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Abstract:    In this paper, a novel criterion is proposed to determine the retained principal components (PCs) that capture the 
dominant variability of online monitored data. The variations of PCs were calculated according to their mean and covariance 
changes between the modeling sample and the online monitored data. The retained PCs containing dominant variations were 
selected and defined as correlative PCs (CPCs). The new Hotelling’s T2 statistic based on CPCs was then employed to monitor 
the process. Case studies on the simulated continuous stirred tank reactor and the well-known Tennessee Eastman process dem-
onstrated the feasibility and effectiveness of the CPCs-based fault detection methods. 
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1  Introduction  
 
Multivariate statistical methods, such as princi-

pal component analysis (PCA) and partial least 
squares (PLS), are widely used in industry for proc-
ess monitoring (Nomikos and MacGregor, 1995; Qin, 
2003; Ge and Song, 2008; Garcia-Alvarez et al., 
2012). Other complementary multivariate statistical 
process monitoring methods, including canonical 
variate analysis, kernel PCA, dynamic PCA, and 
independent component analysis, have been pro-
posed to address the limitations of PCA- or PLS-
based monitoring strategies (Russell et al., 2000; 
Juricek et al., 2004; Lee et al., 2004a; 2006). PCA-

based and related monitoring methods, which build 
statistical models from normal operation data and 
partition the measurements into a principal compo-
nent subspace (PCS) and a residual subspace (RS), 
are among the most widely used multivariate statisti-
cal methods. In this methodology, the dimension of 
the PCA model, which is the estimation of the opti-
mal number of principal components (PCs) to retain, 
must be determined and has an important role on the 
process monitoring performance. However, the de-
termination of the number of PCs is not unique, 
given that the sensor outputs are generally disturbed 
by noise (Tamura and Tsujita, 2007). 

The choice of PCs is a crucial step for the inter-
pretation of monitoring results or subsequent analy-
sis because it could lead to the loss of important in-
formation or the inclusion of undesirable interfer-
ence. To tackle this challenge, a large number of 
well-known techniques for selecting the number of 
PCs have been proposed. A simple approach is to 
choose the number of PCs for the variance to 
achieve a predetermined percentage, such as 85%, 
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termed as cumulative percent variance (CPV) (Jack-
son, 1991). Other methods for determination, includ-
ing cross validation, average eigenvalue approach, 
variance of reconstruction error (VRE) criterion, and 
fault signal-to-noise ratio (fault SNR), have been 
proposed to determine the number of the retained 
PCs (Wold, 1978; Dunia and Qin, 1998; Valle et al., 
1999; Tamura and Tsujita, 2007). The cross valida-
tion method uses part of the training samples for the 
model construction, while the rest are compared with 
the prediction by the model. However, this criterion 
needs to build multi-PCA models, which is tedious. 
The average eigenvalue approach accepts all the ei-
genvalues with values of above the average eigen-
value and rejects those below the average. This crite-
rion is simple, but comparatively robust. The VRE 
criterion assumes that the corresponding PCs are 
deemed as the optimal PCs when the error of fault 
reconstruction comes to minimum. Fault SNR shows 
the relationship between the number of PCs and the 
fault detection sensitivity, which maximizes the sen-
sitivity of fault detection. When a priori knowledge 
of the fault direction is available, both methods can 
determine the optimal number of PCs for the fault 
detection from different perspectives.  

Several comparative studies have been con-
ducted on these methods for determining the number 
of PCs for the fault detection. Valle et al. (1999) 
tested 11 methods and concluded that the VRE crite-
rion is preferable. Tamura and Tsujita (2007) com-
pared fault SNR with VRE criterion, and concluded 
that these two methods calculate different character-
istics depending on the analysis objective. In addi-
tion, both methods need a fault direction vector as a 
priori process knowledge, which is hardly obtained 
in practical applications, especially for complex 
chemical processes. Nevertheless, the determination 
of the retained PCs of these traditional approaches is 
rather subjective or requires a priori knowledge, and 
none of these methods considers the performance of 
the fault detection in the absence of a priori knowl-
edge. Apart from these comparative studies, the fault 
detection ability depends on the PCs retained in the 
PCA model (Kano et al., 2002). Togkalidou et al. 
(2001) indicated that including components with 
smaller eigenvalues in the PCA model and excluding 
those with larger eigenvalues can improve the pre-
diction quality. Motivated by this perspective, the 

present work deals with several of the limitations 
inherently associated with most of the traditional 
criterions for determining the retained PCs. 

