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A vector-form hybrid particle-element method for modeling and 
nonlinear shell analysis of thin membranes exhibiting wrinkling*
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Abstract:  The wrinkling phenomenon is a commonly-known problem in many fields of engineering applications. Using a
general structural analysis framework of the vector-form hybrid particle-element method (VHPEM), this paper presents a newly 
developed shell-based numerical model for the geometrically nonlinear wrinkling analysis of thin membranes. VHPEM is rooted 
in vector mechanics and physical perspective. It discretizes the analyzed domain into a group of finite particles linked by canonical 
elements, and the motions of the free particles are governed by Newton’s second law while the constrained ones follow the pre-
scribed paths. An adaptive convected material frame is adopted for a general kinematical description. Internal forces related to the 
non-zero bending rigidity of a membrane can be efficiently evaluated by the rotation deformation in a set of deformation coor-
dinates after eliminating rigid body motions simply by a fictitious reverse motion. To overcome the numerical difficulties asso-
ciated with wrinkles, a pseudo-dynamic scheme using the explicit time integration is introduced into this method. Structural 
nonlinearity can be easily handled without iterative operations or any other special modification. The wrinkling behavior can be 
readily obtained by performing a pseudo bifurcation analysis incorporated into the VHPEM. The numerical results reveal that the 
VHPEM has good reliability and accuracy on solving the membrane wrinkling problem.
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1 Introduction

Flexible membranes have been increasingly used
in a wide variety of engineering fields such as 
large-span structures on roofs, temporary exhibitions,
storage facilities, and automobile air-bags (Jenkins 
and Korde, 2006). Due to their lightweight, flexibility 
and high susceptibility to external actions, they pos-
sess inherent advantages in covering large areas and 
constructing aesthetically pleasing architectures.
However, membranes, owing to their negligibly small 
thickness, are usually assumed to have near-zero 
flexural stiffness and cannot sustain compressive 

stress beyond a certain minimal level. Thus, when 
membranes suffer stress based on a compressive di-
rection, membranes tend to avoid it by out-of-plane 
deformation and then wrinkles are formed. As a result, 
the stiffness perpendicular to the direction of the 
wrinkles is reduced to zero, leading to a dramatic 
altering of the load transfer path and thereby affecting 
the static and dynamic performances (Du et al., 2006).
Hence, the modeling of wrinkling behaviors is im-
perative in high precision design of membrane struc-
tures, and more attention has been given to develop 
computationally efficient and numerically accurate
methods for a better understanding of the influence of 
wrinkles.

The wrinkling behavior of membrane structures 
has been studied previously by numerous researchers. 
Traditionally the wrinkling phenomena are analyzed 
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with the tension field theory (TFT) which was firstly
conceived by Wagner (1929). The fundamental as-
sumption of this theory is that the compressive stress 
and the bending stress induced by the out-of-plane 
deformation are negligible in comparison with the 
tension stress (Jenkins et al., 2006). Based upon this 
theory, two major groups of techniques for wrinkling 
analysis, endowed with a modified constitutive law 
(Stein and Hedgepeth, 1961; Miller and Hedgepeth, 
1985) or deformation gradient tensor (Roddeman et 
al., 1987a; 1987b; Kang and Im, 1997; Shaw and Roy, 
2007), have been established to guarantee the absence 
of compressive stresses. Although these tension field 
theory approaches may provide efficient predictions
for in-plane stress distribution and wrinkling regions, 
it is impossible for them to provide wrinkle details 
such as the amplitude, wavelength, and number of 
wrinkles.

Different from the classical TFT, the bifurcation 
buckling theory can be employed to obtain the precise 
shapes of wrinkles, which is also a topic of interest in 
this paper. Recent work in numerical studies based on 
buckling theory has advanced rapidly with the im-
provement of nonlinear computational methods and 
shell-based modeling technology that takes into ac-
count both the membrane and the bending stiffness. 
Lee and Lee (2002) developed an assumed strain 
formulation solid shell element with modified trans-
verse shear modulus and Young’s modulus to compute 
a wrinkled deformation state for a square membrane.
Wong and Pellegrino (2002; 2006a; 2006b; 2006c)
studied the onset and development of wrinkles by 
using a thin-shell element in ABAQUS and obtained 
detailed information of wrinkles. They also performed
some comparisons between the numerical results and
experimental measurements, and showed that they 
were in a good agreement. Similar work based on an 
enhanced rotation-free shell triangular element was
conducted by Flores and Onãte (2011), and accurate 
solutions for wrinkles with relatively coarse meshes
were obtained.

Since wrinkling is a highly nonlinear behavior 
induced by the local rigid body motions, it is com-
monly recognized that the inclusion of this phenom-
enon in the computational simulation may lead to 
ill-conditioned or near-singular tangent stiffness ma-
trices that would cause difficulties in the linearization 
of the nonlinear discrete equations. Therefore, instead 

of using an implicit solver, quasi-static modeling 
using an explicit integration of the damped motion 
equations can avoid the numerical difficulties such as 
inverting a singular matrix and may be a more ap-
propriate method to deal with the instabilities associ-
ated with wrinkling. This strategy allows you to easily 
determine the final static equilibrium state as the limit 
of a number of pseudo-dynamic steps (Lee and Youn, 
2006). However, the pseudo-dynamic method has the 
drawback that a very small time step is required to
ensure numerical stability and accuracy, and thus
generally a long computation time is required to ob-
tain the converged solution. To overcome this 
drawback, several approaches (Rezaiee-pajand and 
Alamatian, 2010; Rodriguez et al., 2011) have 
been employed to rapidly obtain the equilibrated 
configuration.

According to the deformable body mechanics, a
membrane is supposed to be a 2D solid in a state of 
plane stress, whereas it generally possesses 3D 
component motion. The numerical discrete models for 
solid structures may be classified into two groups, i.e.,
the intrinsic model and the analytical model (Ting et 
al., 2004). In view of natural physical properties, the 
intrinsic model for a true membrane is essentially a 
thin shell with near-zero flexural rigidity for its small
thickness. However, the bending stiffness, albeit very 
small, is important in acquiring the detailed wrinkle
shape. In fact, the out-of-plane deflections of the 
wrinkled membrane are actually induced by the 
membrane-to-bending coupling during the dynamic 
deformations. In this process, when compressive 
stresses breach the minimal critical level, they would 
be gradually reduced due to local instabilities (in the 
form of out-of-plane waves) with progressive oscilla-
tions and finally maintained constants at an extremely 
low level supported by the extremely small bending 
stiffness. Therefore, the variation of compressive 
stresses can be attributed to the actual interactions in
membranes, and it is assumed to be reasonable to 
adopt an intrinsic membrane model when we attempt
to simulate the wrinkling details in terms of the bi-
furcation theory.

