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Abstract:    The principle of virtual displacements (PVDs) extended to elasto-thermo-electric problems includes virtual internal 
elastic, thermal and electric works. The governing equations have displacement vector, temperature and electric potential as 
primary variables of the problem, and the elasto-thermal, elasto-electric and pure elastic problems are obtained as particular cases 
by deleting the appropriate contributions in the general elasto-thermo-electric variational statement. The most sensitive issue is 
given by thermal coupling because the thermo-elastic and thermo-electric effects change depending on the type of load and 
analysis considered (mechanical load, temperature or electric potential imposed and free vibration analysis). This feature means 
that the form of the virtual internal thermal work in such variational statements changes depending on the analysis performed and 
the load applied. Results about multilayered plates and shells suggest the appropriate extension of the variational statement for 
each analysis, and they give an exhaustive explanation for several forms of the PVD proposed.  
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1  Introduction 
 
The fully coupled thermo-electro-mechanical 

models allow static and free vibration analysis of 
multilayered plates and shells subjected to different 
loadings such as mechanical pressure, electric poten-
tial and temperature, and they evaluate the weight and 
importance of the different coupling effects between 
the three physical fields involved (Brischetto and 
Carrera, 2012a). Aşkar Altay and Dökmeci (1996a; 
1996b) and Cannarozzi and Ubertini (2001) gave the 
constitutive equations for thermopiezoelectric and 
thermoelastic mediums and the relative extensions of 
the principle of virtual displacements (PVDs). Chen 
et al. (2004) obtained the 3D equations of trans-
versely isotropic magneto-electro-thermo-elasticity; 
the temperature was not fully coupled in such equa-

tions and it has separately been obtained by solving 
the steady-state Fourier heat conduction equation. 
Pérez-Fernández et al. (2009) proposed 16 different 
types of constitutive thermo-magneto-electro-elastic 
equations obtained from the analytical formulation of 
solids thermodynamics. Liu and Zhang (2007) ob-
tained the generalized piezothermoelastic Hamilton 
variational formulation and corresponding non- 
homogeneous Hamilton canonical equation. The 
main limitation of some of these interesting and 
comprehensive works is the absence of assessments 
and benchmarks for the analysis of multilayered 
structures. Our previous studies have tried to com-
pensate these absences, e.g., Brischetto and Carrera 
(2010a; 2010b) studied the static fully coupled 
thermo-mechanical analysis of multilayered plates 
and shells, Brischetto and Carrera (2011; 2012b) re-
vealed the thermo-mechanical coupling effects in the 
free vibration analysis of multilayered plates and 
shells, and Brischetto and Carrera (2012a) discussed 
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the elasto-thermo-electric analysis of multilayered 
structures. These works proposed opportune exten-
sions of the PVD to elasto-thermo-electric and 
thermo-elastic analyses of multilayered structures; 
such variational statements gave fully coupled models 
that allow the static and free vibration analysis for 
different load applications (mechanical pressure and 
temperature or electric potential imposed), and the 
elasto-electric, elasto-thermal and electro-thermal 
coupling effects were evaluated. 

The most complicated effect to be investigated is 
the thermal one because it changes if a typical thermal 
stress analysis is performed or if thermo-mechanical/ 
thermo-electric coupling effects are evaluated when 
external mechanical/electrical loads are applied or a 
free vibration analysis is performed. In our previous 
studies (Brischetto and Carrera, 2010a; 2010b; 2011; 
2012a; 2012b) the inclusion of virtual internal ther-
mal work in multifield variational statements has not 
been explicitly discussed; different forms of such a 
contribution have been considered, without any 
clarification, depending on the load case and analysis 
performed. The present work aims to fill this gap. 
Several examples have been introduced in order to 
discuss the correct form of the virtual internal thermal 
work and results for wrong extensions of variational 
statements have also been proposed to evaluate these 
last errors. The thermo-mechanical effects in static 
and free vibration analysis are usually very small (as 
suggested by Nowinski (1978) and Carrera et al. 
(2007)), but their evaluation is useful for a better 
understanding of the multifield analysis; on the con-
trary, the thermal effect is very important in the 
typical thermal stress analysis, and the fully coupled 
model allows such an analysis to be performed 
without the use of the Fourier heat conduction  
equation. 

