Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering) ISSN 1673-565X (Print); ISSN 1862-1775 (Online) www.zju.edu.cn/jzus; www.springerlink.com E-mail: jzus@zju.edu.cn

Effect of dilution of fuel in CO_2 on the conversion of NH_3 to NO_x during oxy-fuel combustion^{*}

Kun-zan QIU¹, Ye YANG¹, Zhuo YOU², Zhi-hua WANG^{†‡1}, Zhi-jun ZHOU¹, Jun-hu ZHOU¹, Ke-fa CEN¹

(¹State Key Lab of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)

(²Second Institute for Wuhan Ship Development & Design, Wuhan 430064, China)

[†]E-mail: wangzh@zju.edu.cn

Received July 4, 2013; Revision accepted July 27, 2015; Crosschecked Sept. 15, 2015

Abstract: The indirect chemical effects of fuel dilution by CO_2 on NO formation were investigated numerically in this paper. CH_4 doped with NH_3 was used as fuel, while CO_2 and O_2 were mixed as oxidant. The dilution effect of CO_2 was then investigated through adding extra CO_2 to the reaction system. An isothermal plug flow reactor was used. An unbranched chain reaction mechanism is proposed to illustrate the chemical effects of CO_2 on the H/O/OH radical pool and NO_x . Due to the reaction between CO_2 and H, extra NO will be formed in fuel-rich conditions, while NO will be inhibited in fuel-lean conditions and high CO_2 dilution conditions. The reaction affected the radical pools of OH, H, and O of the branched chain reaction, and then the formation and reduction of NO. The pool of H had the greatest effect on NO reduction. The results suggest that the indirect chemical effects on NO formation differ between diluted fuel oxy-fuel combustion conditions and normal oxy-fuel conditions.

Key words: CO₂, Oxy-fuel combustion, NO, Fuel dilution doi:10.1631/jzus.A1300231 Document code: A

CLC number: TQ534

1 Introduction

 CO_2 is considered to be one of the most important anthropogenic gas emission species involved in global warming (Habib *et al.*, 2011). Oxy-fuel combustion is one of the advanced technologies used to capture CO_2 when burning fossil fuels (Buhre *et al.*, 2005). In oxy-fuel combustion, oxygen or a mixture of oxygen and flue gas, is used as an oxidizer instead of air. As a result, the volume fraction of CO_2 is much higher than that of typical air-fuel combustion conditions. With more than 95% concentrated in the product gas, through a series of relatively simple purification processes, CO_2 can be compressed, transported, and stored (Buhre *et al.*, 2005).

Compared with typical air-fuel systems, the combustion process (as well as pollutant formation) will be different in the oxy-fuel combustion process due to the high CO₂ level (Chui et al., 2003; Wang et al., 2008). Undiluted, the temperature of oxy-fuel combustion will be much higher than that of air combustion because of the absence of nitrogen. To apply oxy-fuel combustion in ordinary boilers, flue gas needs to be recycled to maintain the temperature at an acceptable level (Chui et al., 2004). The flame temperature decreases when the amount of oxygen in the inlet is reduced and the amount of recycled flue gas is increased (Bhuiyan and Naser, 2015a). The temperature profile in the boiler may be changed due to the differences in heat capacity between CO₂ and N₂. The flame propagation speed also differs (Normann et al., 2009) due to differences in heat capacity

[‡] Corresponding author

^{*} Project supported by the National Basic Research Program (973 Program) of China (No. 2012CB214906)

ORCID: Kun-zan QIU, http://orcid.org/0000-0003-0978-2697; Zhihua WANG, http://orcid.org/0000-0002-7521-2900

[©] Zhejiang University and Springer-Verlag Berlin Heidelberg 2015

and chemical properties between CO_2 and N_2 . Significant variation has been found in the temperature distribution and CO_2 concentration when comparing air-firing with oxy-firing under different recycling ratios in a computational model of co-firing of biomass with coal under oxy-fuel conditions (Bhuiyan and Naser, 2015b).

The reduction of NO_x due to recycled flue gas is a known benefit of oxy-fuel combustion (Kiga *et al.*, 1997; Chui *et al.*, 2004; Buhre *et al.*, 2005; Ahn *et al.*, 2009). Part of the NO in the flue gas is reduced by precursors, such as HCN and NH₃, and carbonaceous reducing radicals in fuel-rich regions (Buhre *et al.*, 2005).

