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Abstract:    A closed-form out-of-plane dynamic displacement response of a curved track subjected to moving loads was pro-
posed. The track structure was modeled as a planar curved Timoshenko beam periodically supported by the double-layer 
spring-damping elements. The general dynamic displacement response induced by the moving loads along the curve on the elastic 
semi-infinite space was firstly obtained in the frequency domain, according to the Duhamel integral and the dynamic reciprocity 
theorem. In the case of the periodic curved track structure subjected to moving loads, the dynamic displacement equation was 
simplified into a form of summation within the basic track cell instead of the integral. The transfer function for the curved track 
was expressed in the form of a transfer matrix. Single and series moving loads were involved in the calculation program. For the 
verification of the analytical model, the mid-span vertical deflection of a simply support curved beam subjected to moving load 
was recalculated and compared with the same case in the reference. The research results indicate that: under the same moving 
loads, the displacement response of the curved track decreases slightly with the increasing track radius, and the displacement 
response of the curved track with the radius greater than or equal to 600 m is almost equivalent to the displacement response of the 
straight track; the frequency spectrum of the curved track is more abundant than that of the straight track, which may result in more 
wheel-rail resonance and rail corrugation in the curved lines. 
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1  Introduction 
 
Planar curved beams, arches and rings have been 

widely used in machines and structures, such as the 
track structures, bridges, aircraft structures, and turbo 
machinery blades, because of their potential applica-
tions. A curved track can meet the requirements of the 
existing urban layout well in the urban rail transit 
system; however, the vibration of the curved track can 
not be ignored. 

The vibration theory of the uniform curved 
beams has great importance in many engineering 
applications, while the in-plane vibration and 
out-of-plane vibration were usually studied sepa-
rately. The “out-of-plane” here refers to “normal to 
the plane” of the curvature of the curved beam. The 
curved track structure was modeled as a planar curved 
Timoshenko beam periodically supported by the 
double-layer spring-damping elements to study the 
vibration of the curved track here, and only the 
out-of-plane vibration of the curved track structure 
was considered. 

Both the analytical methods and the finite ele-
ment method have been employed in the pioneering 
study on the out-of-plane vibration of the curved 
beam; however, the analytical methods were more 
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popular in use. For the finite element method, the 
complex formulations for the existing element prop-
erty matrices of the curved beam element discourage 
the engineers from employing it to analyze either in- 
plane or out-of-plane vibration of the curved beams. 

For this analytical study, the out-of-plane vibra-
tion equations of the curved beams and an analytical 
solution for a circular ring were firstly derived by 
Love (1927). Then, Den Hartog (1928) obtained the 
natural frequencies of circular arcs with fixed and 
hinged boundary conditions using the Rayleigh-Ritz 
method. Volterra and Morell (1961) obtained the 
lowest natural frequency of elastic arc for vibrations 
outside the plane of initial curvature. However, the 
theory above gave wrong results for the higher mode 
frequencies, since earlier analytical studies were 
based on the classical beam theory with the effects of 
shear deformation and/or rotary inertias neglected. 

It was not until the 1970s that Rao (1971) pre-
sented more accurate models to derive the natural 
frequencies of the circular rings and arcs, in which the 
effects of shear deformation and rotary inertias were 
both taken into account. Using a transfer matrix ap-
proach, Bickford and Strom (1975) obtained the nat-
ural frequencies and mode shapes for both the 
in-plane and out-of-plane vibrations of plane curved 
beams accounting for shear deformation, rotary iner-
tia and extension of the neutral axis. Then, it was 
found that the accuracy of the results may be im-
proved if the effect of variation in curvature across the 
cross-section of the thick curved beam was consid-
ered (Bickford and Maganty, 1986). Then, Montalvão 
e Silva and Urgueira (1988) derived the dynamic 
stiffness matrices for the out-of-plane vibration of the 
curved beams to get the natural frequencies. The 
frequency equations for the multi-span circular 
curved beam were derived, with the circumferential 
forces in the curved beam being neglected (Wang et 
al., 1980). Afterwards, more complicated formula-
tions were derived by applying the discrete Green 
functions and using the numerical integration to ob-
tain the eigenvalues for both the in-plane and 
out-of-plane free vibrations of the non-uniform 
curved beams (Kawakami et al., 1995). The wave 
propagation approach was also very useful in vibra-
tion analysis, in which the vibration of elastic struc-
tures such as strings, beams, and plates can be de-
scribed in terms of waves propagating and attenuating 
in waveguides (Yong and Lin, 1989). Considering the 

curved bridge coupling of bending and torsion in the 
vertical direction, as well as the bending and axial 
deformation in the horizontal direction, the precise 
transfer matrixes of the curved beam were derived in 
vertical and horizontal directions to calculate the 
horizontal and vertical vibration frequencies and vi-
bration modes (Sun et al., 2009). 