In the static analysis of multilayered structures 
proposed by Brischetto and Carrera (2010a; 2010b; 
2012a) three different loading conditions are possible: 
mechanical pressure applied at the top or at the bot-
tom of the structure, temperature imposed at the ex-
ternal surfaces and electric potential imposed at the 
external surfaces. In the free vibration analysis pro-
posed by Brischetto and Carrera (2011; 2012b) for 
plate and shell geometries, the thermo-mechanical 
effects are evaluated in terms of frequency values and 
vibration modes. In the case of mechanical pressure, 

imposed electric potential or free vibration analysis, 
the fully coupled elasto-thermo-electric models allow 
the multifield coupling effects to be evaluated; the 
spatial temperature gradient does not exist in the 
virtual internal thermal work included in the PVD. 
For the typical thermal stress analysis (when the 
temperature is imposed at the external surfaces in 
steady state conditions), the virtual variation of tem-
perature cannot be considered in the virtual internal 
thermal work included in the PVD. The present paper 
shows some examples to confirm these correct ex-
tensions of the variational statements, and it also 
gives new examples to show the effects of a wrong 
extension of the multilfield variational statements.  

This work clarifies the PVD extensions to mul-
tifield analysis via some numerical results that dem-
onstrate the correct and incorrect extensions of the 
variational statements for the cases of free vibration 
analysis of multilayered plates/shells and smart 
structures embedding piezoelectric layers, mechani-
cal loads applied at the top of multilayered plates/ 
shells and smart structures, imposed temperature at 
the external surfaces of multilayered plates/shells and 
smart structures, and imposed electric potential at the 
external surfaces of multilayered piezoelectric smart 
structures. 

 
 

2  2D model 
 
Multilayered plates and shells proposed in this 

study are seen as 2D structures because they are 3D 
bodies bounded by two closely spaced surfaces (these 
surfaces are curved in the shell geometry), where one 
dimension (the distance between the two surfaces) is 
small in comparison with the other two dimensions in 
the plane directions. A refined 2D model is used for 
the three main primary variables in the case of fully 
coupled elasto-thermo-electric models; they are the 
displacement vector, the over-temperature and the 
electric potential. Such variables are considered in 
layer-wise form (LW) with fourth order of expansion 
in each layer. A LW model has an expansion which 
depends on the kth-layer and the thickness functions 
Fτ are a combination of Legendre polynomials. The 
proposed LW model is based on the unified formula-
tion by Carrera (2002) and Brischetto and Carrera 
(2012a). Unified formulation allows the unknown 
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variables to be expressed as a set of thickness func-
tions that only depend on the thickness coordinate z 
and the correspondent variable that depends on the 
curvilinear coordinates α and β (in the case of shell 
geometry) or on the rectilinear coordinates x and y (in 
the case of plate geometry).  

The displacement vector u has components u, v 
and w in the α (or x), β (or y) and z directions, re-
spectively. For a generic k layer, its expansion is 
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The thickness functions F0–F4 are a combination 

of Legendre polynomials. The electric potential  and 
the over-temperature θ (temperature T1 referred to the 
reference room temperature T0) are scalar variables 
and they are modelled in LW form in each k layer with 
fourth order of expansion: 
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The k layer index goes from 1 to the total number 

of layers NL. The proposed model gives a quasi-3D 
description of the elasto-thermo-electric problems of 
multilayered plates and shells as already demon-
strated in the author’s previous works (Brischetto and 
Carrera, 2010a; 2010b; 2011; 2012a; 2012b). 

 
 

3  Constitutive equations 
 
Constitutive equations characterize the individ-

ual material and its reaction to applied multifield 
loads; their thermo-electro-mechanical form has al-
ready been obtained by Brischetto and Carrera 
(2012a), where thermodynamical principles and 
Maxwell relations have been used to determine the 
general coupling between the mechanical, electrical 

and thermal fields. They are given for a generic k 
layer in the problem reference system (α, β, z) or (x, y, 
z) for multilayered shells or plates, respectively: 