However, the formation of NO_x during combustion will be indirectly affected by the occurrence of high concentrations of carbon dioxide. As is well known, the production of NO_x can be dramatically reduced through staging combustion technology, even without flue gas recirculation (Boushaki *et al.*, 2008; 2009). Much more NO_x reduction can be achieved by staging compared with the air-fuel combustion process (Cao *et al.*, 2010; Watanabe *et al.*, 2011). Also, thermal NO_x would be dramatically reduced because of the absence of nitrogen from the system (Normann *et al.*, 2008).

CO₂ is not 100% chemically inert (Hecht et al., 2011), although it is usually the final combustion product of elemental carbon. Reaction (1) illustrates how OH is formed from CO₂ and H (Glarborg and Bentzen, 2008; Mendiara and Glarborg, 2009; Watanabe et al., 2011). A chain carrier of H of a branched chain reaction during combustion of fuels with H is involved in this reaction (Fig. 1). The pathways from nitrogen containing species to NO_x are linked closely to chain carriers. The formation of NO_x , fuel NO, is then affected indirectly by the chemical effect of CO2. The effect of oxy-fuel combustion on NO formation is also directly increased by high CO₂ concentrations through Reaction (2), which is also believed to be the reason for the CO_2 chemical effect on NO (Feng et al., 1998).

$$CO_2+H\rightarrow CO+OH,$$
 (1)

$$CO_2 + N \rightarrow NO + CO.$$
 (2)

Mendiara and Glarborg (2009) studied the oxidization of methane and ammonia under highly diluted conditions in CO₂ and N₂ via experiment and numerical simulation. They found that, compared with nitrogen-diluted conditions, CO₂ facilitates NO formation under fuel-rich conditions but inhibits it under fuel-lean or stoichiometric conditions. It is believed that high levels of CO₂ facilitate the formation of NO by increasing the OH/H ratio. Furthermore, the formation of HNCO through NH₂+CO is increased due to high CO levels. However, some reactions of N containing species with O or H are inhibited due to decreased concentrations of O and H, such as NH₂+O to form HNO and NH₂+H to form NH. These two reactions are important pathways for NH₃ to form NO, especially NH₂+O to form HNO.

In a study of staged oxy-fuel combustion, Watanabe and Ichiro *et al.* (2011) observed higher OH levels via planar laser induced florescence (PLIF) in a fuel/O₂/CO₂ flame than in a fuel/air flame at an O₂/CH₄ ratio of 0.7 (equivalence ratio of 1.42). They believed that Reaction (1) does not compete with the branched chain reaction for the H atom since the radical pool of chain carriers is large. The oxidation of species containing nitrogen increases due to the increased OH radicals, and NO_x tends to be reduced in fuel-rich conditions. Because precursors of NO_x are prevented from being oxidized by supplementary oxygen in the secondary stream, staged combustion in oxy-fuel combustion performs better than air-fuel combustion in reducing nitrogen oxidation.

We conclude that, apart from the equivalence ratio under high levels of CO_2 , the formation of NO_x may be affected by the level of fuel in the mixture. But little is known about how variation in the level of fuel affects NO_x formation in an O_2/CO_2 atmosphere. The fuel level limits the speed of the branched chain reaction.

In this study, variation in the chemical effects of CO_2 on NO_x formation from NH_3 due to changes in the fuel level in mixtures with high CO_2 concentrations was investigated via numerical simulation.

2 Methods

Combustion of CO_2 diluted CH_4/NH_3 fuel with O_2/CO_2 as an oxidizer was simulated using a Chemkin Pro plug flow reactor. The reactor was 90 cm long and 26 mm in diameter, and was set in the isothermal range of 1073–1773 K. The inlet velocity was set to 30 cm/s. The initial temperature of the mixture was set to the same temperature as that of the reactor to maintain a residence time of 3 s, which is similar to that found in boilers in thermal plants burning pulverized coal.

The composition of the mixtures is listed in Table 1. The simulated fuel streams were doped with NH₃ as the NO_x precursor in volatiles from coal. The volume fraction of NH₃ was set to 2% of the total CH₄ fuel stream according to the ratio of N to C of lignite from Yunnan Province in China. O₂ occupied 21% of the volume of the O₂/CO₂ oxidizer. The equivalence ratios of the mixture of CH₄/NH₃ and O₂/CO₂ were 0.6, 1.05, and 1.5 in Cases A1, A2, and A3, respectively. Each mixture in group A was diluted 10 times with CO₂ in group B and 100 times in group C.