In addition to the aforementioned models that 
have been extensively applied to the analysis of 
wrinkled membranes, the vector-form hybrid particle-
element method (VHPEM) that is constructed by a 
theory based on vector mechanics (Ting et al., 2012),
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can be another viable choice for this problem. The 
concept of VHPEM resembles that of intrinsic ap-
proaches. It also can be considered as an extension of 
the finite element method (FEM) by involving some 
concepts of particle methods. The fundamental vari-
ables are discrete point values, rather than functions.
That means in VHPEM, the analyzed domain is re-
garded as a body composed of a finite number of 
particles, instead of a continuous mathematical body
adopted in the traditional methods based on analytical 
mechanics. The motion path of each particle can be 
modeled via a set of discrete path units. Within each 
path unit, Newton’s second law, rather than the weak 
equivalent variational formulations of the governing 
partial differential equations (PDEs), is adopted to 
directly form the motion equations of the particles.
For conventional energy-based methods, the varia-
tional principle only imposes a global equilibrium on
the entire analyzed domain without ensuring equilib-
rium within each element. These unbalanced residual
forces will introduce some non-zero work under rigid 
body motion. Different from the global equilibrium 
condition employed in the standard FEM, VHPEM
maintains the intrinsic nature of early finite elements
which enforce a strong form of dynamic equilibrium 
on each particle. In addition, the formulation of each 
force term in the governing equation can be derived in 
a manner somewhat similar to that of FEM. For ex-
ample, internal forces amid particles are determined
by the deformation of a set of canonical elements
connecting to them. However, the VHPEM does not
directly employ the complicated strain/stress tensor 
formulations to evaluate the deformation as in a
standard FEM. Instead, a set of physical modeling 
procedures, e.g., a special kinematics and a group of 
deformation coordinates, are proposed to separate
rigid body motion and pure deformation. In the solu-
tion procedure, an incremental theory based on the 
concept of the convected material frame (Shih et al.,
2004) and an explicit time integration scheme are also 
adopted. As a result, it may provide efficient solutions
for the large-deflection study of structures. In recent 
years, Ting’s (2004) concept and theory has been
accepted by many researchers and successfully ap-
plied to solving some practical engineering problems 
(Wang et al., 2005; Lien et al., 2010).

The prominent advantage of this method is that 
no nonlinear iterations are necessary and no global 

stiffness matrices should be formed, which allows it to
avoid the numerical difficulties in solving matrix 
equations with ill-condition or singularity. Therefore,
VHPEM is well-suited for treating with membrane 
wrinkling, a particular partly buckling phenomenon
with typical characteristics of large deflections and 
rotations but moderate strains. By designing a gener-
alized shell analysis framework of VHPEM in com-
pliance with the buckling theory, this paper will ex-
pand the application of VHPEM to such an instability 
problem of thin membranes.

2  Vector-form hybrid particle-element for-
mulation for shell-like membranes

The VHPEM is a vector mechanics based nu-
merical method. The primary objective of this method 
is to simulate the motions and geometrical changes of 
a system of multiple rigid and deformable bodies
simultaneously. It contents four fundamental concepts: 
(a) point value description, (b) path unit description, 
(c) a kinematical description of particle motion and 
deformation by incorporating an adaptive convected 
material frame, and (d) strong formed equations of 
motion governed by Newton’s second law. For a fur-
ther discussion about these subjects, one can consult 
references (Shih et al., 2004; Ting et al., 2004; Yu, 
2010; Yang et al., 2014) where a complete and de-
tailed vision can be found.

Considering a membrane as shown in Fig. 1, on 
the mid-surface some particles are properly allocated.
The interaction forces evaluation of each particle 
between its neighbors is the most important work in 
VHPEM, which will be presented at length in the 
following paragraphs.

Fig. 1 Motion of particle j in a membrane modeled by a
group of particles
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As mentioned above, membranes are essentially 
ultra thin shell-like structures and we should not ne-
glect their bending stiffness when attempting to acquire 
the deformed geometry of the wrinkled membranes in 
detail. Hence, a geometrically nonlinear shell model, 
accounting for both membrane and flexure defor-
mations, is an obviously proper choice. In terms of the 
shell theory, the generalized internal forces of the 
shell-like membrane are also composed of two com-
ponents with regard to the membrane and bending 
rigidity, respectively. In this work, these interaction
forces are modeled by a set of triangular shell elements
connected with particles, and thus the stress state of this 
kind of elements can be considered as a simple super-
position of the membrane stress and the plate bending 
stress. Regarding the evaluation of the former effect 
caused by the in-plane deformation of the mid-surface,
the detailed formulations can be found in our former 
work of shape analysis of membranes (Yang et al.,
2014) and does not specify here in depth. This section
is focused on the derivation for the formulations of 
particle interaction forces related to the non-zero 
bending rigidity of a membrane, i.e., the moments.

Fig. 2a shows an arbitrary 3D triangular thin 
shell element with thickness h. The geometry of the 
shell element is represented by the mid-plane defined 
by three particles with numbers (1, 2, 3). Each particle
has three translational and three rotational degrees of 
freedom in the global coordinate. Because the element
nodes are rigidly connected with particles, the posi-
tion vectors and the rotation angles of the node i at 
times ta and t can be defined as ( a

ix , a
i ) and ( ix , i )

(i=1, 2, 3), respectively. Since the time interval be-
tween ta and t is very small, both the material property
and the configuration are assumed to be unchanged 
within this time segment. If the configuration of the 
element at time ta is chosen as the material reference 
frame, the displacement increment and the rotation 
angle increment of node i between ta and t are

a
i i iu x x and a

i i i (i=1, 2, 3) (Fig. 2).
Note that both the total nodal displacement in-

crement ui and the rotation angle increment i
include pure deformation, rigid body translation and
rotation. However, the generalized internal forces in 
shells are contributed by the deformation displace-
ments and rotations only, and thus the most important
work here is to adopt a convected material reference 
frame and a procedure of fictitious reverse motion, as 
shown in Fig. 3a, for deducting the rigid body motions

from the total displacement and rotation increments of
particles. Yang et al. (2014) exhaustively discussed
the fictitious reverse motion and provided the detailed 
derivations of the rotation angle and the corre-
sponding direction vector of rotation axis e . Thus, the 
deformation displacement vector of node i from ta to t
can be evaluated by

d
1 0 ,                                           (1a)
d r *

1 1( ) ( )( ),
2, 3,

i i i i i

i
u u R x x

(1b)

where i and r
i are the total relative displacement 

increments of node i to node 1 and the rigid body 
displacement increment induced by the fictitious re-
verse rotation of node i, respectively, and R is a rota-
tion matrix of rotation vector .

In addition, the effect of the rigid body rotation 
on the nodal rotations can be conveniently determined
by

d ( ), 1, 2, 3.i i i (2)

Fig. 2 Motion of a 3D triangular shell element
(a) Position and rotation angles of particles at three corners of 
the mid-plane of an element; (b) Rigid body rotations and 
relative rotation angles

(a)

(b)
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To evaluate the work equivalent internal forces, a
shape function with the same form as that developed 
in the FEM is introduced for describing the strain
distribution within an element. Different from the 
total displacements in the traditional FEM, the nodal 
variables used in the VHPEM only account for the 
deformation. Therefore, a set of deformation coordi-
nates ( ˆ ˆ ˆ, ,x y z ) are specifically introduced to remove
the modes related to the rigid body motion as well as 
to reduce the total independent variables to the correct 
number. As shown in Fig. 3b, the basic vectors of x̂ ,
ŷ and ẑ axes are denoted by ˆ ,xe ˆ ,ye and ˆ ,ze re-

spectively, that is

d
2d

2

ˆ ˆ1ˆ ˆ ˆ,    ,    .
ˆ ˆ| | | |

z x
x z a y

z x

e ee e n e
e e

(3)

Before the internal force evaluation can be im-
plemented in the deformation coordinates, the de-
formation vector d

i should be transformed to the 

new coordinate system by 

d Tˆˆ ˆ ˆ ˆ[   ] , 1, 2, 3,i i i i iu v w iu Q (4)

where Tˆ ˆ ˆ ˆ[   ]x y zQ e e e represents the coordinate 

transformation matrix from the global coordinates 
(x, y, z) to the local deformation coordinates ( ˆ ˆ ˆ, ,x y z ).