 
T ,k k k k k k k  Q e E                  (4) 
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where σk and εk have 6×1 dimension and contain the 
stress and strain components; Ek and Dk have 3×1 
dimension containing the electric field and electric 
displacement components; θk and ηk are scalar vari-
ables and they are the over-temperature and entropy; 
hk and Θk have 3×1 dimension and include the heat 
flux and spatial temperature gradient components. 
The matrix Qk has 6×6 dimension and contains the 
elastic coefficients; the matrix ek has 3×6 dimension 
including the piezoelectric coefficients; the vector λk 
has 6×1 dimension that includes thermo- 
mechanical coupling coefficients; pk has 3×1 dimen-
sion and contains the pyroelectric coefficients; the 
3×3 μk and κk matrices contain the permittivity and 
conductivity coefficients, respectively. χk=(ρCv/T0)

k is 
a scalar variable, where ρ is the mass density, and Cv 
is the specific heat per unit mass.   

The displacement vector uk is introduced in 
Eqs. (4)–(6) by means of the geometrical relations 
that link the strains with the displacements; the 
over-temperature θk is also considered in Eq. (7) by 
means of geometrical relations that link the spatial 
temperature gradient with the over-temperature; the 
electric potential k is introduced in Eqs. (4)–(6) by 
means of the geometrical relations that link the elec-
tric field components with the electric potential. De-
tails about multifield geometrical relations for plates 
and shells can be found in (Brischetto and Carrera, 
2010a; 2010b; 2011; 2012a; 2012b).  

 

 

4  Variational statements 
 

The virtual internal electric and thermal works 
are introduced into the classical PVD in the case of 
full coupling between the mechanical, electric and 
thermal fields. This variational statement is 
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where the total volume V is considered as a summation 
on the number of layers NL of the volume Vk for each k 
layer, and δLe and δLin are the external and inertial 
virtual works, respectively. The use of the variational 
statement in Eq. (8) combined with the constitutive 
relations in Eqs. (4)–(7) gives a full coupling in terms 
of elastic, thermal and electric variables. The elastic, 
thermo-elastic and electro-elastic cases can be obtained 
as particular cases of the PVD in Eq. (8).  

The pure mechanical PVD is obtained by dis-
carding the virtual internal electric and thermal works 
in Eq. (8); this form is indicated as PVD-u: 

 
T
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It is used for both free vibration and static 

analysis of multilayered structures.  
The thermo-elastic PVD is obtained by deleting 

the virtual internal electric work in Eq. (8). In the case 
of free vibration analysis or mechanical load applied 
to the structure, only the term related to the virtual 
over-temperature variation remains because a spatial 
temperature gradient does not exist for these cases 
(Brischetto and Carrera, 2010a; 2010b; 2011; 2012b); 
this form is indicated as PVD-uθ-1: 
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The term related to the virtual variation of the 

spatial temperature gradient remains in the case of 
typical thermal stress analysis (over-temperature 
imposed at the external surfaces). The term with the 
virtual variation of over-temperature is discarded in 
this case because the over-temperature is imposed at 
the external surfaces (Brischetto and Carrera, 2010a; 
2010b; 2011; 2012b); this form is indicated as 
PVD-uθ-2: 
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We also consider the form called PVD-uθ-3 that 

embeds both the terms of the virtual internal thermal 

work to evaluate their effects and errors: 
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The electro-elastic PVD is obtained by deleting 
the virtual internal thermal work in Eq. (8). This form, 
called PVD-u, is valid for free vibration analysis, 
imposed electric potential at the external surfaces of 
the structure and applied mechanical load (Brischetto 
and Carrera, 2012a): 
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The elasto-thermal-electric PVD in Eq. (8), here 
called PVD-uθ-3, is used to evaluate the effect of 
both thermal terms in the virtual internal work used 
for different cases. If we delete the term related to the 
virtual variation of the spatial temperature gradient, 
the variational statement can be used for the free vi-
bration analysis of multilayered piezoelectric struc-
tures or for the static analysis of such structures when 
they are subjected to the mechanical load or to an 
imposed electric potential at the external surfaces; 
this form is here called PVD-uθ-1: 
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The last form is the PVD-uθ-2 that can be used 
for the thermal stress analysis of multilayered piezo-
electric plates and shells; in this case the work related 
to the virtual variation of over-temperature is not 
included because the temperature is imposed at the 
external surfaces: 

 
T T T
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All the forms of PVD proposed in this section 

will be used in the results section to demonstrate their 
validity or limits/errors in the analysis of the bench-
marks proposed.  