The numerical simulation was carried out using Chemkin Pro commercial software. Two reaction mechanisms were adopted: the GRI-Mech mechanism 3.0 (GRI30), and the mechanism developed by Mendiara and Glarborg (2009), referred to as M09 in this study. To study the effect of Reaction (1), the cases in Table 1 were also simulated with mechanisms without Reaction (1), namely the reverse reaction of CO+OH to form H+CO₂. These mechanisms are referred to as IRGRI and IRM09.

The conversion ratio from NH_3 to exhaust NO_x ($NO_x CR$) was defined as:

$$NO_x CR = \frac{Exhaust NO_x flow rate}{Inflow NO_x flow rate}.$$

3 Results and discussion

An unbranched chain reaction mechanism is proposed to illustrate the chemical effect of CO_2 on the radical pool (Fig. 1). The reactions CO_2 +H to form OH and CO, OH+H₂ to form H₂O and H can be taken as chain reactions without branching. The availability of O/H/OH, as well as the oxidation and reduction of N-containing species, can be affected by the relative dominance of the two types of chain reaction.

Results from the GRI30 and M09 mechanisms (Fig. 2) show coherence to a certain extent in predicting the conversion ratio of nitrogen element in methane flame to NO_x (NO_x conversion ratio) in an undiluted O_2/CO_2 atmosphere (Watanabe *et al.*, 2011) and in simulating NH_3 oxidation in an O_2/CO_2 atmosphere with diluted CH_4 as fuel (Mendiara and

Fig. 1 Branched/Unbranched chain reactions in oxy-fuel combustion

Case name –	Gas composition (% in volume)				Equivalence	Mechanism
	CH ₄	NH ₃	O ₂	CO ₂	ratio, Φ	calculated
A1	5.88	0.1176	19.74	74.26	0.6	GRI30, IRGRI
A2	9.84	0.1969	18.89	71.07	1.05	
A3	13.48	0.2697	18.11	68.14	1.5	
B1	0.59	0.0118	1.97	97.43	0.6	GRI30, IRGRI
B2	0.98	0.0197	1.89	97.11	1.05	
В3	1.35	0.0270	1.81	96.81	1.5	
C1	0.06	0.0012	0.20	99.74	0.6	M09, IRM09
C2	0.098	0.0020	0.19	99.71	1.05	
C3	0.13	0.0027	0.18	99.68	1.5	

Table 1 Gas composition at the inlet of the reactor

Glarborg, 2009), and both mechanisms performed very well. The M09 mechanism was a little better than GRI30 in the latter simulation. Thus, simulated results for conditions in groups A and C were used only for mechanisms based on GRI30 and M09, respectively. The effects of Reaction (1) for NH₃ oxidation in group B simulated by GRI30 and M09 were similar, so only results from GRI30 were used in this study.

Figs. 3–5 compare the conversion ratios of NH_3 to NO_x at the end of the plug flow reactors using both mechanisms, under fuel-rich, stoichiometric, and fuel-lean conditions, respectively.

Fig. 3 shows the results for fuel-rich conditions. The NO_x conversion ratio remained very low under undiluted and fuel-rich conditions (A3). NO_x formation was increased by Reaction (1) under A3 and B3 conditions. For C3 conditions, NO_x formation was inhibited at temperatures between 1273 K and 1373 K, and increased above 1573 K.

Fig. 2 Comparison of simulated values of NO_x conversion ratio (CR) with experimental values from Watanabe *et al.* (2011) and Mendiara and Glarborg (2009) (Circles denote conditions with CO_2 levels of about 90% and diluted fuel; triangles denote conditions with about 70% CO_2 ; the values calculated using the GRI mechanism are shown as closed symbols while those calculated using the M09 mechanism are shown by open symbols)

100 (A2) - GRI30 IRGR 80 60 40 20 0 100 (B2) conversion ratio (%) 80 60 40 20 g GRI30 0 IRGRI 100 (C2) 80 60 40 20 M09 IRM09 0 -//__ 1200 1500 1800 Temperature (K)

Fig. 3 Conversion ratio of N to NO_x at the end of the reactor vs. temperature under fuel-rich conditions (Φ = 1.5; A3, B3, and C3 correspond to conditions described in Table 1)

Fig. 4 Conversion ratio of N to NO_x at the end of the reactor vs. temperature under stoichiometric conditions (Φ =1.05; A2, B2, and C2 correspond to conditions described in Table 1)

Fig. 4 shows the results for stoichiometric conditions. The NO_x conversion ratio increased as the temperature increased. The conversion ratios of NO_x from the mechanisms were nearly the same under 10 times dilution conditions. Reactions to form NO were facilitated without CO₂ dilution, but inhibited under 100 times CO₂ dilution conditions.