When the PCA model is employed for monitor-
ing industrial processes, Hotelling’s T2 and squared 
prediction error (squared prediction error (SPE) or  
Q) statistics are usually used for the fault detection. 
T2 index is the squared Mahalanobis distance of the 
projections in PCS, designed to measure the variabil-
ity of the mean and covariance within the PCS. 
Given each PC is the linear combination of original 
data, the variability of the original data may be sub-
merged in several projection directions with larger 
variance considering small coefficients correspond-
ing to the measured variables. In the following sec-
tion, the monitoring components with relatively 
small eigenvalues have been shown to result in a 
better fault detection performance. Similar to the 
statement presented by Togkalidou et al. (2001), the 
basis of the proposed method is that the first l PCs 
that capture the dominant variance of the modeling 
data may not best reflect the variability of the online 
monitored data samples, and thus a number of spe-
cial faults cannot be well detected.  

In this work, a novel criterion is introduced to 
determine the retained PCs objectively and dynami-
cally. This method differs from the traditional ap-
proaches mentioned above, in which the selected 
PCs can capture the dominant variability (mainly the 
changing of mean and covariance) of the online ob-
servations against the modeling data, instead of cap-
turing cumulative variance. The online measure-
ments lead to variation within PCS, and the degree 
of variability captured by each component can be 
evaluated according to a predefined criterion through 
a moving-window technique. The PCs that contain 
the dominant variability is selected for the fault de-
tection, which is termed as correlative PCs (CPCs) in 
this paper. With the embedding of the moving win-
dow, no prior knowledge of the abnormal situations 
is needed, and the selected components can expose 
the variability of the current samples to maximum. 
The contributions of the proposed method are as  
follows. 

1. Unlike the traditional criterion, the proposed 
approach determines the retained PCs objectively, 
without the restriction that the components corre-
sponding to larger eigenvalues should be selected. 



Tong et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2013 14(7):520-534 
 

522 

CPCs are similar to PCs containing the dominant 
variance of the modeling data when the current sam-
ples are normal. For potential abnormal observations, 
the CPCs can be automatically determined to be 
those that capture the main variability. Therefore, the 
PCA model parameter that accounts for the fault 
detection can be chosen, and the monitoring per-
formance can subsequently be improved. 

2. Although fault SNR and VRE criterion can 
determine the number of PCs objectively, a prior 
knowledge of the fault direction is required, which 
may induce redundant information for the fault de-
tection inevitably. In the proposed method, prior 
knowledge is not necessary and CPCs can be deter-
mined dynamically according to the variations 
caused by the current window. 

3. Compared with the conventional PCA-based 
method, SPE statistic is eliminated in the improved 
PCA-based approach considering that the variability 
of online observations is mainly contained in CPCs 
and the one-fold T2 index is enough for monitoring 
the industrial processes. Moreover, a single index 
can provide the operators more precise information 
without any confusion. 
 
 
2  PCA-based process monitoring  

2.1  Preliminaries of PCA 

One of the most popular methods for dealing 
with multivariate data is PCA, which transforms a 
correlated original data to uncorrelated data set, 
while preserving the most important information of 
the original data set (Jackson, 1991). PCA includes 
the decomposition of data matrix Xún×m which 
contains n regular-sampled observations of m proc-
ess variables and is scaled to zero mean and unit 
variance, into a transformed subspace of reduced 
dimension. The decomposition is expressed as  
follows: 

 
T ,  X TP X E                        (1) 

 
where Xún×m and Púm×m are the score matrix and 

the loading matrix, respectively. The matrices X  
and E  represent the estimation of X and the residual 
part of the PCA model, respectively, which are de-
fined as follows:  

T ,l lX T P                                      (2) 
Tˆ ˆ .l lE T P                                      (3) 

 
The principal component projection reduces the 

original set of variables to l PCs. The decomposition 

assumes that ˆ[ , ]l lP P  is orthonormal and ˆ[ , ]l lT T  is 

orthogonal. The columns of P are actually the eigen-
vectors of the covariance or correlation matrix, R, 
associated with m eigenvalues [λ1, λ2, …, λm] (the 
eigenvalues are listed in descending order). Alterna-
tively, the matrix X can be decomposed using singu-
lar value decomposition to build the PCA model. 
The number of PCs, l, is a key parameter in the PCA 
model and is commonly determined using the CPV 
method, cross validation, and average eigenvalue 
approach, as mentioned above. 