 
 

5  Governing equations 
 

The governing equations are obtained via the 
substitution of the constitutive equations and the 2D 
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model in the appropriate variational statements. In 
this work only closed form solutions are considered 
that have been obtained via integration by parts and 
by supposing simply supported structures and 
harmonic forms for both variables and loads. The 
general form of the elasto-thermo-electric governing 
equations is 
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where pu, p and pθ are the variationally consistent 
mechanical, electric and thermal loads, respectively. 

uu M u  is the inertial load given by the second 

temporal derivative of the displacement .u  The 
electric potential and the over-temperature imposed at 
the external surfaces are directly introduced in the 
vectors  and θ, respectively, and the relative 
variationally consistent loads are not used.  

In the case of the elasto-thermo-electric prob-
lem, the governing equations are those given in 
Eq. (16) and the meaning of each matrix K depends 
on the variational statement employed (PVD-uθ-1, 
PVD-uθ-2 or PVD-uθ-3). In the case of the 
thermo-mechanical problem, the governing equations 
are obtained from Eq. (16) by simply deleting the 
second equation and the second terms in the first and 
third equations; the meaning of the matrices K de-
pends on the PVD-uθ-1, PVD-uθ-2 or PVD-uθ-3 
variational statements employed. The electro- 
mechanical governing equations are obtained from 
Eq. (16) by deleting the third line and the third col-
umn. Finally, in the case of pure elastic problem, the 
second and third lines and the second and third col-
umns are removed in Eq. (16).  

 
 

6  Results 
 

Seven different benchmarks are proposed here to 
discuss the variational statements introduced in 
Section 4. The first three problems consider a 
two-layered simply supported square plate with an 
aluminum alloy (Al2024) layer at the bottom and a 
titanium alloy (Ti22) layer at the top. The two layers 
have the same thickness, and the in-plane dimensions 

are a=b=10 with thickness ratio a/h=10. The last four 
problems consider a two-layered cylindrical shell 
panel that is simply supported. The bottom layer is in 
composite material with a fiber orientation equal to 0° 
and the top one is in piezoelectric material; both lay-
ers have the same thickness, the radii of curvature are 
Rα=10 and Rβ=∞, the in-plane dimensions are 
a=(π/3)Rα, and b=1 with thickness ratio Rα/h=100, 
and total thickness h=0.1. The material properties of 
the Al2024 are Young’s modulus E=73 GPa, 
Poisson’s ratio ν=0.3, and mass density ρ=2800 kg/m3. 
The thermal properties are the specific heat per unit 
mass Cv=897 J/(kg·K), the thermal expansion 
coefficient α=25×10−6 K−1, and the conductivity 
coefficient κ=130 W/(m·K). The material properties 
of the Ti22 are E=110 GPa, ν=0.32, and ρ=4420 
kg/m3, its thermal properties are Cv=560 J/(kg·K), 
α=8.6×10−6 K−1, and κ=21.9 W/(m·K). The composite 
material has Young’s modulii E1=144.23 GPa and 
E2=E3=9.65 GPa, shear modulii G12=G13=4.14 GPa 
and G23=3.45 GPa, Poisson’s ratios ν12=ν13=ν23=0.3, 
mass density ρ=1389.23 kg/m3, specific heat per unit 
mass Cv=1409 J/(kg·K), coefficients of thermal ex-
pansion α11=1.1×10−6 K−1 and α22=α33=25.2×10−6 K−1, 
thermal conductivity coefficients 11=4.48 W/(m·K) 
and 22=33=3.21 W/(m·K), and dielectric constants 
11=3.098966×10−11 F/m and 22=33=2.6562563 
×10−11 F/m (Oh et al., 2007). The piezoelectric layer 
has Young’s modulus E=63 GPa, Poisson’s ratio 
ν=0.28, mass density ρ=7600 kg/m3, specific heat per 
unit mass Cv=420 J/(kg·K), coefficient of thermal 
expansion α=0.9×10−6 K−1, thermal conductivity 
coefficient κ=2.1 W/(m·K), pyroelectric constant 
p3=20×10−6 C/(m2·K), piezoelectric coefficients 
e31=e32=−5.20 C/m2, e33=15.08 C/m2 and e15=e24= 
12.72 C/m2, and dielectric constants μ11=μ22= 
15.3×10−9 F/m and μ33=15.0×10−9 F/m.  