Fig. 5 shows the results for fuel-lean conditions. NO_x formation was inhibited regardless of dilution, and the effect increased with CO_2 dilution.

We can conclude from Figs. 3-5 that the chemical effect of CO₂ on the conversion of NH₃ to NO through Reaction (1) is impacted by both the equivalence ratio and CO₂ level. NO formation is facilitated under fuel-rich conditions with undiluted oxy-fuel CO₂ concentrations, but is inhibited under fuel-lean conditions and very high CO₂ concentrations. When the inlet mixture was over 99% CO₂, the reaction of CO₂+H to form CO and OH led to a reduced conversion ratio of NH₃ to NO, under all equivalence ratios. NO formation was slightly

increased (or decreased) under near stoichiometric (or fuel-lean) conditions.

Fig. 6 shows the volume fractions of NO along the axis of the reactor at 1523 K, and equivalence ratios of 0.6, 1.05, and 1.5 without inlet CO₂ dilution. NO is first produced in the reactor, and then part of the NO is reduced along the reactor under fuel-rich and stoichiometric conditions. Formation is facilitated under fuel-rich conditions due to Reaction (1), and NO destruction is inhibited due to Reaction (1) under fuel-rich and stoichiometric conditions, while NO is gradually reduced. The conversion ratio of NO was slightly higher when Reaction (1) was applied to the mechanism. There were no significant differences in the peak volume fraction of NO between the results from the two mechanisms under fuel-lean and stoichiometric conditions. NO is gradually reduced under stoichiometric conditions and this process was inhibited due to Reaction (1), while NO is not reduced under fuel-lean conditions. The trends of the NO volume fraction along the reactor

12 10 8 6 4 *Ф*=0.6 2 GRI30 IRGRI 0 (A1) 20 NO mole fraction (μmol/mol) *Φ*=1.05 GRI30 15 IRGRI 10 5 0 (A2) *Ф*=1.5 15 GRI30 IRGRI 10 5 0 (A3) 20 40 80 0 60 Distance (cm)

Fig. 5 NO_x conversion ratio at the end of the reactor vs. temperature under fuel-lean conditions (Φ =0.6; A1, B1, and C1 correspond to conditions described in Table 1)

Fig. 6 Profile of NO along the reactor under conditions A1, A2, and A3 at *T*=1523 K (A1, A2, and A3 correspond to conditions described in Table 1)

at 1523 K are similar to those shown in Fig. 6 (A2) under condition B3 (fuel-rich), and similar to those shown in Fig. 6 (A1) under conditions B1 (fuel-lean) and B2 (near stoichiometric).

Fig. 7 shows mole fractions of radicals OH and H along the axis of the reactor at 1523 K, and equivalence ratios of 0.6, 1.05, and 1.5 without inlet CO₂ dilution. The concentration of H was not always reduced by the reaction of CO₂+H forming CO and OH. This result differs from that found by Mendiara and Glarborg (2009). As with the fuel-rich case, more OH and H were produced due to this reaction, while less H was produced under near stoichiometric conditions. H and OH are important intermediate species for the conversion of NH₃ to NO, though the paths may differ under fuel-rich and stoichiometric conditions. Under fuel-rich conditions, the increase in OH and H resulted in a higher peak of NO, while under near stoichiometric conditions, Reaction (1) resulted in more OH but less H. The effect on the

Fig. 7 Profile of OH and H radicals along the reactor under conditions A1, A2, and A3 at T=1523 K. Solid lines denote the GRI30 mechanism, while dashed lines denote the IRGRI mechanism. A1, A2, and A3 correspond to conditions described in Table 1

peak value of NO and its reduction after the peak was then weakened compared with the effects under fuel-rich conditions.