Few works have been conducted for the vibra-
tion response of the curved beams under moving 
loads and concern was mainly placed on the vertical 
or out-of-plane vibration of the curved bridges under 
moving loads (Tan and Shore, 1968; Genin et al., 
1982; Sun and Li, 2009). Yang et al. (2001) derived 
the analytical solutions for a horizontally curved 
beam subjected to vertical loads due to the gravities of 
the vehicles and horizontal loads due to the centrifu-
gal forces of the vehicles moving along a circular 
path; however, they neglected the effect of shear de-
formation and considered only the first mode ap-
proximations for the vertical defection and torsional 
angle in the forced vibration analysis. 

The problem of a moving load was reviewed in 
detail in (Timošenko, 1953), where its coming- 
into-being can be traced to the beginning of the ni-
neteenth century, the time of erection of the early 
railway bridges (Stokes, 1849), which makes it one of 
the original problems of structural dynamics in gen-
eral. The vibration response of the track structure 
under moving loads has also been paid much atten-
tion. Initially, the track was modeled as a continuous 
supported Euler beam on the elastic foundation, ig-
noring the periodic sleeper. The model was then im-
proved as the Timoshenko beam with higher modes; 
the contribution of the shear stress was taken into 
account (Zhai, 2002). In the case where the track is 
invariant in the longitudinal direction, the dynamic 
solution can be efficiently obtained in the frequency- 
wave number domain (Degrande and Lombaert, 
2001; Ding et al., 2010). A dynamic analytical model 
was established on the periodically supported track 
structure subjected to the moving loads (Liu and 
Zhang, 2004; Zhang, 2004). However, the straight 
track structure was only considered. 

An analytical solution on the dynamic dis-
placement response of the curved track subjected to 
moving loads was proposed in this study, in which the 
track structure was modeled as a planar curved Ti-
moshenko beam periodically supported by the  
double-layer spring-damping elements. The general 
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dynamic displacement response induced by the mov-
ing loads along the curve on the elastic semi-infinite 
space was firstly obtained, according to the Duhamel 
integral and the Dynamic Reciprocity Theorem. In the 
case of a periodic curved track structure subjected to 
moving loads, the dynamic displacement response 
equation in the frequency domain was simplified into 
a form of summation within the basic track cell instead 
of the integral. The transfer function for the curved 
track was expressed in the form of a transfer matrix. 
Various kinds of moving loads were involved in the 
calculation program. The midpoint vertical deflection 
of a simply support curved beam subjected to single 
moving load was recalculated and compared with the 
same case in (Yang et al., 2001) to verify the cor-
rectness of the analytical model. Then the dynamic 
displacement response of the curved track with dif-
ferent radius was studied. 
 
 

2  Semi-infinite space subjected to a single 
moving load 
 

Firstly, let us consider the vertical load gk(t) 
(Fig. 1), moving along the curve on an elastic 
semi-infinite space. The vertical dynamic displace-
ment response of the point ξ can be expressed by 

 

( , ) ( ) ( , ( ), )d ,k zu t g h t      



        (1) 

 

where u(ξ, t) represents the vertical displacement of 
the point ξ; hz(θξ, θ(τ), t−τ) represents the vertical 
transfer function between the load point θ(τ) and the 
point ξ, and when t−τ<0, hz(θξ, θ(τ), t−τ)≡0. 

As shown in Fig. 1, the load gk(t) moves along 
the curve with the radius of R, θk0 is the initial position 
of the moving load, and c is the moving speed, then 
Eq. (1) can be rewritten as 

 

0( , ) ( ) ( , , )d .k z ku t g h c t      



       (2) 

 

According to the dynamic reciprocal theorem 
and the theory of the forward Fourier transformation, 
the frequency-domain displacement response can be 
expressed by 

 


0ˆ( , ) ( ) ( , , )exp( i )d ,zk ku g h c         




    

(3) 

where  0( , , )z kh c      represents the transfer 

function in the frequency domain; ω represents the 
circular frequency; “^” is defined to be the expression 
in the frequency domain, similarly hereinafter. 

So far, the time-domain and frequency-domain 
dynamic displacement responses of the point ξ on the 
elastic semi-infinite space subjected to the vertical 
moving load along the curve are obtained. 
 