Problem 1 considers the free vibration analysis 
of the two-layered plate (imposed wave numbers 
m=n=1 in in-plane directions) with free conditions for 
the over-temperature at the external surfaces. In Table 
1 the fundamental frequency is given (unit: Hz); the 
pure mechanical frequency is smaller than the 
thermo-mechanical one because the thermal effect 
gives a sort of increment in the rigidity. The 
PVD-uθ-2 includes the thermal work made by the 
spatial temperature gradient and it does not have ef-
fects on the result; this extension of PVD is not  
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correct for this analysis (see also the zero over-  
temperature profile in Fig. 1). When the contribution 
given by the over-temperature is also included (PVD- 
uθ-3), a thermal effect is shown in Table 1. However, 
the correct result is that obtained with the PVD-uθ-1, 
the vibration modes in terms of over-temperature and 
transverse displacement (Fig. 1) demonstrate that the 
inclusion of the thermal work made by the spatial 
temperature gradient (PVD-uθ-3) partially invali-
dates the vibration mode evaluation in terms of over- 
temperature. The correct vibration mode evaluation 
is given by PVD-uθ-1, as shown in the over- 
temperature profile in Fig. 1. However, the thermal 
effect is very small and it can always be neglected in 
such cases. 

Problem 2 gives the static analysis of the 
two-layered plate (transverse pressure applied at the 
top with amplitude Pz=−2×105 Pa and wave numbers 
m=n=1, and free conditions for the over-temperature 
at the external surfaces). Table 2 gives the transverse 
displacement (unit: mm) at the middle of the plate; the 
displacement obtained with the pure mechanical 
model is bigger than that obtained with the correct 
introduction of the thermal effect (PVD-uθ-1), where 
the thermal coupling converts a small part of the en-
ergy given by the mechanical load in thermal energy 
(see the over-temperature profile in Fig. 2). The 
PVD-uθ-2 includes the thermal work in terms of 
spatial temperature gradient, and it does not have 
effects on the results (see zero over-temperature pro-
file in Fig. 2 and transverse displacement in Table 2 
and Fig. 2). The PVD-uθ-3 considers both over- 
temperature and spatial temperature gradient terms in 
the internal thermal work; the result in terms of 
transverse displacement in Table 2 seems quite good, 
but the over-temperature profile generated by the 
bending of the plate in Fig. 2 shows some problems if 
compared with the correct profile obtained with the 
PVD-uθ-1. However, the thermal effect is very small 
and negligible for this problem. 

Problem 3 shows the thermal stress analysis of 
the two-layered plate when 1 K of over-temperature is 
imposed at the top surface and 0 K at the bottom; their 
in-plane form is bi-sinusoidal with wave numbers 
m=n=1. Table 3 gives the transverse displacement 
(unit: mm) at the middle of the plate; the reference 
solution is the PVD(θc) (already validated by the 
author in his previous works, e.g., Brischetto (2009), 

where the temperature profile is ‘a priori’ calculated 
by solving the Fourier heat conduction equation). 
Correct result is also obtained by means of the fully 
coupled thermo-mechanical model PVD-uθ-2 that 
includes the internal thermal work in term of spatial 
temperature gradient (see also Fig. 3 where it is clear 
how the temperature profile and the transverse dis-
placement through the thickness are correctly calcu-
lated with PVD-uθ-2 and PVD(θc)). The fully coupled 
thermo-mechanical models PVD-uθ-1 and PVD-uθ-3 
(that include the internal thermal work in terms of 
over-temperature) give incorrect results for displace-
ments (Table 3). This error is due to the fact that 
PVD-uθ-1 and PVD-uθ-3 are not able to calculate the 
correct temperature profile through the thickness 
(Fig. 3). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Problem 1. Fundamental frequency f in the free 
vibration analysis of the two-layered plate (unit: Hz) 

PVD-u PVD-u PVD-u PVD-u 
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Fig. 1  Problem 1. Vibration modes through the thickness 
in terms of over-temperature (a) and transverse dis-
placement (b) 