The procedures of the conventional PCA to per-
form process monitoring are introduced in this sub-
section. A new sample vector x (after scaling with 
the mean and variance obtained from the normal data) 
becomes available and is projected with the help of 
the PCA model to either PCS or RS. Two statistics, 
namely, Hotelling’s T2 and SPE (or Q), have been 
developed for process monitoring (Chiang et al., 
2001). T2 is the Mahalanobis distance of a score vec-
tor, t, in the PCS, and Q is the Euclidean distance of 
a residual vector in the RS, which are given by 

 
2 T 1 T 1 T ,l lT   t Λ t x P Λ P x                   (4) 

T T T( ) ,l lQ   e e x I P P x                      (5) 

 
where Λ=diag{λ1, λ2, …, λl}, e is the residual vector, 

and Iúm×m denotes identity matrix. Therefore, the 
scalar thresholds can qualify the process status. The 
approximated control limits of T2 and Q statistics, 
with a confidence level α, can be determined from 
the normal operating data in several ways by apply-
ing the probability distribution assumptions (Kourti 
and MacGregor, 1995; Qin, 2003). The control limits 
can be calculated as follows: 
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where Fα(l, n−l) is the upper limit of α percentile of 
the F-distribution with the degree of freedoms l and 
n−1, cα is the normal distribution value with the level 
of significance α, and 
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In general, T2 statistic measures the significant 

variability within the PCs, while Q indicates how 
well the reduced dimensional PCA model can de-
scribe the significant process variation. In most cases, 
Q is considered as an assistant statistic for T2 consid-
ering that the value of Q can be significantly affected 
by the process noise. The process condition is con-
sidered abnormal if the statistics of a new observa-
tion exceed the control limit. 

2.2  Motivation analysis 

In this subsection, a simple multivariate process 
(Lee et al., 2004b), which is a modified version of 
the system suggested by Ku et al. (1995), is consid-
ered to illustrate the motivation analyses: 
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where u is a correlated input expressed as 
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The input w  is a random vector, in which each 

element is uniformly distributed on the interval 
(−2, 2). The output y is equal to z plus a random 
noise, v. Each element of v has zero mean and 0.1 

variance. Both input u and output y are measured, 
but not z and w. The basic data vector for the moni-
toring at step k consists of x(k)=[u1, u2, y1, y2, y3]

T. 
The following abnormal case is considered to reveal 
the defect of the traditional criterions. 

In PCA, a three-principal component model has 
been developed on 300 normal samples, which cap-
tured about 87% of the process variance. For testing 
purpose, a step change of 2 is introduced to w1 start-
ing from sample 100 to the end of operating duration. 
The T2 and Q charts of the process with this distur-
bance are shown in Fig. 1, as well as the 99% confi-
dence limits. However, PCA cannot detect the dis-
turbance and captures only the dominant randomness. 
By contrast, the occurrence of abnormality is mainly 
captured by the first and the fifth PCs based on the 
plots of the five PCs of the online samples given in 
Fig. 2. With the inclusion of unnecessary informa-
tion and the elimination of several components cor-
responding to relatively small eigenvalues, the T2 
and Q derived from the first three PCs did not show 
considerable departure from the normal status. 
Therefore, fault detection must be considered in de-
termining the retained PCs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3  CPCs for the fault detection 
 
Chemical process is often characterized by 

large scale and process data projected onto the load-
ing matrix often marked with irrelevant information 
for the fault detection. Although the T2 statistic of 
the first l PCs can show deviation from the normal 
values in PCS, it still suffers from irrelevant PCs and 
low computational efficiency. Thus, selecting  

Fig. 1  Monitoring result based on conventional PCA
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several PCs that indicate significant variation of the 
online observations in reduced subspace can improve 
the monitoring performance of the conventional 
PCA method. The selected PC is defined as CPCs, as 
mentioned above. The definition of CPCs is pre-
sented in the following subsection. 

3.1  Definition of CPCs 

For Hotelling’s T2, the variations of the mean 
and the covariance matrix are generally two essential 
factors that represent the process changes from a 
normal situation to a situation with several faults 
(Kresta et al., 1991). Each PC’s contribution to the 
T2 index comes from two parts, namely, the mean or 
variance change of the PC itself and the relationship 
with other PCs responsible for the process change. 
Recently, cumulative percent variation (He et al., 
2009) based on each variable’s equivalent variation 
has been proposed to determine the candidate vari-
ables as follows: 

0

1 0 1

( ) ( )1
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n
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j
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   r              (13) 

 
where xj(i) is the ith element of the jth observation, 
b0(i) is the ith element of the normal mean vector b0, 
δ0(i) is the standard deviation of the ith variables of 
the normal data set X0, and ri is the ith column of the 
correlation matrix of the fault data set X. The index 
shows that each variable’s maximum variation 
comes from the mean or variance change of either 
the variable itself or the other variables related with 
the variable.  