Fig. 8 shows the main pathways through which NO was reduced to N₂ after its peak. The main path was NO+H to form HNO (Reaction (3)), then HNO was reduced to NH by CO and H₂ (Reactions (4) and (5)). At the same time, HNO was reduced to NO by H (Reaction (6)) and NO was reduced to N₂O by NH (Reaction (7)), and at the end N_2O was reduced to N_2 by H (Reaction (8)) and M (Reaction (9)). In an inferior path, NO was directly reduced to N₂ by NH (Reaction (10)) and N. The availability of H is the major reason for the change in the reaction rate of NO reduction induced by changing the existence of Reaction (1). Reactions (3) and (8) from NO to HNO were facilitated by the increased level of H, resulting in a greater formation of NH. Hence, the reactions from NO to N₂O and N₂, and the reaction from N₂O to N₂, were facilitated.

$$H+NO+M\leftrightarrow HNO+M,$$
 (3)

$$NH+CO_2 \leftrightarrow HNO+CO, \qquad (4)$$

 $NH+H_2O\leftrightarrow HNO+H_2, \tag{5}$

 $HNO+H\leftrightarrow H_2+NO, \qquad (6)$ NH+NO $\leftrightarrow N_2O+H. \qquad (7)$

$$N_2O+H\leftrightarrow N_2+OH,$$
 (8)

$$N_2O(+M) \leftrightarrow N_2+O(+M)$$
 (9)

$$NH+NO \leftrightarrow N_2+OH.$$
 (10)

Fig. 8 Main reaction path for NO reduction (the bolded one is for GRI30 only, and the grey ones are for IRGRI only)

The reaction CO_2 +H to form OH and CO resulted in a higher H level at the peak NO concentration and eliminated the consumption of H during NO reduction after the peak. The higher H level was the main factor contributing to the reduction of NO under conditions without CO_2 dilution. In a reducing atmosphere, the reduction of NO was facilitated due to the higher H level resulting from Reaction (1). Lower H levels were obtained under stoichiometric conditions. Under lean conditions, NO would not be reduced once it has been produced in the reaction zone.

Fig. 9 shows the volume fraction of NO along the reactor at 1523 K, 100 times CO₂ dilution, and an equivalence ratio of 1.05. The curves with an equivalence ratio of 0.6 and 1.5 are similar to those shown in Fig. 9. This shows that the formation of NO is inhibited due to Reaction (1) regardless of the equivalence ratio, once the reactant is diluted 100 times in CO₂. Also, under these conditions none of the NO formed is reduced after it has reached its maximum concentration. The start of NO formation is delayed due to Reaction (1). With a high degree of dilution in CO_2 , concentrations of all the species are low, except for CO₂. The H radical tends to be caught and consumed by CO2, so the reaction is led by the unbranched chain reaction in the initial stage of the reaction. The branched chain reactions become important only when active chain carriers of H are accumulated at sufficiently high levels. With the IRGRI mechanism, the branched chain reactions lead the reaction at the beginning. The delay of the branched chain reaction results in reduced H, O, and OH levels, which are vital to the oxidation of nitrogen species to NO. Therefore, the formation of NO decreases due to the chemical effect of CO₂. NO is not reduced even after its peak under high CO₂ dilution fuel-rich conditions because of low H availability in the reaction zone.

Fig. 9 Profile of NO along the reactor under condition C2 at *T*=1523 K

Table 2 shows the indirect effect of Reaction (1) on the formation and reduction of NO in terms of the conversion ratio. The promotion effect of Reaction (1) on NO during the formation period is weakened gradually with CO_2 dilution. NO formation is inhibited under high CO_2 dilution and fuel-lean conditions by Reaction (1) indirectly (Fig. 9). The trends of the indirect effect of CO_2 dilution on NO reduction are similar to those on NO formation. But under high dilution conditions, regardless of the equivalence ratio, the promotion effect on NO reduction resulting from Reaction (1) dissipates. Under the condition of 100 times CO_2 dilution, Reaction (1) has no effect on the reduction process of NO.