(a)

(b)

PVD-u 
PVD-uθ-1 
PVD-uθ-2 
PVD-uθ-3 

PVD-u 
PVD-uθ-1 
PVD-uθ-2 
PVD-uθ-3 

θ (K) 



Brischetto / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2013 14(5):317-326 323

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem 4 shows the free vibration analysis of 

the two-layered piezoelectric shell (imposed 
wavenumbers m=n=1) with free conditions for the 
over-temperature and zero imposed electric potential 
at the external surfaces. In Table 4 the fundamental 
frequency is given (unit: Hz); PVD-u allows the 
electric effect to be correctly evaluated with respect to 
the pure mechanical case PVD-u (it gives a bigger 
frequency). PVD-uθ-1 allows the thermal effect to be 
correctly evaluated with respect to the pure me-
chanical case PVD-u (a bigger frequency is shown but 
this effect is very small). PVD-uθ-1 allows the 
electro-thermal effects to be correctly evaluated with 
respect to the pure elastic case; it also includes the 
pyroelectric effect. PVD-uθ-2 and PVD-uθ-2 are not 
able to show the thermal effect (the frequency does 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

not change and the over-temperature profile is zero in 
Fig. 4); PVD-uθ-3 and PVD-uθ-3 seem to give quite 
good evaluations of the coupling effects in terms of 
frequency, but they are wrong if we look the vibration 
modes through the thickness of the shell in term of 
over-temperature (Fig. 4). 

Problem 5 considers the static analysis of the 
two-layered piezoelectric shell (transverse pressure 
applied at the top with amplitude Pz=1 Pa and wave 
numbers m=n=1, and free conditions for the over- 
temperature and zero imposed electric potential at the 
external surfaces). Table 5 gives the transverse dis-
placement (unit: 10−9 m) at the middle of the shell; 
PVD-u correctly evaluates the electric effects with 
respect to the pure elastic model PVD-u, PVD-uθ-1 
correctly evaluates the thermal effects with respect to 

Table 3  Problem 3. Transverse displacement w at z=0 in 
the thermal stress analysis of the two-layered plate 
(unit: mm) 

PVD(c PVD-u PVD-u PVD-u
0.0517 0.0083 0.0516 0.0178 
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Fig. 2  Problem 2. Over-temperature (a) and transverse 
displacement (b) through the thickness 
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Fig. 3  Problem 3. Over-temperature (a) and transverse 
displacement (b) through the thickness 
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Table 2  Problem 2. Transverse displacement w at z=0 
for transverse mechanical pressure applied in the static 
analysis of the two-layered plate (unit: mm) 

PVD-u PVD-u PVD-u PVD-u
−0.6605 −0.6567 −0.6605 −0.6571 
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the pure elastic model PVD-u, and PVD-uθ-1 cor-
rectly evaluates the electric-thermal effects by in-
cluding the pyroelectric coefficient. These effects 
lead to a smaller displacement because a part of the 
energy given by the mechanical load is converted in 
electric work and in thermal work (this last compo-
nent is very small). The electric effect is much more 
important than the thermal one. The other models that 
include the part of internal thermal work in terms of 
spatial temperature gradient seem correct or without 
effect (if we see the results in Table 5), but in Fig. 5 
their inadequacy is clearly shown by means of the 
over-temperature evaluation through the thickness, 
the inclusion of a spatial temperature gradient is not 
correct because it does not exist for such conditions. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Problem 6 gives the static analysis of the two- 
layered piezoelectric shell when an electric potential 
equal to 1 V is applied at the top (m=n=1), the bottom 
surface is set to zero electric potential, and the over- 
temperature is free considered at the external surfaces. 
Table 6 gives the transverse displacement (unit: 10−9 

m) at the middle of the shell; PVD-u gives correct 
results and PVD-uθ-1 correctly evaluates the thermal 
effect in such a problem (Fig. 6) even if it is not im-
portant. PVD-uθ-2 and PVD-uθ-3 seem to give the 
same results in Table 6, but it has been demonstrated in 
Fig. 6 that such models show an incorrect over- 
temperature profile through the thickness because they 
wrongly analyze the pyroelectric effect. Models with-
out electric field cannot be used to analyze the problem. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4  Problem 4. Fundamental frequency f in the free 
vibration analysis of the two-layered piezoelectric shell 
(unit: Hz) 