 
 
 
 
 
 
 
 
 
 
 
3  Track structure subjected to a single 
moving load 
 

The dynamic displacement response of the pe-
riodically supported track structure subjected to a 
single moving load is considered. As shown in Fig. 2, 
half of the track structure is only taken into account. 
The track structure is subdivided into a certain 
amount of basic track cells, with the support spacing 
of θcell. 

 
 
 
 
 
 
 
 
 
 
 
 
The vertical load gk(t) moves along the rail, c is 

the moving speed, θk0 is the initial position of the load. 
ξ is the point on the rail. The load point θ can be ex-
pressed by 

 

0 .k ct                                  (4) 

Fig. 1  Semi-infinite space subjected to a single moving
load along the curve 
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Fig. 2  Periodically supported curved track subjected to a 
single moving load 
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As shown in Fig. 3, the local coordinate system 
is set up in a basic track cell. The relationship between 
the global coordinate system and the local coordinate 
system can be defined as 

 


cell ,n                                    (5) 


cell ,n                                   (6) 


0 0 0 cell ,k k kn                             (7) 

 

where “  ” is defined to be the expression in the local 
coordinate system, similarly hereinafter; nθ represents 
the quantity of the track cells between the origin O 
and the load point θ in the global coordinate; nξ 
represents the quantity of the track cells between the 
origin O and the point ξ in the global coordinate; and 
nk0 represents the quantity of the track cells between 
the origin O and the initial position θk0 of the load in 
the global coordinate. Then, we have 

 

0 0 cell( ) / ( ) / ,k kt c n n c               (8) 

 
0( ) / .k c                                 (9) 

 
 
 
 
 
 
 
 
 
As the load moving in a basic track cell, the 

frequency-domain dynamic displacement response in 
Eq. (3) can be simplified into a form of summation 
within the basic track cell instead of the integral. 

 





cell

cell

0

0 cell

0

0 0 cell

0 cell

ˆ( , ) ( ) ( , , )exp( i )d

( )

( ( ) , , )

( )
exp i d .

z k

kc

z k k

k

u g h c

n n
g

c

h c n n

n n

c

 




 



        




    


  




  

   
 

   

       
  



 



 

(10) 

 

As the load moving along the curved track, the 
displacement response of the point ξ can be expressed 
by 





cell0 t cell

0

0

0 cell

0

0 0 cell

0 cell

ˆ( , ) ( ) ( , , )exp( i )d

( )

( ( ) , , )

( )
exp i d ,

k

k

z k

n
kc

n n

z k k

k

u g h c

n n
g

c

h c n n

n n

c





 


 



        




    


  









  

   
 

   

       
  



  



 

(11) 

 
where nθ increases with the load moving along the rail, 
and θt is the overall length of the curved track. 

Taking Eq. (9) into Eq. (11), then we can obtain: 
 

 




 

  

0 t cell
0 cell

0
0

/
0 0 cell

cell

0 0 cell

ˆ( , )

( ) ( )1

( , , )

( ) ( )
exp i d ,

k
k

k
k

n
k k

n n

z

k k

u

n n
g

c c

h n

n n

c



    



 



 

  

   

  
 

 



   
   

 

 

    
       

 
  (12) 

 
which represents the frequency-domain dynamic 
displacement response of the track structure subjected 
to a single moving load. 

 
 

4  Track structure subjected to a series of 
moving loads 
 

Now, the periodically supported curved track 
structure subjected to a series of moving loads is 
considered. As shown in Fig. 4, the m-axle loads gk(t) 
(k=1, 2, …, m), with time-dependent amplitudes, 
move along the rail, and the initial position coordinate 
of the moving loads is (ρk0, θk0, zk0) (k=1, 2, …, m), the 
moving speed is c. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4  Periodically supported track structure subjected to 
a series of moving loads along the curve 
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The position of the kth load gk(t) can be ex-
pressed by [ρ, θ, z]T=[ρk0, θk0+ct, zk0]

T, and (ρk0, θk0, zk0) 
is the initial position of the load gk(t). 