 Table 2 Effect of Reaction (1) on formation and reduction of NO at T=1523 K

Equivalence	Itom	Effect value (µmol/mol)		
ratio	Item	А	В	С
0.6	Formation ^a	-0.3	-2.5	-21.9
	Reduction ^b	0.0	0.0	-0.1
1.05	Formation	0.2	-2.8	-23.1
	Reduction	-36.4	-3.6	-1.4
1.5	Formation	28.8	-1.1	-26.9
	Reduction	25.8	-43.0	-8.9

^a Comparison of the peak values of NO along the reactor between the full mechanisms (GRI30 or M09) and the artificial mechanisms (IRGRI or IRM09); a positive value means formation of NO is facilitated by Reaction (1); a negative value means formation of NO is inhibited by Reaction (1); ^b comparison of the concentration difference (peak (NO) and end (NO)) along the reactor between the full mechanisms (GRI30 or M09) and the artificial mechanisms (IRGRI or IRM09); a positive value means reduction of NO after the peak is facilitated by Reaction (1); a negative value means reduction of NO after the peak is inhibited by Reaction (1)

Under fuel-rich conditions without CO_2 dilution, NO is rapidly produced and then most of it is subsequently reduced. The conversion from NH₃ to NO is facilitated due to the increased radical pool resulting from Reaction (1). On the other hand, the process of reduction of NO to N₂ relies on the residual radical pool of O/H/OH after the NO peak, especially the pool of H. These two opposite effects result in only a slight change to the NO conversion rate at the end of the reaction. Under the conditions with 10 times CO_2 dilution, the branched chain reactions are weakened, and the radical pool is eliminated. The influence of Reaction (1) on the radical pool is then weakened and the increase in NO is reduced. After the peak of NO, the consumption of H due to Reaction (1) inhibits the reduction of NO, which results in a higher NO_x concentration at the end of the reaction. Under conditions with even higher CO₂ dilution, the increase in NO_x formation is even smaller, and because of the lower level of reactants, the relative concentration of H at the peak of NO is lower. NO is hardly reduced after the peak. So at the end of the reaction, the level of NO is higher when Reaction (1) is adopted in the mechanism.

Under stoichiometric conditions, NO formation before its peak is slightly facilitated without CO_2 dilution due to Reaction (1). As the dilution with CO_2 increases, this effect on NO is severely inhibited and the reduction effect gradually weakens (Table 2). The indirect effects of Reaction (1) on the NO_x conversion ratio at the end of the reaction are changed from facilitating without CO_2 dilution, to insignificant with 10 times CO_2 dilution, and then to inhibition with 100 times CO_2 dilution.

Under fuel-lean conditions, formation of NO is inhibited by Reaction (1) regardless of the extent of dilution with CO_2 . NO formed is not reduced under fuel-lean conditions.

Fig. 10 shows the ratio of residual NH₃ at the end of the reaction under fuel-rich conditions at different temperatures. There are temperature ranges where the conversion of NH₃ is initiated but not completed. In these temperature regions, the conversion of NH₃ in the plug flow reactor simulated with the M09 mechanism is slower than that with the IRM09 mechanisms, under conditions of 100 times CO₂ dilution. Simulations with GRI30 and IRGRI yield the same conclusion. Under conditions of 10 times dilution, the conversion of NH₃ is faster with the GRI30 mechanism. The conversion of ammonia under fuel-rich conditions is a process in which H atoms are gradually lost. The N-H bonds are attacked by active radicals such as O, H, and OH. As described above, the radical pool of O/H/OH is affected by Reaction (1) and the effects differ with different CO₂ dilution times. The NH₃ conversion is faster with a denser radical pool. The role of Reaction (1) becomes more important as the dilution with CO₂ increases. The weakening of the branched chain reaction results in relatively light radical pools, and the conversion of NH₃ is consequently inhibited.

Fig. 11 shows the NH₃ residual ratio at the end of the reaction at different temperatures under fuel-

lean conditions. The conversion of NH₃ is inhibited due to the existence of Reaction (1) under conditions with 100 times CO₂ dilution. Under conditions with 10 times CO₂ dilution or no dilution, the conversion of NH₃ is not influenced by the absence of Reaction (1) in the mechanism. The results are similar under conditions with an equivalence ratio of 1.05. Under conditions with 10 times CO₂ dilution or no dilution, H in the reaction space is consumed rapidly by the branched chain reaction. The influence of the reaction on the radical pool and the whole reaction space is then limited. Therefore, Reaction (1) has almost no influence on NH₃ conversion. Under conditions with 100 times CO_2 dilution, the dominance of the branched chain reaction diminishes and the radical pools decrease. The conversion of NH₃ is then inhibited (Fig. 10).