In this work, a similar index is defined to calcu-
late the maximum variation of ith PC for online sam-
ples. In addition, a moving window is adopted to 
update the current data matrix, that is, the newest 
sample was augmented to the data matrix, whereas 
the oldest sample is discarded to keep a fixed num-
ber of samples in the data matrix. Let the kth data 
matrix with window length d be X=[xk−d+1, xk−d+2, …, 
xk]

Túd×m, and then Tk=[tk−d+1, tk−d+2, …, tk]
Túd×m

 
is obtained by projecting Xk onto the loading matrix 
P. For normal modeling data set X0, the correspond-
ing score matrix T0=[t1, t2, …, td]

T is used as refer-
ence matrix. The following index has been adopted 
to calculate each PC’s contribution to the process 
change: 
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where tj(i) is the ith element of the jth score vector in 

Tk, and 0
i  is the standard deviation of the ith PCs of 

X0, which is equal to the ith eigenvalue. ir  is the ith 

column of the correlation matrix, R, of Tk. S0 and Sk 
are the covariance matrices of T0 and Tk, respec-
tively, which are given by 
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Sk utilizes the mean vector b0 of the reference score 
matrix T0, which is a zero vector, and indicates the 

Fig. 2  Time-series plots of 1st PC (a), 2nd PC (b), 3rd 
PC (c), 4th PC (d), and 5th PC (e) 
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change in the covariance matrix more clearly. 
(Sk−S0)i is the ith column of (Sk−S0). Eq. (14) has 
two parts. The first part shows the mean change and 
the mean change induced by other variables. The 
other part represents the equivalent covariance 
change. After calculating all the PCs’ maximum 
variations, they are ranked in a decreasing order. The 
first several PCs sufficient to express the dominant 
change information of the current data matrix from 
the normal data set are determined as CPCs. In this 
step, the CPCs can be obtained by calculating the 
cumulative percent variation as follows: 

 

1

1

( )
( ) 100%.

( )

l

i
m

i

T i
D l

T i






 






               (17) 

 
Cumulative percent variation is a measurement of 
the percent variation captured by the first l ordered 
PCs, similar to CPV. We use D to denote the cumu-
lative percent variation to avoid the confusion of this 
index with CPV. These two indices calculate differ-
ent characteristics depending on the analysis objec-
tive. The first l PCs are defined as CPCs. The num-
ber of CPCs can be determined when D reaches a 
predetermined limit η, and we suggest that 65%≤η 
≤70%. Moreover, when the data set Xk contains no 
abnormal sample data and the PCs have insignificant 
mean or variance change, they share similar varia-
tion along all PCs. 

3.2  Process monitoring procedures 

Given that the CPCs are determined by comput-
ing the correlation and covariance matrices of the 
score matrix of the current data set Xk, their adapta-
tion suffer from low computational efficiency. Wang 
et al. (2005) proposed a fast-moving-window algo-
rithm for adaptive process monitoring, which incor-
porates the adaptation technique in a recursive PCA 
algorithm (Li et al., 2000) and performs through a 
two-step procedure to calculate the correlative ma-
trix efficiently. In this study, the same idea is intro-
duced to update the correlation and covariance ma-
trices of the current score matrix to increase compu-
tational efficiency. The full details of the calculation 
are described in the Appendix. 

A real-time monitoring scheme can be imple-
mented efficiently using the presented two-step algo-
rithms. First, a sufficient large number of normal 
observations are necessary to obtain the PCA model. 
When the initial size of online observations reaches 
the prescribed window length, they are projected 
onto the loading matrix P to obtain the score matrix. 
ΔT(i) is then calculated for each PC, and the CPCs 
for the process monitoring are determined using the 
index D. Subsequently, the time-window is moved to 
the next step when a new sample is measured. The 
fast algorithm is applied to update the covariance 
and correlative matrices efficiently, and the CPCs for 
the next data matrix are determined. The consistent 
threshold for monitoring statistics is prescribed ac-
cording to the number of CPCs for each time-
window. The monitoring statistic used is Hotelling’s 
T2 statistic. Given that all the PCs of the significant 
variation are incorporated into T2 and the remainders 
have little deviation from the normal data, calculat-
ing the SPE statistic is unnecessary.  

The complete monitoring procedures of the im-
proved PCA with CPCs are summarized as follows. 