With regard to the other deformation component
(i.e., the nodal rotation deformation d

i ), both the 
rotation angle increment and rigid body rotation
corresponding to each axis should also be transformed 
to the local deformation coordinate. The former
transformation can be straightforwardly presented as

ˆ ( ), 1, 2, 3.i i iQ                   (5)

As for the rigid body rotation that consists of
the out-of-plane rotation 1= 1n1 and the in-plane 
rotation 2= 2n2 as shown in Fig. 2b, in the defor-
mation coordinate it can be obtained by a set of ge-
ometric operations,

1 1
ˆ ˆ ˆ( ),x x xe n e                  (6a)

1 1
ˆ ˆ ˆ( ),y y ye n e                (6b)

1 1 2
ˆ ˆ ˆ( ) .z z ze n e         (6c)

Thus, the nodal deformation rotation of node i
within time segment ta-t can be obtained when every 
term in Eq. (2) is written corresponding to each axis in 
the deformation coordinate as follows:

ˆ ˆ( )ˆ
ˆ ˆ ˆˆ ˆ ( ) ( ) ,

ˆˆ ( )

1, 2, 3,

ii
x xx

i i i
y i y y

i i
z z z

i

(7)

where ˆ i
z represents the torsion angle around the 

mid-surface normal of a plane shell element, and it 
may be neglected in terms of the basic assumption in
the classical shell theory.

Now in the new coordinate system six compo-
nents, 1 1 1 2 2 3ˆ ˆ ˆ ˆ ˆ ˆ,  ,  ,  ,  ,  u v w v w w , are zero, which implies 
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y x1 x1
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Fig. 3 Particle internal force calculations
(a) Fictitious reverse translation ( u1) and rotation ( );
(b) Deformation displacements and rotation angles in the
deformation coordinate system
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that six DOFs are deleted. Thus, considering the re-
maining non-zero independent variables of defor-
mations related to the bending stress, only rotating
angles of each node corresponding to axes of x̂ and 
ŷ (i.e., ˆ i

x and ˆ i
y ), totally six DOFs are left 

while the small transverse deformation displacements
ˆ iw may be neglected. For convenience, the defor-

mation variables ˆ i are expressed in a vector form,
i.e.,

T 1 1 2 2 3 3

1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0 0

ˆ ˆ ˆ .

x y x y x y

To calculate the bending strain in a triangle shell 
element, consider ˆ ˆ ˆ( , )w x y as the deformation deflec-
tion of an arbitrary point on the mid-surface of the
element, which can be described by a set of cubic 
polynomial shape functions similar to those in the 
FEM. Then, according to the classical thin shell the-
ory that conforms with the Kirchhoff-Love hypothesis, 
the deformation field can be written as

ˆ,

ˆ,

ˆ
ˆˆˆ
ˆˆ ,ˆ

ˆ ˆ ˆ
ˆ

x y

y x

w
ww
y
w
x

P
P
P

(8)

where 2 2 3 2 2 3ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ1 x y x xy y x x y xy yP , ˆ,̂xP

and ˆ,̂ yP denote the first-order partial derivatives of 

P̂ with respect to x̂ and ŷ axes, respectively. is a 
coefficient vector and it can be determined by the 
compatible conditions for deformation at the nodes, 

namely, at Tˆ ˆ ˆ, ,i ix yx

0ˆ
ˆ ˆ , 1, 2, 3.
ˆ ˆ

i
x x

i
y y

w
i                  (9)

The coefficients i (i=1, 2, …, 9) in the vector
can be obtained by substituting the coordinate of each 

node ˆ ˆ( , ) ( 1, 2, 3)i ix y i and the compatibility condi-
tions in Eq. (9) into Eq. (8). Then, the transverse de-
formation deflection ˆ ˆ ˆ( , )w x y can be expressed in the 
form of interpolation functions, namely,

3
1 * * * *ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ,i i

i
w PA N N N (10)

where N̂ and *N̂ are the shape function matrices in the 
deformation coordinate, and the latter one is obtained 
by deleting the useless elements in N̂ which corre-
sponds to the zero components in the nodal deforma-

tion vector ˆ ; 1 T* 1 2 2 3 3ˆ ˆ ˆ ˆ ˆˆ ˆx y x y x y

T* * *
1 2 3

ˆ ˆ ˆ is a condensed nodal deformation 

vector, which is composed of independent variables 
only.

According to the basic concepts of “path unit 
description”, the deformation of an element within the 
time segment ta-t should be very small as compared 
with the reference configuration at time ta. Thus, with 
the deformation distribution functions, one can for-
mulate the incremental strain and stress in terms of the 
elastic mechanics theory, i.e.,

* * * * * *
1 2 3

* * *
ˆˆ ˆˆ ˆˆ1, 2, 3,

* * * *
ˆˆ ˆˆ ˆˆ1, 2, 3,

* * *
ˆˆ ˆˆ ˆˆ1, 2, 3,

ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆ
ˆˆ ˆ ˆˆ ,

ˆ ˆ ˆ

xx xx xx

yy yy yy

zz zz zz

z z

z

B B B B

N N N
N N N
N N N

             (11)

* *ˆˆ ˆ ˆˆˆ ˆ ,r a azD D B         (12)

where ˆ
aD denotes the constitutive matrix of the ma-

terial referring to the stress state, and ˆa is the stress 
value at time ta.

For the calculation of internal forces, the princi-
ple of virtual work is adopted here. The internal vir-
tual work induced by stresses and virtual strains can 
be written as

* T

/2 * T 2 * T * *

/2

( )

ˆˆ ˆ ˆ ˆˆˆ ˆ ˆ[ ( ) ( ) ]d d ,a

a a

h

a aA h

U

z z z AB B D B
(13)
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where Aa and ha respectively denote the area and the 
thickness of the element at time ta.

The external virtual work caused by the internal 
nodal moments is

* T * * T * *ˆ ˆˆ ˆ ˆ( ) ( ) ( ),aW m m m (14)

where *m̂ is the internal nodal moment at time t, *ˆ am
is assumed as the internal nodal moment at time ta,
and *m̂ is the incremental internal nodal moment.

