y y

j
Z

Step 4: A linear programming model is formu-
lated using steps 1–4 as follows:

Minimize Z subject to:

1 1 2 3 1 2
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x x x x x x x

2 1 2 3 1 2

1 3 2 3 1 2 3

31.5 0.28 1.24 7.11 0.0363
      0.241 0.0631 0.00424 ,
y x x x x x

x x x x x x x

1

1 1 11 15,     1,      0 15,
15

y
y y yy

2 2

2 2 2

2 2

2 70,     1,
20 30

0 20,      0 30,

y y
y y y

y y

y

1 1

2 2

3 3

1 1

2 2

3 3

6, 18,

40, 80,

4, 8,

x x

x x

x x

x x

x x

x x

2 2

3 3

2 2

3 3

40, 80,

4, 8,
x x

x x

x x

x x

10( ) 1, 1, 2, 3,
j j jx x x j

0 0.1, 1, 2, 3,
jx j

0 0.1, 1, 2, 3,
jx j

, , , 0, 1, 2, 3, 1, 2.
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Solving the model, the obtained optimal process 
conditions are: flocculant dose, x1, of 18 mg/L, co-
agulant dose, x2, of 40.0 mg/L, and pH, x3, of 4.0.

These parameters yield optimal values of turbidity 
and SVI of 6.184 NTU and 73.21 ml/g, respectively.
The membership values for y1 and y2 are 100% and 
89.3%, respectively. Moreover, all the process pref-
erences are completely satisfied (=100%). 

2.5 Online sampling

The last step in the PAT framework includes 
conducting confirmation experiments utilizing the 
optimal factors obtained by the weighted additive 
model. For this purpose, the MA and MR control 
charts are constructed for validation of optimal pro-
cess performance and to monitor future production. 
The MA and MR control charts at the combination of 
optimal factor settings are shown in Figs. 8 and 9 for 
turbidity and SVI, respectively.

In Fig. 8 for turbidity, the CL values of the MA 
and MR control charts are 6.42 and 1.433 NTU, re-
spectively. The corresponding values of the UCL and
LCL for the MA (MR) control charts are 9.116 
(4.683) and 3.724 (0.0) NTU, respectively. On the 
other hand, in Fig. 9 for SVI, the UCL, CL and LCL 
values of MA (MR) are 79.34 (12.48), 72.15 (3.82), 
and 64.97 (0) ml/g, respectively. Finally, Figs. 8 and 9
reveal no unusual pattern or any point outside the 
control 

Fig. 8  MA control chart (a) and MR chart (b) for turbidity at optimal factor settings
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limits or any significant pattern within the control 
limits. Consequently, the MA (MR) control charts are
concluded to be in-control state for both responses,
and hence they can be used for monitoring and con-
trolling future treatment process.

3  Improvement analysis

The summary of the control chart results are 
displayed in Table 5. Process capability analysis will 
be utilized to measure the performance of the 
wastewater treatment process before and after the
PAT framework. The most widely used process ca-

pability index is p
ˆ .C However, this ratio does not 

take into account where the process mean is located 
relative to specifications. As a consequence, a new 
process capability ratio, pkĈ , which takes process 

centering into account, will be used for measuring

performance. pkĈ is a function of puĈ and plĈ which 

are the one-sided process capability ratios. pkĈ is 

expressed as follows:

pk pl pu
ˆ ˆ ˆmin{ ,  }C C C ,                    (11)

where 

pl

ˆ LSLˆ
ˆ3

C ,                 (12)

pl

ˆUSLˆ
ˆ3

,C                   (13)

where ˆ and ˆ are the estimated process mean and 

standard deviation, respectively. Furthermore, the 
multiple capability index, MCpk, for a complete pro-
cess of Q responses considered concurrently is cal-
culated as

1/

pk pk
1

MC
q

QQ

q

C .            (14)

The pkĈ values for turbidity and SVI are com-

pared at the initial and optimal factor settings, and 
then the results and improvement analysis are dis-
played in Table 6. 

From Table 6 it is noted that:
1. For turbidity and SVI, the estimated process 

means at initial (optimal) factor settings are 20.22
(6.42) NTU and 79.69 (72.15) ml/g, respectively. The 

Table 5 Summary of results from control charts

Response
MA MR

UCL CL LCL UCL CL LCL

y1
Before 24.81 20.22 15.64 7.964 2.438 0.0
After 9.116 6.42 3.724 4.683 1.433 0.0

y2
Before 92.69 79.92 67.15 22.19 6.79 0.0
After 79.34 72.15 64.97 12.48 3.82 0.0

Table 6 Improvement analysis*

Response LSL USL ˆ ˆ pkĈ MCpk

y1 0 30 20.22 
(6.42)

2.16 
(1.27)

1.34 
(5.5) 1.95 

(10.6)y2 50 100 79.69 
(72.15)

6.02 
(3.39)

1.46 
(1.93)

* Values at optimal settings are in parentheses
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process means at optimal factor settings are improved 
significantly as they are closer to the desired values of 
less than 15 NTU and 70 ml/g, respectively.

2. The process standard deviations at initial (op-
timal) factor settings are 2.16 (1.27) NTU and 6.02 
(3.39) ml/g for turbidity and SVI, respectively. 
Clearly, optimal factor settings results in significant 
variability reductions are 41.22% and 77.75% for 
turbidity and SVI, respectively.

3. The pkĈ values are improved significantly due 

to setting factor levels at optimal settings. That is, the 

pkĈ value for turbidity is improved from 1.34 to 5.5, 

while the pkĈ value for SVI is enhanced from 1.46 to 

1.93. These results indicate that the wastewater 
treatment process becomes highly efficient for both 
responses due to setting the factor at optimal levels.

4. The MCpk is improved significantly from 1.95 
to 10.6, which also indicates that the process become 
highly capable.

4  Conclusions

The PAT framework is successfully imple-
mented to improve the performance of the wastewater 
treatment process for two main quality characteristics:
turbidity and SVI. In this framework, the MA and MR 
control charts are used to assess the performance of 
the process at initial factor settings, where the control 
charts indicate in-control states for both responses. 
The 33 full factorial design is used for conducting 
experimental work. The weighted additive model is 
proposed, and then used for optimizing process per-
formance while considering engineers’ preferences 
for factor settings and quality responses. Each re-
sponse and process factor is described by suitable MF.
The corresponding goal constraints are then defined. 
The objective function is used to minimize the 
weighted sum of the positive and negative deviations. 
Results show that the optimal process conditions 
found are flocculant dose of 18 mg/L, coagulant dose 
of 40.0 mg/L, and pH of 4.0. These parameters yield 
optimal values of turbidity and SVI of 6.184 NTU and 
73.21 ml/g, respectively. Confirmation experiments 
are conducted at optimal factor settings. It is found 

that: (1) the process means for turbidity and SVI at 
optimal factor settings are closer to the desired values 
of less than 15 NTU and 70 ml/g, respectively; (2) 
process variability is significantly reduced by 41.22% 
and 77.75% for turbidity and SVI, respectively, and 
the MCpk is improved significantly from 1.95 to 10.6, 
which indicates that the process become highly ca-
pable. In conclusion, the weighted additive model is 
found to be an efficient technique for optimizing the 
performance of processes with multiple responses, 
taking into consideration the engineers’ preferences 
about process settings.
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