1. Off-line modeling: 
(1) Sufficient data are acquired when a process 

is operated under a normal condition. Each column 
(variables) of the data matrix is normalized, i.e., 
scaled to zero mean and unit variance. 

(2) PCA is applied to the data matrix, and the 
loading matrix Púm×m and the eigenvalue matrix 
D=diag{λ1, λ2, …, λm} are obtained. 

(3) The size of time-window, d, and the thresh-
old of cumulative percent variation, η are determined. 

2. Online monitoring: 
When the online observations become available, 

the monitoring task is initiated after the number of 
the new process data reaches d. The CPCs for the 
first time-window are used for monitoring all of the 
d observations, whereas the CPCs for the subsequent 
data matrix are only used for monitoring the new 
added data point. 

(1) For online monitoring, the data matrix Xk 
representing the current operating conditions is up-
dated by moving the time-window step by step and 
is scaled based on the mean and the variance ob-
tained at Step 1. Subsequently, they are projected 
onto P to obtain the score matrix Tk, and ΔT(i) is 
computed for each PC using Eq. (14).  
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(2) The values in the vector ΔT  are ranked, 
and the first l PCs that capture the dominant vari-
ability of the current score matrix Tk  are set as the 
CPCs according to Eq. (17). The Hotelling’s T2 
statistic of the CPCs is computed. The control limit 
is then calculated according to the number of CPCs 
dynamically. 

(3) If the T2 statistic is under the control limit, 
the process is judged as normal and the time-window 
is moved to the next step. Conversely, if the T2 sta-
tistic is outside the control limit, the new added data 
point is considered as abnormal, and the fault diag-
nosis method is used to analyze the fault roots. 

 
 

4  Case study 

4.1  Continuous stirred tank reactor (CSTR) 
simulation 

In this section, a continuous stirred tank reactor 
(CSTR) is simulated. The process model is similar to 
that provided by Yoon and MacGregor (2001). A 
diagram of the process is shown in Fig. 3. The simu-
lation is performed according to the following model: 
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where k0, E, and ΔHrxn are the pre-exponential con-
stant, activation energy, and enthalpy of the reaction, 
R is the gas constant, cp and ρ are the heat capacity 
and density of the fluid in the reactor. The process is 
monitored to measure the cooling water temperature 
TC, inlet temperature T0, inlet concentrations CAA 
and CAS, solvent flows FS, cooling water flow FC, 
outlet concentration CA, temperature T, and reactant 
flow FA. The detailed model information and simula-
tion parameters are provided in (Alcala and Qin, 
2010). The measurements are sampled every minute, 
and the 1000 samples taken under normal conditions 
are used as the training data set. For fault cases, the 
test data sets also comprise 1000 samples, with the 
fault introduced after the 200th sample. 

 
 

 
 
 
 
 
 
 

 
 

Two different faults are studied in this work. 
The first simulated fault, Fault 1, is a bias in the 
sensor of the output temperature T, with a bias mag-
nitude of 0.05. Given that T is a controlled variable, 
the effect of the fault will be removed by the  
proportional-integral controller, and its effect will 
propagate to other variables. This fault is considered 
as a complex fault because it affects several vari-
ables. The monitoring results of the conventional 
PCA-based method and the proposed method are 
illustrated in Figs. 4a and 4b, respectively. The re-
tained number of PCs for PCA is determined using 
the CPV criterion, with the cutoff value of 85%. The 
superiority of the proposed method for fault detec-
tion can be easily observed. Fault 2 is a drift in the 

sensor of CAA and its magnitude is AAd

d

C

t
  

0.2 kmol/(m3·min); thus, this is a simple fault. The 
conventional PCA-based method detects this fault 
with a delay of 190 min, as shown in Fig. 5. The im-
proved PCA-based method can successfully and 
consistently detect the fault. 

4.2  Tennessee Eastman (TE) process 

TE process is a well-known benchmark for test-
ing the performance of various fault detection meth-
ods (Lyman and Georgakist, 1995; Yu and Qin, 2008; 
Liu et al., 2010; Chen and Yan, 2012; Stubbs et al., 
2012). A flowchart of the TE process is shown sche-
matically in Fig. 6. There are five major unit opera-
tions in the process: a reactor, a condenser, a recycle 
compressor, a separator, and a stripper. Four reactants 
A, C, D, E, and inert B are fed to the reactor where the 
products G and H are formed and a by-product F is 
also produced. The process has 22 continuous process 
measurements, 12 manipulated variables, and 19 
composition measurements sampled less frequently. 