Combining Eqs. (13) and (14) yields the equiv-
alent internal moments

* T 2 * T * ** 2

2

ˆˆ ˆ ˆ ˆˆˆ ˆ ˆ[ ( ) ( ) ]d dˆ .=
a

a
a

h

h a aA
z z z ABm B D B (15)

Eq. (15) only gives six components of the gen-
eralized internal nodal forces. Because the displace-
ment components corresponding to the remaining

three shearing forces ˆ ( 1, 2, 3)iz if are relevant to
the out-of-plane rigid body motions that have been 
eliminated in the deformation coordinates, these 
forces should be determined by the static equilibrium 
conditions of the element, namely

1 2 2
ˆ ˆ ˆˆ 0, 0,z z z zF f f f                        (16a)

1 2 3 2 2 3 3
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ0, ( ) 0,x x x x z zM m m m f y f y (16b)

1 2 3 2 2 3 3
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ0, ( ) 0.y y y y z zM m m m f x f x (16c)

Next, to assemble the equivalent interaction 
forces acting on a conjunct particle, all the force and 
moment components caused by both membrane and 
bending deformations need to be transformed to the 
global coordinate. Besides, the element needs to un-
dergo a forward motion, including a translation ( u1)
and a rotation (+ ), and move back to its original
position at time t. Therefore, the actual internal forces
and moments of node i at the current time can be 
determined by

Tint T ˆ( ) , 1, 2, 3,i ix iy iz if f f if R Q f (17a)
Tint T ˆ( ) , 1, 2, 3.i ix iy iz im m m im R Q m (17b)

3  Solution strategy: a pseudo-dynamic 
scheme

The ability of membranes to barely support 
compression may lead to near-singular system ma-
trices and numerical difficulties. A straightforward 
application of the Newton-Raphson method may 
cause divergence. To solve the equations of motion of 
discrete particles (Eq. (1) in (Yang et al., 2014)) and 
achieve the solutions at equilibrium state, it is appro-
priate to employ a pseudo-dynamic scheme based on 
the explicit central difference time integration algo-
rithm (de Borst et al., 2012). To maintain the effi-
ciency and ensure that the mode associated with the 
applied loads is rapidly converged to the steady-state 
solution, as well as to be closer to the real dynamic 
course, the damping force dmpF adopted in this study 
for the pseudo-dynamic formulation is based on a
viscous damping form (Rezaiee-pajand and Alama-
tian, 2010), i.e., 

dmp ,F M d (18)

where is the damping coefficients that determine the 
dissipation rate of the kinetic energy of the system, M
is the value of the particle mass and mass moment of 
inertia, and d is the acceleration vector.

For an arbitrary particle , its motion within each 
path unit is governed by the equation that follows 
Newton’s second law, that is 

              ext int dmp ,n n n nM d F F F                (19)

where nd is the acceleration vector, ext
nF is the 

summation of the prescribed external forces/moments
and int

nF is the summation of the internal forces/
moments exerted by the membrane elements con-
necting to particle at time tn.

The approximations to the acceleration and ve-
locity vectors of particle at time tn can be obtained 
by linear interpolation, i.e.,

1/2 1/2
1 ( ),n n nt

d d d                 (20a)

1/2 1/2
1 ( ),
2n n nd d d                  (20b)
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where the subscripts n and n 1/2, n+1/2 refer to the 
step number and mid-step numbers, 1/2nd and 1/2nd
represent the velocities at times t+ t/2 and t t/2, 
respectively, and t is a constant time increment. 
Substituting Eqs. (18) and (20) into Eq. (19) and re-
arranging terms yields

1 ext int
1/2 1/2

2 2 ( ).
2 (2 )n n n n

t t
t t

d d M F F

(21)

Then the displacements vector at time tn+1=tn+ t
is calculated as

1 1/2 .n n ntd d d (22)

It can be found that in the proposed time inte-
gration scheme, only simple algebraic manipulations 
for vectors are needed. In addition, the displacements 
of the particles are completely uncoupled. Conse-
quently, global stiffness matrices are not required, and 
the computation cost and the memory storage re-
quirement are very small. 

Note that such the explicit operator is condi-
tionally stable. So the time step has to be maintained 
at values below a critical time step value tcrit ac-
cording to the CFL stability condition (Cook et al., 
1989), i.e., tcrit=Lmin/c, where Lmin is the smallest 
characteristic element dimension, and c is the current 
effective dilatational wave speed of material, which is 
a function of material properties. The physical 
meaning is that stability is only ensured when the time 
increment is shorter than the time for the acoustic 
sound wave to travel the smallest distance between 
two adjacent nodes in a discrete modal.

Given that the choice of some parameters such as 
mass, the positive damping coefficient, and the time 
step has few influences on the desired quasi-static 
solution for path- and rate-independent materials, the 
fictitious values for these quantities that do not repre-
sent the real physical system may be artificially chosen 
to produce a faster convergence to the steady static 
solution while satisfying the stability conditions (Un-
derwood, 1983). To get a larger stable time step in the 
time integration, the mass scaling approach (Hallquist, 
2006) is used in this study, namely the mass density of 
each element in the model is adjusted to an artificially 
specified larger time step size ts, i.e.,

2
s

2 2 ,
(1 )i

i

t E
L

                               (23)

where i is the adjusted material density, E is the 
Young’s modulus, Li is the characteristic dimension of 
element i, and is the Poisson’s ratio. To provide a 
wide safety margin for stability, in the program the 
iterations are performed with an initial time step re-
duced by multiplying a scale factor, i.e., t0=0.9 ts.

Besides, a critical damping coefficient that is 
used to attenuate the transient may be estimated to be 
proportional to the lowest frequency (Underwood, 
1983), namely

2 2 2
min min(4 ),t (24)

where min is the fundamental angular frequency of a 
structure in free vibration and its estimate may be 
obtained from the Rayleigh principle.

4 Modeling strategy for wrinkling initiation

Due to the fact that no mechanism exists to au-
tomatically initiate the out-of-plane wrinkling de-
formation, even in the presence of compressive 
stresses, when perfect flat membranes are only sub-
jected to in-plane loading, a probable way for an ef-
ficient numerical modeling of the wrinkled shape is to 
perform a pseudo bifurcation analysis by perturbing 
the membrane slightly out of plane to trigger the 
membrane-to-bending coupling. From the point of 
buckling theory, the access to a solution on the 
post-buckling path can be conveniently obtained in 
this manner without implementing the bifurcation 
buckling analysis. Several approaches are possible for 
the introduction of such disturbs, where amplitude
and distribution are particularly crucial. A possibility 
for providing useful information on the choice of 
initial imperfections is the first-order characteristic 
vector corresponding to the first wrinkling value at the 
bifurcation point (Su et al., 2003), or the linear com-
bination of several modes that are scaled depending 
on the thickness of the membrane (Wong and Pelle-
grino, 2006b). In this simulation technique, the choice 
of the imperfection modes seeded in the membrane is
based on the expected final wrinkling patterns. 
However, in general, in a pure membrane analysis, the 
wrinkling pattern is not known as a priori, so the 
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requirement becomes that of the introduction of an 
arbitrary distribution of imperfection for inducing the
out-of-plane deformation. Thus, another possibility
is to impose an unbiased geometric imperfections 
pattern (Iwasa et al., 2004) on the initial flat mem-
brane patch in the pseudo-random form, zi= rih,
where is a dimensionless amplitude parameter, ri is 
a pseudo-random number, and h is the membrane 
thickness. 

It deserves to be noted that the imperfections 
generated by the aforementioned two schemes cannot 
be removed from the numerical model and may exert
influence on the post-wrinkling behaviors. Particu-
larly, for the ideal planar membrane model, the nu-
merical errors caused by these schemes will be quite
large. To accurately carry out the wrinkling analysis, 
an alternative way is to adopt a direct perturbed force
approach (Leifer and Belvin, 2003) to introduce the 
imperfection and further the occurrence of the wrin-
kles. The basis of this approach is to apply a set of 
equal and opposite small forces perpendicular to the 
membrane surface on some selected points with a net 
resultant of zero to meet the self-equilibrium condi-
tion. The location of these disturbing forces may be in 
accordance with the first wrinkle mode characteristics 
or be arbitrarily specified across the membrane sur-
face. A major advantage associated with the use of 
forces for wrinkling initiation is that the initial 
imperfection can be added to and removed from the 
model with ease. Moreover, to avoid the additional 
burden of the eigenvalue buckling analysis, the dis-
tribution of the disturbing forces adopted in the pre-
sent study is in an arbitrary form.