The series of moving loads along the rail can be 
expressed by 

 

0
1

0 0

( , , , ) ( )

( ) ( ) ( ) .

m

k
k

k k k z

f z t

ct z z g t e

    

   


 

   

    (13) 

 
According to the forward Fourier transforma-

tion, we can obtain: 
 

0 0
1

0

ˆ ( , , , ) ( ) ( )

( ) ( ) exp( i )d .

m

k k
k

k k z

f z ct

z z g t e t t

        

 






   

  

  (14) 

 
Eq. (14) can be simplified as 
 

0 0

1

1ˆ ( , ) exp i .
m

k k
k

k

f g
c c c

   
  



        
   

   (15) 

 
Substituting Eq. (15) into Eq. (12), then  

 

 




 

 



0 t cell
0 cell

0
0

/
0 0 cell

1

cell

0 0 cell

0

ˆ( , )

( ) ( )1

( , ( ) , )

( ) ( )
exp i

exp i d ,

k
k

k
k

nm
k k

k
k n n

k k

k

u

n n
g

c c

h n n

n n

c

c



    



  



 

  

   

  


 
 

 

 



   
  
 

  

    
       

      
  

  

 

(16) 
 

where nk0 represents the quantity of the track cells 
between the origin O and the load point yk0 in the 
global coordinate, k=1, 2, …, m. 

For the periodically supported track structure 

(Fig. 4), 





0 0cell cell cell

0 0 0 0
,

k k

k k


     

    

 
 we can always 

take the form as 
 


t

0
cell

cell

0

cell

0
1

1
ˆ( , )

k

k

n
m

k
k n n

n
u g

c c



   

 


 

 
   

 
    

  

 

cell

cell

( , ( ) , )

exp i exp i d ,

z

k

h n n

n

c c

  



   

  
  

  

                

  (17) 

 
where θk is the distance between kth axle and the first 
axle. 

Eq. (17) represents the frequency-domain verti-
cal dynamic displacement response of the curved 
track subjected to a series of moving loads. Then, the 

transfer function    cell( , ( ) , )zh n n        for the 

curved track system will be expressed in the form of 
the transfer matrix in the following sections. 
 
 
5  Transfer function for a curved track 
structure 
 

As shown in Fig. 5, the curved track is simulated 
as a periodically supported planar curved Timoshenko 
beam. The periodic support is modeled as the double- 
layer spring-damping element, in which the rail pad 
and the sleeper pad are both modeled as the 
spring-damping elements; the sleeper is modeled as 
the concentrate mass. In Fig. 5, kr, ksb are the stiffness 
of the support under rail and sleeper, respectively; cr, 
csb are the damping of the support under rail and 
sleeper, respectively, and Ms is the sleeper mass. 

The curved track cell can be decomposed into 
the nonsupport curved beam elements and the support 
elements, as shown in Fig. 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5  Simulated model of the periodically supported 
track structure 
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Combining the transfer matrices for the non-
support beam elements Tbeam and the transfer matrix 
for the support elements Tsupport, the transfer matrix 
for the curved track cell Tcell can be expressed by 

 

cell cell beam 1 support beam 2( , ) ( , ) ( ) ( , ),      T T T T  (18) 

 
where θcell=θ1+θ2. 

The state variables of the point are defined as 
S(ω)=[Qz, My, Mx, Bi, u, α, φ, γ]T, and then the state 
variables of the point i−1 and the point i will be: 

 

cell cell 1( ) ( , ) ( ),i i   S S               (19) 

 
where Si(ω) and Si−1(ω) are the state variables of the 
point i and the point i−1, respectively. 

 
cell

ˆ ( , ( ) , )z n n      H  is defined to be the 

transfer function for the state variables S(θ, ω). Then, 

the transfer function  
cell

ˆ ( , ( ) , )z n n      H  can 

be solved as the product of the state variables S(θ, ω) 
of the load point θ and the transfer matrix 

  
track cell(( ) ( ), , )n n         T for the track be-

tween the load point θ and the point ξ, which is given 
by 

 

 

  
cell

track cell

ˆ ( , ( ) , )

(( ) ( ), , ) ( , ).

z n n

n n

  

 

   

      

 

   

H

T S
  (20) 

 

The transfer function    cell( , ( ) ,zh n n       

) for the vertical displacement u, in Eq. (17), is just 

one of the elements of the transfer function 
 

cell
ˆ ( , ( ) , )z n n      H  for the state variables 

S(θ, ω), as shown in Eq. (20). 
As shown in Fig. 7, the track between the load 

point θ and the point ξ can be divided into curved 
track cells and curved beam, and then the transfer 
matrix can be expressed by 

 
  

   

   

track cell

track cell beam

( )
cell cell beam
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

    

      

      

  

  

 

T

T T

T T

  (21) 

 

where 
cell cell( , , )  T  is the transfer matrix for the 

track cell θcell, and   
beam ( , , )   T  is the transfer 

matrix for the curved beam    . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The transfer matrix for the curved beam element 
Tbeam and the transfer matrix for the support element 
Tsupport will be studied in the following sections. 