Cooling 
 water flow

Solvent 
flow 

Pure A
solute flow

Fig. 3  Diagram of the CSTR process 
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Fig. 4  Monitoring results of Fault 1 of the conventional PCA (a) and improved PCA (b) 
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Details on the process description are well explained 
in (Chiang et al., 2001). A total of 33 variables are 
used for monitoring in this study as shown in Table 1. 
All composition measurements are excluded since 
they are hard to measure online in practice.  

The detailed description of the programmed 
faults (Faults 1–21) is listed in Table 2. The data are 
generated at a sampling interval of 3 min and can be 
downloaded from http://brahms.scs.uiuc.edu. For 
comparison, 960 normal samples are used to build 
the model. Another 500 normal samples are used for 
the validation. Each fault data set contains 960 sam-
ples, with the fault introduced after sample 160.  

The proposed method is applied to the TE proc-
ess simulation data and its fault detection perform-
ance is compared with conventional PCA monitoring 
strategy that utilizes the subjective method (i.e., CPV, 
cross-validation) to select PCs. A total of 18 faults 
have been tested in the TE process. Faults 3, 9, and 
15 have been suggested to be difficult to detect 
(Russell et al., 2000; Lee et al., 2006; Wang and He, 
2010), which is also confirmed in this study.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Therefore, they are not considered in this study. 
The normal training data set has 960 observations, 
which is used for PCA modeling. The loading matrix 
Púm×m is obtained. The dimension of the reduced 
subspace is determined using the CPV method, in 
which the CPV value is larger than 85% when the 
number of PCs is 14. 

In this study, the time-window length is d=50. 
The discussion of different window length is illus-
trated later. The limit of the D index has been se-
lected as 70%, that is, the CPCs can capture 70% of 
all the variability of the current score matrix. For the 
normal data set, the monitoring charts for the two 
methods are shown in Fig. 7. The false alarm rate 
(Type I error) of normal data are almost at the same 
degree. The fault detection results of all the 18 faults 
are listed in Table 3. The conventional PCA-based 
methods have difficulties in consistently detecting 
the five faults (Faults 5, 10, 16, 19, and 20), with 

Table 2  Process faults for the TE process 

Fault Description Type 
1 A/C feed ratio, B composition  

constant (stream 4) 
Step 

2 B composition, A/C ratio  
constant (stream 4) 

Step 

3 D feed temperature (stream 2) Step 
4 Reactor cooling water inlet  

temperature 
Step 

5 Condenser cooling water inlet  
temperature 

Step 

6 A feed loss (stream 1) Step 
7 C header pressure loss-reduced  

availability (stream 4) 
Step 

8 A, B, C feed compositions (stream 4) Random 
variation 

9 D feed temperature (stream 2) Random 
variation 

10 C feed temperature (stream 4) Random 
variation 

11 Reactor cooling water inlet  
temperature 

Random 
variation 

12 Condenser cooling water inlet  
temperature 

Random 
variation 

13 Reaction kinetics Slow drift 
14 Reactor cooling water valve Sticking 
15 Condenser cooling water valve Sticking 
16 Unknown Unknown 
17 Unknown Unknown 
18 Unknown Unknown 
19 Unknown Unknown 
20 Unknown Unknown 
21 The valve for stream 4 was fixed at  

the steady-state position 
Constant 
position 

Table 1  Monitoring variables in the TE process 

No. 
Process 

measurement 
No. 

Process 
measurement 

1 A feed 18 Stripper temperature 
2 D feed 19 Stripper steam flow 
3 E feed 20 Compressor work 
4 Total feed 21 Reactor cooling water 

outlet temperature 
5 Recycle flow 22 Separator cooling water 

outlet temperature 
6 Reactor feed rate 23 D feed flow valve 
7 Reactor pressure 24 E feed flow valve 
8 Reactor level 25 A feed flow valve 
9 Reactor temperature 26 Total feed flow valve 
10 Purge rate 27 Compressor recycle 

valve 
11 Product separator  

temperature 
28 Purge valve 

12 Product separator  
level 

29 Separator pot liquid 
flow valve 

13 Product separator  
pressure 

30 Stripper liquid product 
flow valve 

14 Product separator  
underflow 

31 Stripper steam valve 

15 Stripper level 32 Reactor cooling water 
flow 

16 Stripper pressure 33 Condenser cooling  
water flow 

17 Stripper underflow   
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detection rates of less than 40% in most cases. By 
contrast, the improved PCA can detect almost all of 
the 18 faults consistently, with detection rates higher 
than 80%. The detail fault detection results of Faults 
10, 16, and 19 are shown in Figs. 8 to 10, respec-
tively. The results clearly show that the fault detec-
tion performance has been greatly improved by the 
proposed monitoring scheme. 
 