Some guidelines for determining the amplitude 
of imperfection can be obtained from the investigation 
into the effects of the initial imperfections on wrin-
kling behavior conducted by Iwasa et al. (2004). It is 
confirmed that the magnitudes ranging from 0.01 to 
1.0 of the membrane thickness are large enough to 
start the formation of wrinkles as well as to achieve
the same final wrinkling distribution. This also im-
plies that the effect of the initial imperfection on 
wrinkling behavior may be negligible when the given 
amplitude is within the recommended range. As a
default rule in this study, the disturbing forces are
determined according to the requirement that the 
amplitude of the out-of-plane perturbed deformation
obtained is smaller than the membrane thickness at 
least by one order of magnitude.

5 Numerical examples and analysis

The present section is concerned with the nu-
merical explorations of the proposed method for two
typical membrane problems involving wrinkling. The 
numerical tests are implemented using a code de-
signed following the above-mentioned formulations 
and modeling techniques. The performance of the 
new method will be displayed by comparisons with 
other numerical and analytical solutions, as well as
experimental measurements reported in various liter-
atures. The detailed characteristics of wrinkles can be 
used to validate the capability and accuracy of this 
method in geometrically nonlinear analysis of wrin-
kled membranes.

5.1 Rectangular thin-film membrane subject to
in-plane shear loading

To investigate the functionality of the imple-
mented code for a membrane wrinkling simulation, a 
benchmark example as in (Leifer and Belvin, 2003; 
Raible et al., 2005; Wong and Pellegrino, 2006b) is 
reproduced here first. This example presents a study 
of the formation and growth of wrinkles in an initially
flat rectangular membrane, which was clamped along 
the lower edge while the upper one was allowed to 
move only in the horizontal direction under in-plane 
shear loadings. Both the left and right edges of the 
membrane were left completely unrestrained. This
sheared membrane simulation is known as one of the 
most difficult tests. The thin film in this test was a
kind of isotropic Kapton® membrane with thickness 
t0=25 m and density =1.5×10 6 kg/mm3. The 
membrane mechanical properties were E=
3500 N/mm2 and =0.31. The illustrations for the 
geometry, loading, and boundary conditions for this
investigation are given in Fig. 4.

The shear test calculation was conducted as fol-
lows. Firstly, the upper edge was slightly stretched by 
an upward displacement of y=0.025 mm, resulting in 
a certain prestress ranging from 0.82 N/mm2 to 
0.95 N/mm2, to reproduce the true constraints and 
stress state existing in the experiment as well as to 
offer rigidity conditions for supporting the following 
load. For the second step, the influence of the imper-
fections as proposed in Section 4 was taken into ac-
count by specifying distributed disturbing forces 
perpendicular to the membrane surface. Each 
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individual one was assigned 5×10 4 N. Then the pre-
stress was kept constant while a small uniform shear 
load with displacement 

1x y along x direction 

was applied to the upper edge. As reported by Leifer 
and Belvin (2003), an empirical value of =1.5 is a 
fair rationalization. In the last step, the initial dis-
turbing forces were removed timely to eliminate the 
effect of the initial imperfections on the wrinkling 
behaviors. Meanwhile, small increments of shear load
were gradually applied at the upper edge until the final
horizontal displacement x reached 3 mm. In this way, 
the membrane wrinkling pattern without initial im-
perfections could be obtained. Throughout the entire 
period of analysis all calculations were only done with 
monotonic displacement control except for disturbing 
forces. The steady-state wrinkling solution was ex-
pected to be achieved using the pseudo-dynamic 
scheme with a larger artificially specified time step 

ts=1.0×10 5 s and a critical damping for shortening 
the computation time.

From the theoretical point of view, the pattern 
and number of wrinkles would be sensitive to the 
discretization of the membrane structure. To allow the 
model to reveal the fine wrinkle details, the maximum 

distance between the adjacent particles should be less 
than one half of the wrinkle wavelength (i.e., half the
horizontal distance between two consecutive crests or 
troughs), which can be estimated from the formula 
derived by Epstein (2003). After considering the pa-
rameters of the membrane structure involved in this 
test, half of the theoretical wrinkle wavelength is 
obtained as =6.3 mm. In other words, a suitable dis-
tribution of particles deserves serious consideration
based on this characteristic value to meet the re-
quirements for describing complete wrinkle waves.
Six uniformly discrete numerical models were con-
sidered with 21×61, 31×91, 46×136, 56×161, 61×176,
66×191 particles, respectively. In Figs. 5a and 5b, the 
dependency of the convergence behaviors for the 
number of wrinkles and the reaction shear force Rx in 
x-direction on discretization is shown ( x=3 mm, y=
0.025 mm). A clear convergence to an asymptotic 
value with an increasing number of particles is ob-
served. Here, the total number of wrinkles is taken as 
the most important parameter for evaluating the effect 
of numerical prediction on the final wrinkle patterns,
since it can be readily compared to the experimental 
observations. For the smallest discretization of 21×61 
particles, 15 wrinkles were observed. Refining the 
discretization increased the number of wrinkles.
When the distributions of particles changed from 
56×161 to 66×191 (element sizes from 3.4 mm to 
2.8 mm), the number of wrinkles was kept constant 
and matched with the results of the experiment in 
(Wong and Pellegrino, 2006a). It suggests that in the 
VHPEM analysis the number of wrinkles also 
depends on the fineness of particle distribution and 
element subdivision and the solution become 
discretization-independent after a particular level of 
refinement. Thus, considering the computation effort, 
the numerical model with 56×161 particles is suitable 
for the following wrinkling analysis. The results and 
discussion presented from now on are all based on this 
model.

The wrinkles can be clearly observed from a 
contour map of the out-of-plane deformation in which 
each wrinkle is considered to extend from one peak to 
another peak. In Fig. 6 the formation and evolution of 
wrinkles under incremental shear displacements can 
be observed from a series of contour maps. The 
membrane exhibits antisymmetric deformation about 
the longitudinal central axis after shear load is applied. 