5.1  Transfer matrix for the curved beam element 

As shown in Fig. 8, the length of the curved 
beam along the neutral axis is denoted by s, and the x-, 
y-, and z-axes are taken in tangential directions, radial, 
and transverse directions, respectively. The origin of 
the coordinates moves along the neutral axis of the 
curved beam. u is the transverse deflection, α is the 
slope due to the pure bending, φ is the angle of torsion, 
γ is the warping angle, R is the radius, and θ is the 
central angle corresponding to the curved element. 
The cross-section properties and material properties 
are constant along the beam. The shearing force Qz, 
the bending moment My, the torsional moment Mx, and 
the double warping moment Bi are all shown in Fig. 8. 

 
 
 
 
 
 
 
 
 
 

 
For the infinitesimal curved beam element ds, 

the shear deformation is taken into account, then we 
can obtain: 

Fig. 7  Track structure between the load point θ and the 
point ξ 
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Fig. 8  Analysis coordinates of the curved beam element
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,
u x

x R

  
  


                           (22) 

 
where ν is the transverse shear angle. 

The vertical deflection rate Ky of the beam ele-
ment is defined by 

 

.yK
x R

 
 


                               (23) 

 
The distortion rate Kx of the beam element is 

defined by 
 

.xK
x R

 
 


                               (24) 

 
The warping angle γ can be expressed by 
 

1
.

u

x R x

  
 
 

                             (25) 

 
The force-displacement relationship of the 

curved beam can be expressed by 
 

,zQ KGAv                                         (26) 

,y yM EI
x R

      
                        (27) 

2

s d2
,xM EI GI

x x R

          
         (28) 

s ,iB EI
x





                                         (29) 

 
where E is the Young’s modulus, G is the shear 
modulus, K is the shear correction factor, Iy is the 
vertical bending moment of inertia, Id is the free tor-
sion moment of inertia, Is is the polar moment of the 
cross-section, and A is the sectional area. 

According to the equilibrium condition, the 
out-of-plane vibration equations of the infinitesimal 
curved beam element can be expressed by 

 
2

2
,zQ u

A
x t


 
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2
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s 2
,yx

MM
I

x t R
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 

 
 

                          (32) 

d ,i
x

B
M GI

x



  


                             (33) 

 

where ρ is the density of the curved beam. 
The state variables of the point on the curved 

beam can be expressed by 
 

T[ , , , , , , , ] .z y x iQ M M B u   S          (34) 
 

Eqs. (22)–(33) can be expressed by 
 

1 ,
x





S

A S                                  (35) 
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2
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A

 
The general solution for Eq. (35) can be ex-

pressed as 
 

1
0( ) e ,xx  AS S                              (36) 

 
where S0 is the constant matrix. 

The curved beam can be divided into many in-
finitesimal elements, with the length of Δx, then we 
can obtain: 
 

, 1, 2, 3, ,lx l x l                      (37) 

1 ,l lx x x                                     (38) 

then 

1 beam( ) ( ) ( ),l lx x x  S T S                (39) 
 

where Tbeam(Δx)=eA1Δx, S(xl+1) and S(xl) are the state 
variables of the point xl+1 and the point xl, respectively. 

Based on the precise integration method of the 
exponential matrix (Sun and Li, 2009): 

 

1 1 1/2 2 2
beam ( ) e (e ) (e ) ,

N N Nx xx     A A AT      (40) 
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where β=Δx/2N, N=20. 
In order to avoid the loss of the accuracy during 

the rounding operation in the precise integration me-
thod, the exponential matrix is calculated in two steps. 

Firstly, the exponential matrix is expanded to the 
Taylor series: 

 
1

0( ) e ,   AT I T                         (41) 
2

0 1 1 1( ) / 2! ... ( ) / !,L L     T A A A       (42) 

 
where L is the truncation order, and generally L=2, 
that is T0=A1β+(A1β)2/2!. 

Then, Tbeam(Δx) can be expressed by 
 

1 12 2 2
beam 0 0 0( ) ( ) ( ) ( ) ,

N N N

x
 

     T I T I T I T   (43) 
2

0 0 0 0( )( ) 2 .    Ι T I T I T T              (44) 

 
Tj (j=1, 2, …, N) can be expressed by 

 
2

1 2 .j j j  T T T                                   (45) 

 

Finally, 
 

1 2 3

2
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2 2 2
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T I T

I T I T I T
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    (46) 

 
Then, the transfer matrix of the curved beam element 
Tbeam can be settled. 