PVD-u PVD-u PVD-u-1 PVD-u-2 

123.91 126.70 123.92 123.91 

PVD-u-3 PVD-u-1 PVD-u-2 PVD-u-3

123.92 126.72 126.70 126.71 

Table 5  Problem 5. Transverse displacement w at z=0 for 
transverse mechanical pressure applied in the static ana-
lysis of the two-layered piezoelectric shell (unit: 10−9 m)

PVD-u PVD-u PVD-u-1 PVD-u-2

3.6580 3.5001 3.6571 3.6580 

PVD-u-3 PVD-u-1 PVD-u-2 PVD-u-3

3.6573 3.4993 3.5001 3.4994 
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Fig. 4  Problem 4. Vibration modes through the thickness 
in terms of over-temperature (a) and transverse dis-
placement (b) 
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Fig. 5  Problem 5. Over-temperature (a) and transverse 
displacement (b) through the thickness 
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Problem 7 considers the thermal stress analysis 
of the two-layered piezoelectric shell when 1 K of 
over-temperature is imposed at the top surface and  
0 K at the bottom; their in-plane form is bi-sinusoidal 
with wave numbers m=n=1, and the electric potential 
is free considered at the external surfaces. Table 7 
gives the transverse displacement (unit: 10−6 m) at the 
middle of the shell; the result obtained with PVD(θc) 
is not correct because it discards the electric effect 
which is important in such a case. PVD-u-2 and 
PVD-u-2 are the correct extensions of PVD that 
include the part of the internal thermal work related to 
the spatial temperature gradient. PVD-u-2 is very 
similar to the PVD(c) because it discards the electric  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

effect too; PVD-u-2 allows the electric field effect 
to be correctly evaluated for such a case (the electric 
effect is fundamental) and it gives the correct result 
by including the pyroelectric effect. The other models 
also have the part of thermal work related to the 
over-temperature, and this incorrect addition gives 
very big errors (see PVD-u-1, PVD-u-3, PVD- 
u-1 and PVD-u-3). The results of Table 7 are 
confirmed by the over-temperature and transverse 
displacement evaluation through the thickness of the 
shell shown in Fig. 7. PVD-u-2 gives the correct 
evaluation for each elastic, thermal and electric 
variable through the thickness (see the over- 
temperature profile in Fig. 7).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6  Problem 6. Transverse displacement w at z=0 
for electric potential imposed in the static analysis of the 
two-layered piezoelectric shell (unit: 10−9 m) 

PVD-u PVD-u- PVD-u- PVD-u-
−0.1040 −0.1040 −0.1040 −0.1040 

Table 7  Problem 7. Transverse displacement w at z=0 in
the thermal stress analysis of the two-layered piezo-
electric shell (unit: 10−6 m) 

PVD(c) PVD-u- PVD-u-2 PVD-u-3

−0.7325 0.2292 −0.7376 0.8730 

PVD-u-1 PVD-u-2 PVD-u-3  

0.2853 −0.3676 1.1058  

Fig. 6  Problem 6. Over-temperature (a) and transverse 
displacement (b) through the thickness 
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Fig. 7  Problem 7. Over-temperature (a) and transverse 
displacement (b) through the thickness 
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7  Conclusions 
 

Several forms of PVD extended to elasto-  
thermo-electric problems have been proposed here. 
The crucial point in the multifield extension of these 
variational statements is the inclusion of the internal 
thermal work that can be written in terms of the spa-
tial temperature gradient and heat flux and/or in terms 
of over-temperature and entropy; these forms are 
strongly dependent on the cases investigated. The 
results proposed here about the analysis of plates and 
shells have demonstrated that the internal thermal 
work in terms of spatial temperature gradient and heat 
flux must be used in the case of thermal stress analy-
sis; in fact it allows the use of the Fourier heat con-
duction equation to be avoided. All the other cases 
must be analyzed via the internal thermal work in 
terms of over-temperature and entropy because a 
temperature gradient is not present in these cases. 
Such an extension allows thermal effects to be 
evaluated in the cases of free vibration and static 
analysis (applied mechanical load or imposed electric 
potential). 
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