Fig. 4  Geometry, boundary, and loading conditions of 
the flat membrane for the shear test calculation 
(a) Problem setting of a rectangular thin membrane under 
in-plane shear loading; (b) Displacement control scheme

(a)

(b)



Luo et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2014 15(5):331-350 341

The first map (Fig. 6a) shows the situation of the 
perturbed state before the occurrence of wrinkles, 
where a slight pattern of out-of-plane deformation 
predicting the beginning of wrinkling can be observed, 
but the absolute value still remains in the same order 

of magnitude as that of the membrane thickness. In 
this study, the wrinkles are not believed to have 
formed until the magnitude of the out-of-plane de-
formation reaches the order of one tenth of a milli-
meter, which should be large enough as compared 
with the initial imperfection and the membrane 
thickness. Before this condition, we only consider the 
small and instable out-of-plane deformation as the 
original perturbed deflection added to the structure at 
the beginning of the analysis. This situation held up to 
a shear displacement of x=0.115 mm, when the 
wrinkling zone appearing from the edges around the 
corners became clearly visible first and then the 
maximum amplitude of wrinkles reached one order 
larger than that of the membrane thickness. Although 
at this time there also has been some out-of-plane 
deformation in the central region of the membrane, 
they were so small that they should not be considered 
as real wrinkles. Then, the number and distribution of 
wrinkles would change significantly until the shear 
displacement of x=0.17 mm when the membrane was 
full of wrinkles and the comparatively stable config-
uration has formed. Then the number and distribution 
of the wrinkles as well as the size of the central 
wrinkled region was stable while the amplitude ex-
panded with the increasing shear displacement. The 
final completely developed wrinkles are shown in the 
last contour map when x=3 mm. It is shown that the

Fig. 6 Contour maps of out-of-plane deformation w (mm) for the development of wrinkles under the desired shear 
displacements x (mm) 
(a) x=0.085 and y=0.025, w (max./min.)=0.063/ 0.085; (b) x=0.095 and y=0.025, w (max./min.)=0.078/ 0.098; (c) x=0.115 
and y=0.025, w (max./min.)=0.102/ 0.113; (d) x=0.15 and y=0.025, w (max./min.)=0.374/ 0.368; (e) x=0.17 and y=0.025, 
w (max./min.)=0.441/ 0.436; (f) x=3.0 and y=0.025, w (max./min.)=1.190/ 1.139

(a) (b)

(c) (d)

(e) (f)
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wrinkles in the center region of the membrane are 
parallel to each other and are approximately inclined 
at a same angle to the horizontal edges while two fan 
regions form around the pair of corners. Note that all
these wrinkling results were obtained after the elim-
ination of the initial perturbations. It is obvious that 
the out-of-plane deformation still can be retained even 
though the initial disturbing forces have been re-
moved at the point when x=0.0375 mm. Fig. 7 shows 
different profiles along the longitudinal mid-section 
of the membrane (at y=64 mm) under the corre-
sponding increasing displacements x in Fig. 6. The 
wave crests and troughs can be explicitly observed 
from the plots of the wrinkle profiles. It is also 
noteworthy that as the number of wrinkles increases,
the largest wrinkles near both edges remain fixed 
while a set of wrinkles of uniform amplitude exist 
between them. These deformed configurations are 
similar to the experimental evidence as well as the 
numerical results reported by Wong and Pellegrino 
(2006b).

Fig. 8 shows the overall final wrinkle pattern of 
the membrane obtained from both the reported ex-
periment photograph and theoretical solutions, and it 
is encouraging to compare the locations of crests and 
troughs predicted by this method with them. Note that 
the last out-of-plane deformation contour map de-
picted in Fig. 6 shows a close agreement between the 
experimental and the numerical results in terms of the 
number of wrinkles and their orientations. Addition-
ally, the general wrinkle shapes and distributions 
predicted by VHPEM are essentially consistent with 
those observed in the photograph. It can also be seen 
that the orientations of the wrinkles (1)–(4), inclined 
at 62°, 55°, 51°, and 46°, respectively, are close to 
those of the corresponding tension ray lines (Mans-
field, 1969) that are at 5° intervals. A little difference 
between the results from this contribution and the 
tension field theory is the wrinkle orientation in the 
center region of the membrane. According to the an-
alytical solutions, these wrinkles should be inclined at 
45° to the upper/lower edges, but in the present study

Fig. 7 Profiles along the longitudinal mid-section of the membrane (at y=64 mm) under the desired shear dis-
placements x (mm)

(a) x=0.085; (b) x=0.095; (c) x=0.115; (d) x=0.15; (e) x=0.17; (f) x=3.0

(a) (b)

(c) (d)

(e) (f)
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the angle is 46°. The major reason for this difference 
is that the length of the membrane is not infinite as 
that in the analytical model.

To test the accuracy of the VHPEM simulation, 
the detailed wrinkling information obtained by this 
method for any given shear, will be compared with the 
reference results. Fig. 9 compares the variation of the 
wrinkle half-wavelength and wrinkle amplitude with 
the shear angle applied in a rectangular membrane. 
Each figure shows both an analytical prediction curve 
according to (Wong and Pellegrino, 2002) and a set of 
experimental results obtained from a Kapton mem-
brane mounted in a steel shear frame in (Jenkins et al.,
1998), plotted together with a set of VHPEM simula-
tion results. According to the out-of-plane defor-
mation along the longitudinal mid-section of the 
membrane in Fig. 7, the wrinkle wavelength and am-
plitude can be directly determined as follows after 
disregarding the wrinkles near the edge. The ampli-
tude of the wrinkle is the distance from the crest or 
trough to the undeformed membrane plane. The 
wrinkle wavelength is obtained from the ratio of the 
horizontal distance between the first and last wrinkle 
to the number of wrinkles. It can be observed from 
Fig. 9a that the half-wavelength obtained from the
present simulation agrees well with the analytical and 

experimental results with the relative errors in the 
range of 5% throughout the analysis process. In-
creasing the shear displacement can visibly reduce the 
wavelength, and the same results can also be found in
Figs. 6 and 7. Obtaining the results in Fig. 9b requires 
calculating the average value of each plot in Fig. 7. 
The wrinkle amplitude increases with the increased 
shear displacement. In Fig. 9b the amplitudes pre-
dicted in this simulation follow both the analytical and 
experimental results pretty closely for relatively small 
shear angles ( 0.015), probably due to the fact that 
the Kapton membrane remains linear elastic within 
this range. When the value of continues to increase,
plastic deformation may occur with the maximum 
difference in predictions being up to about 0.025 mm,
but they still follow similar trends.

Note that in the experiment, the precision of 
measurement may be significantly influenced by the
surrounding environment, including damping and

(a)

Fig. 8  Comparison of wrinkle patterns
(a) Experimental photograph from Wong and Pellegrino
(2006); (b) VHPEM solutions

(b)

61° 56° 47° 46°50°

Fig. 9  Comparisons of wrinkle half-wavelength (a) and
wrinkle amplitude (b)
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(b)
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gravity. Besides, there was some clearance between 
different equipment parts, and thus it was not easy to 
precisely control the prestress in the membrane. The 
actual initial imperfections induced by the local 
slightly curved configurations and a stochastic varia-
tion of material property before the application of the 
shear loadings were replaced by the arbitrary pertur-
bations in the present numerical model, since they 
could not be adequately measured in the reported 
experiment. Moreover, in our wrinkling simulation,
the membrane material was assumed as isotropic and 
elastic continuum. In fact, the membrane deformation 
was not totally linear elastic in the experiment, espe-
cially in the high tension regions. As a result of these 
factors, a certain discrepancy between the results of 
the present simulation and the experiment is reason-
able and acceptable.

For a deeper investigation of the wrinkled
membrane, Fig. 10 shows the distribution of stresses 
when the shear displacement x finally reaches 3 mm.
One can observe that the stresses of two triangular 
regions near the vertical boundaries are very small,
whereas the top right and bottom left corners play the 
role of the stress source where the stress concentrates 
with a upper limit of two times larger than the average 
value, which should be attributed to the specific me-
chanical behavior of the thin membrane under shear
(Mansfield, 1969). Besides, it also shows that the 
major principal stress in the central region of the 
membrane is uniform and relatively small where the 
wrinkle deformation remains in the elastic stage, but
in the stress concentration regions the unaccounted 
plastic deformation may appear and in turn affect the 
wrinkle deformation.