5.2  Transfer matrix for the support element 

As shown in Fig. 9, let us consider the support 
element, of which the state variables are defined as 

 
For the left hand side: 

L L L L L L L L L T
s s s s s s s s s[ , , , , , , , ] ;z y x iQ M M B u   S  

For the right hand side: 
R R R R R R R R R T
s s s s s s s s s[ , , , , , , , ] .z y x iQ M M B u   S  

 
Then we can obtain: 
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

   
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       (47) 

where kv(ω) is the composite stiffness of the double- 
layer support element, which can be expressed by 
 

2
r sb s

v 2
r sb s

( )
( ) ,
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ck ck M
k
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where s b
sb

s b

,
ck ck

ck
ck ck




cks=ks+iωcs, ckb=kb+iωcb, 

ckr=kr+iωcr. kr, ks, and kb are the stiffness of the rail 
pad, the sleeper pad, and the subgrade, respectively; cr, 
cs, and cb are the damping of the rail pad, the sleeper 
pad and the subgrade, respectively.  

Eq. (47) can be expressed as R L
s support s ,S T S  

where 

v
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5.3  Initial state variables of the curved track 
structure 

Based on the transfer matrix for the curved track 
structure obtained above, the initial state variables of 
the curved track structure will be expressed in two 
different cases: the moving load applied on the curved 
beam between two support elements and the moving 
load applied on the support element. 

1. The load applied on the curved beam between 
two support elements 

The state variables of the curved beam element 
are defined to be SL for the left side and SR for the 
right side, as shown in Fig. 10. 

Fig. 9  State variables of the support element
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L Ss
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L L L L L L L L L T

R R R R R R R R R T

[ , , , , , , , ] ,

[ , , , , , , , ] .

z y x i

z y x i

Q M M B u

Q M M B u

  

  





S

S
     (49) 

 
According to the transfer matrix, one can obtain: 
 

R L
beam ( ) .x S T S                         (50) 

 
When the load Pz is applied on the curved beam 

between the two support elements, it is reasonable to 
assume that the transverse deflection u, the slope α, 
the angle of torsion φ, the warping angle γ, the 
bending moment My, the torsional moment Mx, and 
the double warping moment Bi are the same at this 
position from the left side to the right side. The 
summation share force of the beam on the left side 
and right side is equal to the applied load Pz, which 
can be expressed by 

 
R L T[ ,0,0,0,0,0,0,0] .zP S S            (51) 

 
Substituting Eq. (50) into Eq. (51), the initial 

state variables of both sides of the curved beam ele-
ments can be settled. 

 
 
 
 
 
 
 
 
 
2. The load applied on the support element 
The state variables of the double sides of the 

support element are defined to be SL for the left side 
and SR for the right side.  

 
L L L L L L L L L T

R R R R R R R R R T

[ , , , , , , , ] ,

[ , , , , , , , ] .

z y x i

z y x i

Q M M B u

Q M M B u

  

  





S

S
  (52) 

 
When the load Pz is applied on the support ele-

ment, as shown in Fig. 11, the displacement of the 
support is X, then  

 
L R T

v[ ,0,0,0,0,0,0,0] ( ).zP Xk   S S   (53) 

 
According to the transfer matrix, we can obtain: 

R L
beam support beam( / 2) ( / 2) .x x  S T T T S      (54) 

 

Substituting Eq. (54) into Eq. (53), the initial 
state variables of both sides of the support element 
can be expressed. 

With the initial state variables and the transfer 
function for the curved track expressed above, the 
dynamic displacement of the curved track subjected 
to the moving loads can be obtained. 

 
 
 
 
 
 
 
 
 

 
 
6  Calculation results 
 

Based on the analytical model obtained in the 
previous sections, the numerical computations were 
performed to illustrate the dynamic displacement 
response of the curved track subjected to moving 
loads, using the calculation program formed with 
Matlab. The calculation process is shown in Fig. 12. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10  Mechanical analysis of the curved beam element
 

SL SR

Pz

Δx∆x

Fig. 12  Calculation process 

Start 

Data input 

Initial state variables of the 
load point 

Transfer matrix for the 
track structure 

Axles
loop

Transfer function for the track between 
the load point and the view point 

Solution of the Duhamel integral function 

Frequency-domain rail displacement of 
the track under single-axle load 

Dynamic displacement of the 
track subjected to moving load 

Data output 

End 

Fig. 11  Mechanical analysis of the support element

SL SR

Pz

X
kv

∆x 



Li et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2013 14(12):867-879 
 

876 

6.1  Model validation 

To verify the validity of the analytical model 
above, the midpoint vertical deflection of a simply 
support curved beam subjected to a single moving 
load was recalculated and compared with the same 
case in (Yang et al., 2001), as shown in Fig. 13. 