Fig. 10 Residual ratio of NH₃ at the end of the reactor under fuel-rich conditions (Φ =1.5; A3, B3, and C3 correspond to conditions described in Table 1)

Fig. 12 shows the conversion ratio of nitrogen to main products at the end of the reaction under an

equivalence ratio of 1.5 with 10 times CO₂ dilution. The final products of nitrogen comprise mainly N₂ and NO_x. N₂O and HNCO would be formed under relatively low temperatures, between 1100 K and 1400 K. N₂O tended to be produced under conditions of low temperatures, low equivalence ratios, and high CO₂ dilution levels, while HNCO was produced at low temperatures and high CO₂ dilution levels. The chemical effect of CO₂ played a more important role on HNCO than on N₂O. Formation of HNCO was facilitated due to the chemical effect.

Fig. 11 Residual ratio of NH_3 at the end of the reactor under fuel-lean conditions (Φ =0.6)

Fig. 12 Conversion ratio of nitrogen to main products in condition B3 (Φ =1.5, solid lines denote the GRI30 mechanism, while dashed lines denote the IRGRI mechanism)

4 Conclusions

In this paper, the indirect relationship between the fuel level in mixtures of high CO_2 level and the effect of CO_2 via the reaction CO_2 +H to form OH and CO on NO_x formation from NH_3 were studied through numerical simulation.

Generally, the reaction $CO_2+H\rightarrow CO+OH$ facilitates NO formation under fuel-rich conditions without CO_2 dilution, but inhibits NO formation under fuel-lean conditions with high CO_2 dilution. The radical pool of the chain carriers O/H/OH is affected, thereby influencing the formation and reduction of NO. The reduction of NO is affected mostly by H.

An unbranched chain reaction mechanism was proposed to illustrate the chemical effect of CO_2 on the radical pool and NO_x formation and reduction.

As the CO_2 concentration increases, the mutual promotion of the unbranched chain reaction and the branched reaction gradually changes to mutual competition for H, which gradually weakens the promotion of NO formation. Under conditions with CO_2 levels higher than 90%, however, the formation of NO is inhibited.

The competition for H as CO_2 concentration increases influences the conversion of NH_3 , changing from facilitation to inhibition of NH_3 conversion under fuel-rich conditions, and from no influence to inhibiting conversion under near stoichiometric and fuel-lean conditions.

References

- Ahn, J., Kim, H.J., Choi, K.S., 2009. Combustion characteristics of oxy-fuel burners for CO₂ capturing boilers. *Journal of Thermal Science and Technology*, 4(3):408-413. [doi:10.1299/jtst.4.408]
- Bhuiyan, A.A., Naser, J., 2015a. Numerical modelling of oxy fuel combustion, the effect of radiative and convective heat transfer and burnout. *Fuel*, **139**:268-284. [doi:10. 1016/j.fuel.2014.08.034]
- Bhuiyan, A.A., Naser, J., 2015b. Computational modelling of co-firing of biomass with coal under oxy-fuel condition in a small scale furnace. *Fuel*, **143**:455-466. [doi:10. 1016/j.fuel.2014.11.089]
- Boushaki, T., Mergheni, M.A., Sautet, J.C., *et al.*, 2008. Effects of inclined jets on turbulent oxy-flame characteristics in a triple jet burner. *Experimental Thermal and Fluid Science*, **32**(7):1363-1370. [doi:10.1016/j.expthermflusci. 2007.11.009]
- Boushaki, T., Sautet, J.C., Labegorre, B., 2009. Control of flames by tangential jet actuators in oxy-fuel burners. *Combustion and Flame*, **156**(11):2043-2055. [doi:10. 1016/j.combustflame.2009.06.013]
- Buhre, B.J.P., Elliott, L.K., Sheng, C.D., et al., 2005. Oxyfuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science, 31(4):

283-307. [doi:10.1016/j.pecs.2005.07.001]