 
5  Discussion 

5.1  Advantages of utilizing CPCs 

Based on the case study described earlier, sev-
eral points are discussed in this section. First, the 
feature of the CPCs for statistic T2 is considered. For 
the PCA-based monitoring method, the number of 
PCs greatly affects the ability of the fault detection 
(Tamura and Tsujita, 2007). In addition, a publica-
tion of PCA applications indicates that including  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Fault detection rate comparison of conventional 
PCA and improved PCA (%) 

Fault detection rate 

Conventional PCA Fault 

T2 Q 
Improved 

PCA 
1 
2 
4 
5 
6 
7 
8 
10 
11 
12 
13 
14 
16 
17 
18 
19 
20 
21 

99.1 
98.4 
20.9 
24.2 
99.1 
100 
96.9 
29.9 
40.6 
98.4 
93.6 
99.2 
13.5 
76.4 
89.3 
11.0 
31.8 
39.3 

99.9 
95.7 
100 
20.9 
100 
100 
83.6 
25.8 
74.9 
89.5 
95.2 
100 
27.4 
95.4 
90.1 
12.5 
49.8 
47.3 

99.9 
98.5 
100 
100 
100 
100 
97.5 
91.0 
84.5 
99.8 
95.3 
99.9 
88.9 
97.4 
89.8 
89.0 
81.4 
60.8 

Fig. 8  Monitoring results of Fault 10 
(a) Conventional PCA; (b) Improved PCA 
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Fig. 7  Monitoring results of normal data 
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components with smaller eigenvalues in the PCA 
model and excluding those with larger eigenvalues 
can improve the prediction quality (Togkalidou et al., 
2001). One advantage of CPCs, as mentioned earlier, 
is choosing the PCs with significant variation from 
the reference PCs and excluding those PCs with 
small variation. This approach focuses on the varia-
tion rather than on the variance, thereby leading to 
better monitoring performance. This advantage is well 
illustrated by a specific example discussed below. 

For example, the detection rate of Fault 4 for 
the improved PCA is higher than that of the conven-
tional PCA. Given that CPCs include the 16th, 21st, 
and 22nd PCs after the fault occurred, they are ig-
nored by the CPV criterion because they maintain 
smaller variance compared with the first 14 PCs. 
Meanwhile, the 4th, 5th, 6th, and other PCs are 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

excluded in CPCs because they present small devia-
tions after the fault occurs. The plots of the above 
PCs are illustrated in Fig. 11. Retaining PCs with a 
larger eigenvalue in the PCA model may present a 
small variability of the abnormal data. As a result, 
including PCs with smaller eigenvalues for the fault 
detection can improve the monitoring performance 
because they show much more significant variation 
than the other PCs, thereby directly improving the 
monitoring performance. 

Second, the false alarm rate of the proposed 
method is considered. False alarms are expected to 
increase when numerous PCs are retained because 
the model may include noise, which yields a large 
prediction error. Another 500 normal observations 
are used for analyzing the occurrence frequency of 
Type I error. The result is shown in Fig. 7. The  

Fig. 9  Monitoring results of Fault 16 of the conventional PCA (a) and improved PCA (b) 
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Fig. 10  Monitoring results of Fault 19 of the conventional PCA (a) and improved PCA (b) 
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frequency of Type I error is about 0.4%, almost the 
same with the conventional PCA. In practice, this 
significantly low false alarm rates can be neglected. 
Given the similar variability for all PCs, any PC can 
be selected as CPC. When we check the number of 
CPCs, we find that it is less than 14 and lessens 
when fault occurs. Given that the number of selected 
PCs is less than that of the CPV criterion, the false 
alarm rate can be confirmed. 