Fig. 11 shows plots of the distribution of the 
major and minor principal stresses along the longitu-
dinal mid-section of the membrane (at y=64 mm), 
corresponding to x=1.0 mm, 2.0 mm and 3.0 mm, 
respectively. It can be observed that the variation 
trend for every major principal stress curve is similar, 
namely keeping an approximately uniform value in 
most parts of the membrane and declining rapidly to a 
very small amount near the free edges due to the 
boundary conditions. On the other side, the minor 
principal stress remains small and varies slightly 
across the section. As mentioned above, if the particle
distribution and the element subdivision are fine 
enough to represent the finest wrinkle pattern, the 
number of wrinkles should finally achieve a stable 
value. Thereafter, the compressive stresses should 
also converge to a small amount below but near zero 
when the particle distribution is sufficiently refined. 

5.2 Rectangular thin-film membrane loaded in
uniaxial tension

Different from most of the previous studies 
where wrinkles were generally induced by direct ac-
tions, such as edge shearing, in-plane torsion, bending 
and so forth, in this example we use a non-uniform 
tension case to demonstrate the capability of the 
proposed method. As depicted in Fig. 12, after Cerda 
et al. (2002), the problem consisted of a rectangular
membrane loaded in a longitudinal uniaxial tension
that was laterally clamped at two opposite ends. The
left edge of the membrane was fully constrained in all 
DOFs while at the right edge only the translation in 
the x-direction is allowed. The top and bottom edges 

Fig. 11 Principal stresses variation along the longitudinal
mid-section of the membrane (at y=64 mm)
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were both free edges. This set of boundary conditions 
remained enforced in all analysis steps. To enable a 
valid comparison of results, all geometrical, material,
and loading parameters comply with those specified 
by Zheng (2009). Before stretching, the original di-
mensions of the membrane were described as follows:
length L0=254 mm, width W0=101.6 mm and thick-
ness t0=0.1 mm. A silicon rubber membrane was se-
lected for the present example which was approxi-
mately assumed to be a linear elastic material with 
Young’s modulus E=1 N/mm2, Poisson’s ratio 
=0.495, and mass density =1.14×103 kg/m3. A re-

fined discrete model with 43×106 particles was used 
to simulate the behavior of the whole membrane 
structure, in order to capture the fine wrinkle details in 
the membrane. We should indicate that after a series
of trial calculations similar to those presented in the 
first example this level of discretization has been 
proved to be dense enough for the following wrin-
kling analysis.

To perform the wrinkling analysis for this
end-clamped rectangular membrane, the same strate-
gies as described in the first example were also 
adopted, i.e., disturbing forces, displacement control,
and a pseudo-dynamic scheme with an artificially 
specified larger time step ( ts=1.0×10 4 s for this case) 
and critical damping. Indeed, the analysis procedure is 
essentially identical for a class of wrinkling simula-
tions like these cases. Thus, the implementation of the 
stretch-induced wrinkling analysis was also subdi-
vided into three stages. In the first stage, the right edge
had imposed on a rightward displacement of 1 mm
(i.e., 0.4%) as specified in Fig. 12. Then, a set of 
disturbing forces were applied along the tension di-
rection and distributed symmetrically about the center.
The magnitude of each disturbing force was set at 

1×10 6 N, and the resulting imperfection would be 
smaller than the membrane thickness by two orders of 
magnitude. In the third stage, the right edge was in-
creasingly stretched in the x-direction to produce an 
expected tension strain, (e.g., 25.4 mm for 10% strain), 
whereas all the other DOFs were constrained. During 
this tension process, the initial disturbing forces were
completely removed when the tension displacement 
reached 2.5 mm (i.e., 1%).

We now briefly discuss the overall wrinkling 
behavior, primarily including the formation of the 
wrinkle pattern and its growth under increasing ten-
sion strain. By plotting a series of contour maps of 
out-of-plane deformation at the desired strain levels,
Fig. 13 demonstrates the evolution of stretch-induced 
wrinkles for this rectangular membrane as the tension 
strain increases. It can be seen that the wrinkles 
formed parallel to the loading direction in a symmet-
ric manner with the largest one at the center (Fig. 13b
–13d), and this pattern and the number of wrinkles 
remained stable immediately after the wrinkles were
formed (Fig. 13b) although the amplitude changes
with the increasing tension strain. In this case, since 
the wrinkle amplitude is found to be fairly small, the 
formation of wrinkles is defined to be the moment at 
which the maximum out-of-plane deformation 
reaches the magnitude just one order smaller than the
membrane thickness or the maximum wrinkle am-
plitude during the entire loading process. Before this 
moment, the amplitude of the out-of-plane defor-
mation was negligibly small, and no significant in-
stability could be observed (Fig. 13a). However, we 
should indicate these out-of-plane perturbed defor-
mation generated by the removed disturbing forces 
are crucial for the occurrence of wrinkles when the 
increasing tension load arrives at a certain level. For 
displaying the development of the wrinkles further, 
the profiles along the transverse mid-section of the 
membrane (at x=127 mm) are plotted in Fig. 14. It can 
be observed that the membrane remained flat near the 
top and bottom edges while the wrinkle profiles were 
regulated by a wavelike mode, similar to the predic-
tion in (Kim et al., 2012). Fig. 15 shows a perspective 
view of the final wrinkle profile for the stretched 
membrane. The out-of-plane deformation has been 
amplified ten times for visualization purpose. The 
deformed shape is essentially identical to the exper-
imental and numerical results presented by Zheng 

Fig. 12 Problem setting of an end-clamped rectangular
thin membrane loaded in uniaxial tension
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(2009). Similar symmetric wrinkle patterns and dis-
tributions were also observed in an experiment with 
the polyethylene sheet (Huang et al., 2012).

Next, some comparisons, concerning the detailed 
characteristics of the wrinkles, with other experi-
mental and numerical results available in the literature 
are provided to verify the accuracy of the present 
simulation. Fig. 16 shows the variation of wrinkle 
amplitudes at the center of the membrane with the 
applied tension strain, where the amplitude is taken as 
the value of the central peak. At the beginning, as the 
tension strain increases from zero to 3.9%, the am-
plitude grows quite slowly. This may be attributed to 
the magnitude of the compressive stress that is not 
sufficiently high or its area distribution that is suffi-
ciently large at these strain levels. At the end of this 
stage, the wrinkles are considered to have been gen-
erated in the central region of the membrane in terms 
of the criterion on wrinkle formation stated above. 
Then the wrinkle amplitude increases rapidly until the 
tension strain reaches approximately 11%. Beyond 
this point, as the tension strain increases further, the 
wrinkle amplitude decreases at a slightly slower rate 
and eventually at =31% where the wrinkles almost 
disappear again. In other words, the wrinkle ampli-
tude does not always monotonically increase with 
increasing strain but reaches the maximum value at an 
intermediate strain level. The dependence of the 
wrinkle amplitude on the tension strain has a similar 
trend to that of the maximum compressive stress in the 
unwrinkled membrane as shown in (Nayyar, 2010). It 
suggests that there may be some inherent correlations 
between them. In fact, in terms of the bifurcation 
bulking theory, the wrinkles are related with a certain 
stress level (Wong and Pellegrino, 2006c), and thus 
they should form only over a range of strain in which
the compressive stress has the potential to cause 
wrinkles. When the strain is lower or higher than the 
critical values, the wrinkles diminish in amplitude and 
the membrane gets flattened again, as shown in 
Fig. 16. Then, the experimental measurements re-
ported by Zheng (2009) for the changes of the wrinkle 
amplitude with the tension strain are also plotted in 
the same figure. It can be found that the amplitude 