 
 
 
 
 
 
 
 
 
According to (Yang et al., 2001), the calculation 

parameters of a simply support curved beam are as 
follows: a=5 m, b=1.8 m, =30°, Rs=45.84 m, the 
total length of the curved beam L=R=24 m, 
E=3.23×1010 N/m2, ν=0.2, G=E/[2(1+ν)], k'=0.833, 
Ix=ab3/12=2.43 m4, Iy=ba3/12=18.75 m4, Jθ=Ix+Iy= 
21.18 m4, A=ab=9 m2, Vp=40 m/s, P=9.8×29.9×103 N, 
and damping ζd=0. 

As shown in Fig. 14, the midpoint vertical de-
flection was calculated and compared with the results 
in (Yang et al., 2001). It should be pointed out that the 
negative displacement means that the bottom of the 
beam is suffering with tension stresses. The results are 
consistent with that in (Yang et al., 2001), which 
indicates the correctness of the analytical model pre-
sented in this study. 

6.2  Dynamic displacement response of the curved 
track 

The vertical dynamic displacement response of 
the curved track subjected to single moving load is 
considered as shown in Fig. 15. 

The single load gk(t)=1 N, with a constant speed 
of c=30 km/h, moves along the rail with a radius of 
R=300 m. The point ξ is located at 9.3 m away from 
the initial point of the moving load. For comparison, 
the vibration response of the straight track subjected 
to the same moving load was also obtained, according 
to (Liu and Zhang, 2004; Zhang, 2004). 

The parameters of the track structure in the cal-
culation are as follows: rail mass per unit length 
mr=60 kg/m, elastic modulus E=2.10×1011 Pa, cross 
section area A=7.60×10−3 m2, cross section inertia 

moments I=3.04×10−5 m4, damping ratio ξr＝0.01, 
sleeper mass per unit length ms=50 kg/m, sleeper 
spacing Lcell=0.60 m, bed mass per unit length 
mb=260 kg/m, and the mass of the sleeper and bed are 
taken into account together. The fastener employed 
here is DTVI2 fastener, of which the stiffness and 
damping parameters are kr=4.0×107 N/m, cr=5.0×104 
N·s/m, respectively. The stiffness and damping pa-
rameters of the spring-damper element under the 
sleeper are ksb=1.0×108 N/m, csb=5.0×104 N·s/m, 
respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13  Simply support curved beam subjected to a single 
moving load 
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curved beam subjected to a single moving load 
(a) Calculated results; (b) Results in (Yang et al., 2001) 
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As shown in Fig. 16, the vibration displacement, 
velocity, and acceleration of the point ξ on the curved 
track and the straight track are obtained. In order to 
save the computing time, the vibration in 0–50 Hz is 
only taken into account. According to the comparison 
of the time history and frequency spectrum, we can 
find that: 

1. Under the same moving loads, the vibration  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

response of the curved track is larger than that of the 
straight track. 

2. The frequencies of the peak values in the 
frequency spectrum are around 14 Hz, 28 Hz, and 
42 Hz, which are closely related to the speed of the 
moving load; besides, the frequency spectrum of the 
curved track is more abundant than that of the straight 
track, which may result in more wheel-rail resonance  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 1 2 3 4 5 6
-2.4x10-8

-2.0x10-8

-1.6x10-8

-1.2x10-8

-8.0x10-9

-4.0x10-9

0.0

4.0x10-9

8.0x10-9

V
e

rt
ic

al
 v

ib
ra

tio
n 

di
sp

la
ce

m
en

t (
m

)

Time (s)

 Straight track
 Curved track (R=300 m)

0 1 2 3 4 5 6
-1.5x10-6

-1.0x10-6

-5.0x10-7

0.0

5.0x10-7

1.0x10-6

1.5x10-6

V
er

tic
al

 v
ib

ra
tio

n 
ve

lo
ci

ty
 (

m
/s

)

Time (s)

 Sraight track
 Curved track (R=300 m)

0 5 10 15 20 25 30 35 40 45 50
0.0

1.0x10-8

2.0x10-8

3.0x10-8

4.0x10-8

5.0x10-8

6.0x10-8

7.0x10-8

8.0x10-8

V
er

tic
al

 v
ib

ra
tio

n 
ve

lo
ci

ty
 (

m
/s

)