- Cao, H., Sun, S., Liu, Y., *et al.*, 2010. Computational fluid dynamics modeling of NO_x reduction mechanism in oxyfuel combustion. *Energy & Fuels*, 24(1):131-135. [doi:10.1021/ef900524b]
- Chui, E.H., Douglas, M.A., Tan, Y.W., 2003. Modeling of oxy-fuel combustion for a western Canadian subbituminous coal. *Fuel*, 82(10):1201-1210. [doi:10.1016/ S0016-2361(02)00400-3]
- Chui, E.H., Majeski, A.J., Douglas, M.A., *et al.*, 2004. Numerical investigation of oxy-coal combustion to evaluate burner and combustor design concepts. *Energy*, 29(9-10): 1285-1296. [doi:10.1016/j.energy.2004.03.102]
- Feng, B., Ando, T., Okazaki, K., 1998. NO destruction and regeneration in CO₂ enriched CH₄ flame. *JSME International Journal Series B-Fluids and Thermal Engineering*, **41**(4):959-965. [doi:10.1299/jsmeb.41.959]
- Glarborg, P., Bentzen, L.L.B., 2008. Chemical effects of a high CO₂ concentration in oxy-fuel combustion of methane. *Energy & Fuels*, **22**(1):291-296. [doi:10.1021/ ef7005854]
- Habib, M.A., Badr, H.M., Ahmed, S.F., et al., 2011. A review of recent developments in carbon capture utilizing oxyfuel combustion in conventional and ion transport membrane systems. *International Journal of Energy Re*search, 35(9):741-764. [doi:10.1002/er.1798]
- Hecht, E.S., Shaddix, C.R., Molina, A., *et al.*, 2011. Effect of CO₂ gasification reaction on oxy-combustion of pulverized coal char. *Proceedings of the Combustion Institute*, **33**(2):1699-1706. [doi:10.1016/j.proci.2010.07.087]
- Kiga, T., Takano, S., Kimura, N., *et al.*, 1997. Characteristics of pulverized-coal combustion in the system of oxygen recycled flue gas combustion. *Energy Conversion and Management*, **38**:S129-S134. [doi:10.1016/S0196-8904 (96)00258-0]
- Mendiara, T., Glarborg, P., 2009. Ammonia chemistry in oxy-fuel combustion of methane. *Combustion and Flame*, **156**(10):1937-1949. [doi:10.1016/j.combustflame.2009. 07.006]
- Normann, F., Andersson, K., Leckner, B., et al., 2008. Hightemperature reduction of nitrogen oxides in oxy-fuel

combustion. *Fuel*, **87**(17-18):3579-3585. [doi:10.1016/j. fuel.2008.06.013]

- Normann, F., Andersson, K., Leckner, B., *et al.*, 2009. Utilization of reburn reactions for NO_x control in oxy-fuel combustion. AIChE Annual Meeting, Nashville, USA.
- Wang, C., Jia, L., Tan, Y., *et al.*, 2008. Carbonation of fly ash in oxy-fuel CFB combustion. *Fuel*, **87**(7):1108-1114. [doi:10.1016/j.fuel.2007.06.024]
- Watanabe, H., Yamamoto, J.I., Okazaki, K., 2011. NO_x formation and reduction mechanisms in staged O₂/CO₂ combustion. *Combustion and Flame*, **158**(7):1255-1263. [doi:10.1016/j.combustflame.2010.11.006]

<u>中文概要</u>

- 题 目:模拟富氧燃烧过程中燃料在 CO₂ 中稀释对 NH₃ 向 NO_x转化影响的研究
- 6 約:探索燃料富氧燃烧过程中不同浓度 CO₂的稀释 作用对 NO_x生成的影响,为探索 NO_x在 O₂/CO₂ 气氛中生成机理研究提供理论基础。
- **创新点:**提出一种无分支链式反应解释说明 CO₂ 在还原 性粒子环境中对反应的影响。
- 方 法:通过 Chemkin Pro 中塞流式反应器模块对混入 NH₃的 CH₄燃料在 O₂/CO₂ 气氛中反应进行数值 模拟,同时改变 CO₂的稀释程度来探索 CO₂浓 度对 NO_x 生成的影响,并比较不同反应机理下 的模拟结果,探索此环境中 NO_x 的生成机理 (表 1)。
- 结 论: 1. 无支链反应机理可用于解释 CO₂ 在还原性粒子环境中对 NO_x 生成与还原的影响; 2. 随着CO₂浓度的升高,无支链反应和支链反应相互竞争 H,进而抑制 NO 的生成; 3. 在对 NH₃转化效率的影响方面,CO₂浓度增加引发的无支链反应和支链反应对 H 的竞争,在富燃料条件下从促进转化变为抑制转化,在化学当量和贫燃料条件下从无影响变为抑制转化。
- 关键词: CO2; 富氧燃烧; NO; 燃料稀释