Fig. 15 Overall perspective view of the final wrinkle pro-
file for the stretched membrane

Fig. 14 Profiles along the transverse mid-section of the
membrane (at x=127 mm) at desired strain levels

Fig. 13 Contour maps of out-of-plane deformation for the
evolution of wrinkles at desired strain levels
(a) =1.5%, w (max./min.)=0.00725/ 0.0044; (b) =3.9%,
w (max./min.)=0.0155/ 0.0143; (c) =11.0%, w (max./min.)
=0.3128/ 0.2484; (d) =30.0%, w (max./min.)=0.0105/

0.0.0102

(b)

(c)

(a)

(d)
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predicted in the present simulation follows the same 
trend for the experimental results when the tension 
strain is between 11% and 18%, but the numerical one 
is smaller than the experimental one by about 10%. As 
for smaller tension strain the relatively large wrinkle 
amplitude obtained from the experiment may be 
caused by the initial undulant configuration in sample 
preparation and mounting stage that forced it to 
wrinkle immediately after the tension load was ap-
plied. Therefore, these experimental values should not 
be considered as real magnitudes of wrinkle ampli-
tudes. Besides, the experimental specimen requires a 
much larger tension load to remove the wrinkles, 
probably due to the inelastic material behavior and 
inherent uneven thickness of the membrane. Gener-
ally, the trend for the variation of the wrinkle ampli-
tude is still similar for the numerical and experimental 
results as the membrane is gradually stretched. Simi-
lar evolution of the wrinkle amplitude and possible 
reasons for the above discrepancy are also discussed 
by Huang (2012). Note that the aforementioned 
analysis is just for a particular geometrical and mate-
rial property, and if any of these conditions get 
changed the range of strain in which the wrinkles can 
form would be different. However, given that the 
main focus of this study is to verify the efficacy of the 
proposed approach for wrinkling simulation, the re-
sults obtained based on the model in this example 
would be adequate.

As far as the wavelength is concerned, Fig. 17
shows a plot of the dimensionless wrinkle wavelength
/(Lt)1/2 versus 1/4 obtained from this simulation, 

together with the prediction by a scaling analysis 
(Kim et al., 2012) for comparison, where the wave-

length 2 is a average value of the horizontal distance 
between two adjacent crests or troughs. Obviously, 
the results of the present simulation follow the ana-
lytical predictions based on scaling analysis, and both 
of them show the same linear trend with a slope of 
2.05. This trend is also fairly well consistent with 
Cerda’s experimental measurements (Cerda et al.,
2002).

In the following section, the changed stress field
due to wrinkling will be illustrated. Fig. 18 shows the 
distribution of the major and minor principal stresses, 
S1 and S2, in the wrinkled membrane at 11% tension 
strain when the wrinkle amplitude is maximal. The 
variations of S1 and S2 along the mid-sections of the 
membrane (at x=127 mm or y=50.8 mm) at different 
strain levels are also obtained as shown in Fig. 19. It 
can be seen that the distribution patterns of the prin-
cipal stresses are similar at different strains, with the 
only difference being in the magnitude. The variation 
range of the major principal stress is relatively small 
and remains positive across the sections at all strain 
levels. On the other hand, the minor principal stress 
increases rapidly from a near-zero value to a positive 
amount on the two clamped edges. The growth rate is 
dependent on the strain level. Moreover, in the wrin-
kled membrane, the distribution of the minor principal 
stress along the longitudinal mid-section is approxi-
mately uniform in the central region of the membrane
and there are no obvious peaks. In addition, along the 
transverse mid-section, the minor principal stress 
remains a very small amount, but slight fluctuations in 
the central region can be observed through a closer
look. On the basis of the aforementioned observations, 
one can conclude that in the wrinkled membrane, the 

Fig. 17  Plot of dimensionless wrinkle wavelength /(Lt)1/2

versus 1/4

1/ 1/4

/(L
t)1/

2

Fig. 16 Variation of wrinkle amplitudes at the center of 
the membrane with the applied tension strain
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transverse compressive stress is very close to zero, 
and thus its actual in-plane stress state is more anal-
ogous to a uniaxial stress state than it does in the
completely flat membrane, as is described in the ten-
sion field theory. 

6 Conclusions

This study presents a general VHPEM frame-
work for investigating the wrinkling phenomena of 
thin membranes. The basic ideas and formulations of 
VHPEM for modeling the configuration and motion 
of a membrane are first presented briefly. The internal 
forces of the shell-like membranes are derived in 
detail, especially those relating to bending stiffness, 
which are essential to ensure the completeness and 
continuity of the wrinkle waves and to obtain a further 
detailed knowledge of the wrinkled shape. Numerical 
examples of two benchmark wrinkling problems are 
solved using a pseudo-dynamic scheme to obtain the 
steady-state solutions, wherein the wrinkling behavior 
is initiated by applying a direct perturbed force 
approach.

Although the VHPEM contains some finite el-
ement basis, there are still some differences between 
the “element” proposed by this paper and the standard
finite “element”. The major one is that VHPEM does 
not employ time-consuming matrix operations for 
extracting the exact deformation, or assume any su-
perposition on convected coordinates to account for 
finite rotation. The internal forces are computed
purely with physical modeling and implemented by a
vector operation. Thus, the computational effort can 
be efficiently reduced.

In addition, the pseudo-dynamic scheme adopted 
in the present method allows it to avoid assembling a
stiffness matrix or solving the motion equations iter-
atively even when dealing with nonlinear motion. In 
comparison with the nonlinear static scheme for 
wrinkling analysis employed in traditional methods,
VHPEM no longer needs to address the numerical 
instability problems due to the low bending stiffness
of the membrane. Numerical modeling of the intrinsic
membrane based on classical shell theory (i.e.,
adopting Kirchhoff-Love hypothesis) provides free-
dom from shear locking and hour-glassing appearing 
in thin shells. Except for the modeling strategy for 
wrinkling initiation, no complicated treatments or 
modifications are necessary to be introduced into the 
present study during the entire analysis process. Ac-
cording to the comparisons with other approaches and 
experimental observations reported in literatures, the 
numerical results have demonstrated the ability of the 
proposed method to accurately predict the overall 

Fig. 18  Distribution of major principal stress S1 (a)
and minor principal stress S2 (b) in the wrinkled 
membrane at 11% tension strain

(a)

(b)

x L

Fig. 19  Distribution of principal stresses along the 
longitudinal mid-section (a) and the transverse 
mid-section (b)

(b)

(a)
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wrinkle patterns as well as quantitative solutions, such 
as amplitude, wavelength and so forth. Allowing for 
its generality and flexibility, it is believed that this 
method can be readily expanded to complex mem-
brane problems with a nonlinear orthotropic material, 
which will be performed in the future work. 
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