Frequency (Hz)

 Straight track
 Curved track (R=300 m)

0 1 2 3 4 5 6
-2.5x10-4

-2.0x10-4

-1.5x10-4

-1.0x10-4

-5.0x10-5

0.0

5.0x10-5

1.0x10-4

1.5x10-4

2.0x10-4

2.5x10-4

V
er

tic
al

 v
ib

ra
tio

n 
ac

ce
le

ra
tio

n 
(m

/s
2 )

Time (s)

 Straight track
 Curved track (R=300 m)

0 10 20 30 40 50
0.0

2.0x10-6

4.0x10-6

6.0x10-6

8.0x10-6

1.0x10-5

1.2x10-5

1.4x10-5

1.6x10-5

ve
rt

ic
al

 v
ib

ra
tio

n 
ac

ce
le

ra
tio

n 
(m

/s
2 )

Frequency (Hz)

 Straight track
 Curved track (R=300 m)

0 5 10 15 20 25 30 35 40 45 50
0.0

5.0x10-10

1.0x10-9

1.5x10-9

2.0x10-9

2.5x10-9

3.0x10-9

V
e

rt
ic

a
l v

ib
ra

tio
n

 d
is

p
la

ce
m

en
t 

(m
)

Frequency (Hz)

Straight track
 Curved track (R=300 m)

Fig. 16  Vibration response of the curved track subjected to a single moving load  
(a) Vibration displacement time history; (b) Vibration displacement frequency spectrum; (c) Vibration velocity time history; 
(d) Vibration velocity frequency spectrum; (e) Vibration acceleration time history; (f) Vibration acceleration frequency spectrum
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and rail corrugation in the curved lines. 
Then, the vertical dynamic displacement of the 

curved track with different radiuses (R=300 m, 400 m, 
500 m, 600 m, 700 m) subjected to a single moving 
load is obtained and compared, as shown in Fig. 17. 

The comparison in Fig. 17 indicates that: under 
the same moving load, the displacement response of 
the curved track decreases slightly with the increasing 
track radius, and the displacement response of the 
curved track with the radiuses greater than or equal to 
600 m is almost equivalent to the response of the 
straight track. 

As shown in Fig. 18, the curved track subjected 
to a series moving loads gk(t)=1 N (k=1, 2, 3, 4), with 
a constant speed of c=30 km/h, is also considered. 
The radius of the curvature R=300 m, the distance 
between two adjacent loads is 8 m, and the vibration 
receiver ξ is located at 9.3 m away from the initial 
point of the first moving load.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The vertical dynamic displacement responses of 

the curved and straight track are obtained according to 
the calculation program. The time history and the 

frequency spectrum are both included. In order to 
save the computing time, the vibration in 0–50 Hz is 
only taken into account. 

As shown in Fig. 19, the comparison of the time 
history and frequency spectrum indicates that: under 
the same moving loads, the vibration response of the 
curved track is larger than that of the straight track; 
the spectrum of the curved track is more abundant 
than that of the straight track, which may result in 
more wheel-rail resonance and rail corrugation in the 
curved lines. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
7  Conclusions 
 

A closed-form out-of-plane dynamic displace-
ment response of the curved track subjected to mov-
ing loads was proposed. The track structure was 
modeled as a planar curved Timoshenko beam  
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Fig. 18  Curved track subjected to a series of moving loads
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Fig. 19  Vibration displacement of the curved track sub-
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periodically supported by the double-layer spring- 
damping elements. In the case of the periodic curved 
track structure subjected to the moving loads, the 
general dynamic displacement equation was simpli-
fied into a form of summation within the basic track 
cell instead of the integral. The transfer function for 
the curved track was expressed in the form of the 
transfer matrix. Single and series moving loads were 
involved in the calculation program. Conclusions can 
be drawn as follows: 

1. The midpoint vertical deflection of a simply 
support curved beam subjected to a single moving 
load was recalculated and compared with the same 
case in (Yang et al., 2001) and the correctness of the 
analytical model was proved; 

2. Under the same moving loads, the displace-
ment response of the curved track decreases slightly 
with the increasing track radius, and the displacement 
response of the curved track with the radiuses greater 
than or equal to 600 m is almost equivalent to the 
response of the straight track; 

3. Under the same moving loads, the frequency 
spectrum of the curved track is more abundant than 
that of the straight track, which may result in more 
wheel-rail resonance and rail corrugation in the 
curved lines.  
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