5.2  Detection delay of improved PCA with CPCs 

The size of the time-window is a predetermined 

parameter in the proposed method, which probably 
results in large delay in the fault detection. The de-
tection delay of the proposed method is discussed in 
this subsection. Table 4 shows the detection delay 
result of the 18 faults. Considering an out-of-control 
value of a statistic can trigger a fault alarm, the fault 
is indicated only when six consecutive statistic val-
ues exceed the control limit to decrease the rate of 
false alarms (Detroja et al., 2007). The window 
lengths of d=50, 100, and 150 have little impact on 
the fault detection delay, and the time delay is not 
greater than that of the conventional PCA with CPV 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4  Fault detection delay comparison of the conven-
tional PCA and improve PCA 

Fault detection delay 

Conventional PCA Improved PCA Fault

T2 Q d=50 d=100 d=150

1 

2 

4 

5 

6 

7 

8 

10

11

12

13

14

16

17

18

19

20

21

7 

14 

0 

0 

7 

0 

25 

97 

5 
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48 

0 

310 

28 

87 

10 

85 

476 
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34 
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19 
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criterion, and sometimes even better. The index ΔT(i) 
in Eq. (14) is composed of the correlation and co-
variance matrices of the current score matrix, which 
incorporates the 1-norm of the ith column in correla-
tion and covariance matrices. Although the newly 
added data point is abnormal even if the rest of the 
data matrix is normal, the degree that the ith element 
of its score vector changes can be captured by  
ΔT(i) immediately. Therefore, the detection delay  
is unlikely to be affected by the size of the time-
window. 

 
 

6  Conclusions 
 
In this work, a novel objective method for de-

termining PCs used for fault detection is developed. 
Instead of initially selecting several PCs subjectively, 
the PCs that capture the dominant variability of the 
current time-window are determined online. There-
fore, the selected PCs, termed as CPCs, can capture 
the dominant process variation dynamically and ob-
jectively. Considering the fault detection perform-
ance, the novel CPC-based method can be more sen-
sitive to faults. 

The proposed method has been applied in the 
TE process and compared with the conventional 
PCA to examine its performance. The case study has 
demonstrated that the improved PCA with CPC-
based method detects various faults more efficiently 
than the conventional PCA method. In particular, the 
detection delay is superior to the conventional PCA, 
even with a time-window incorporated into the 
monitoring scheme. However, the proposed method 
focuses on the selection of PCs, and the other proce-
dures are similar to the conventional PCA. Therefore, 
the proposed monitoring procedures suffer from the 
defects of the conventional PCA and need further 
investigation. 
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Appendix:  Fast algorithm for updating cor-
relation matrix and covariance matrix 

 
Let the kth data matrix projected onto P with 

window length d be Rk+1=[tk−d+1, tk−d+2, …, tk]
T, simi-

larly, the next data matrix projected onto P  would 
be Tk+1=[tk−d+2, tk−d+3, …, tk+1]

T. A two-step adapta-
tion, as shown in Fig. A1, is used to recursively up-
date covariance matrix S and correlative matrix R.  

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
Firstly, with eliminating the oldest sample from 

Tk, the covariance matrix and correlation matrix asso-

ciated with T  can be computed recursively. Eqs. (A1) 
and (A2) describe the variable mean. Eqs. (A3) and 
(A4) describe the variable variance, while the scaling 
of the data point is defined in Eq. (A5). 
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Fig. A1  Two-step adaptation to construct new data 
window 

Old window
kT

T
1 2[ , , , ]k d k d kt t t    

T
T

2 3[ , , , ]k d k d kt t t    

1kT

T
2 3 1[ , , , ]k d k d kt t t    

Intermediate 
window 

New window

Matrix I 

Matrix II

Matrix III

, , ,k k k kb S R

, , ,  b S R

1 1 1 1, , ,k k k k   b S R



Tong et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2013 14(7):520-534 
 

534 

0 1
1 1( ).k d k k d k


    t Σ t b                                (A5) 

 
A new matrix R* is now introduced to simplify 

the formation of the equations: 
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R* is further derived into: 
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Then the correlative matrix of Matrix II is expressed 
as 
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Secondly, the next window of selected data 

(Matrix III) produced by adding the new data point 
tk+1. With , , , and ,  b Σ S R  Sk+1 and Rk+1 associated 

with Tk+1 are obtained similar to those mentioned 
above, i.e.,  
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where the updated mean vector and the change in the 
mean vectors are computed from Eqs. (A8) and (A9), 
and the adaptation of the standard deviations follows 
from Eqs. (A11) and (A12). The scaling of the new 
projected data and the updating of covariance and 
correlation matrix are described in Eqs. (A13), 
(A10), and (A14), respectively. The adaptation of 
the standard deviations follows from substituting 
Eqs. (A2) into (A11) to yield: 
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In fact, the above two steps can be combined to pro-
vide a routine that derives Matrix III directly from 
Matrix I. Rk+1 is expressed as 
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Because of the special formulation of covariance 
matrix, it is easier to update the covariance matrix. 
The updated Sk+1 is 
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where b0 is the mean vector of T0 as described above.  

 
 


