
Zhang et al. / Front Inform Technol Electron Eng 2022 23(5):661-663

Intelligent analysis for software data: research and applications

Tao ZHANG1, Xiaobing SUN2, Zibin ZHENG‡3, Ge LI4

1School of Computer Science and Engineering, Macau University of Science and Technology, Macao, China
2School of Information Engineering, Yangzhou University, Yangzhou 225127, China

3School of Software Engineering, Sun Yat-sen University, Zhuhai 519082, China
4School of Computer Science, Peking University, Beijing 100871, China

E-mail: tazhang@must.edu.mo; xbsun@yzu.edu.cn; zhzibin@mail.sysu.edu.cn; lige@pku.edu.cn

https://doi.org/10.1631/FITEE.2230000

Over the last few decades, software has been one
of the primary drivers of economic growth in the
world. Human life depends on reliable software; there‐
fore, the software production process (i.e., software
design, development, testing, and maintenance) be‐
comes one of the most important factors to ensure the
quality of software. During the production process,
large amounts of software data (e.g., source code, bug
reports, logs, and user reviews) are generated.

With the increase in the complexity of software,
how to use software data to improve the performance
and efficiency of software production has become a
challenge for software developers and researchers.
To address this challenge, researchers have used in‐
formation retrieval, data mining, and machine learn‐
ing technologies to implement a series of automated
tools to improve the efficiency of some important soft‐
ware engineering tasks, such as code search, code
summarization, severity/priority prediction, bug local‐
ization, and program repair. However, these traditional
approaches cannot deeply capture the semantic rela‐
tions of contextual information and usually ignore
the structural information of source code. Therefore,
there is still room to improve the performance of these
automated software engineering tasks.

The word “intelligent” means that we can use a
new generation of artificial intelligence (AI) technol‐
ogies (e.g., deep learning) to design a series of “smart”
automated tools to improve the effectiveness and effi‐
ciency of software engineering tasks so that develop‐
ers’ workloads are dramatically reduced.

Currently, advancement has been achieved by
a new generation of AI approaches, which are well
suited to address software engineering problems. We
show two classical and popular automated software
engineering tasks using “intelligent” analysis tech‐
nology for software data as follows:

1. Intelligent software development
Code search and summarization can help devel‐

opers develop quality software and improve efficiency.
Code search is a frequent activity in software devel‐
opment that can help developers find suitable code
snippets to complete software projects. Developers
usually input the descriptions of these snippets as
queries to achieve this purpose. However, it is ex‐
tremely challenging to design a practically useful code
search tool. The previous information retrieval based
approaches ignored the semantic relationship between
the high-level descriptions expressed by natural lan‐
guage and low-level source code, which affects the
performance of code search. Different from informa‐
tion retrieval based methods, deep learning technolo‐
gies can automatically learn feature representations
and build mapping relationships between inputs and
outputs. Therefore, the performance of code search is
improved. Code summarization is the task of auto‐
matically generating natural language descriptions of
source code, which can help developers understand
and maintain software. In traditional automated code
summarization work, researchers tend to use the sum‐
mary template to extract keywords of source code,
which ignores the grammar information of source
code. At present, neural network technology has de‐
veloped vigorously. Convolutional neural networks

‡ Corresponding author
© Zhejiang University Press 2022

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Editorial:

661



Zhang et al. / Front Inform Technol Electron Eng 2022 23(5):661-663

(CNNs), recurrent neural networks (RNNs), trans‐
formers, and other deep learning networks are applied
to the task of automated code summarization.

2. Intelligent software maintenance
Severity/Priority prediction can automatically re‑

commend appropriate labels to help developers reduce
the workload for labeling severity and priority levels,
which are the important features of bug reports. Se‐
verity shows the serious levels of the reported bugs,
while priority indicates which bugs should be first
fixed. The prediction task can help developers quickly
assign the important bugs to appropriate developers
for fixing them so that the efficiency of software main‐
tenance is improved. Traditional approaches usually
adopt machine learning technologies such as support
vector machine (SVM) and naive Bayes (NB) to pre‐
dict the severity/priority level. However, these ap‐
proaches cannot overcome the problem of data imbal‐
ance, so the prediction accuracy is not perfect. Some
deep learning technologies, such as CNNs and graph
convolutional networks (GCNs), can effectively resolve
this problem and capture the contextual semantic infor‐
mation of bug reports so that the prediction perfor‐
mance is improved.

In this context, we organize a special feature in
the journal Frontiers of Information Technology &
Electronic Engineering on intelligent analysis for soft‐
ware data. This special feature covers software archi‐
tecture recovery, app review analysis, integration test‐
ing, software project management, defect prediction,
and method rename, as well as related applications. Af‐
ter a rigorous review process, six papers were selected.

Software architecture plays an important role in
the software life-cycle, especially in software evolu‐
tion. It is difficult to maintain up-to-date architecture
documentation because it should contain knowledge
from all software stakeholders. Therefore, the soft‐
ware architecture recovery task aims to identify and
extract architectural information from lower-level rep‐
resentations of a software system such as source code.
However, this task is costly in both academia and
industry. To resolve this problem, Bixin LI and his
collaborators proposed the incremental software ar‐
chitecture recovery technique called ISAR based on
existing architectures and related code changes. They
built a mapping between code-level changes and
architecture-level updates, which can help researchers
improve the performance of software recovery tech‐
nologies. The evaluation results on 10 open-source
projects showed that ISAR performs better than se‐
lected previous studies.

Identifying emerging topics (e.g., bugs) accu‐
rately in user reviews can help developers more ef‐
fectively update apps. However, the accuracy of emerg‐
ing topic identification implemented in previous stud‐
ies is not perfect because user reviews are short and
provide limited information. To resolve the problem,
Yong WANG and his collaborators proposed an im‐
proved emerging topic identification approach. They
adopted natural language processing technologies to
reduce noisy data and identify emerging topics in
app reviews using the adaptive online biterm topic
model (AOBTM). Experimental results showed that
the proposed approach can effectively identify emerg‐
ing topics.

Integration testing is an integral part of software
testing. Previous studies have focused on reducing test
costs in integration testing order generation. However,
no studies have explored the testing priorities of criti‐
cal classes when generating integration testing orders.
Hai YU and his collaborators proposed a multilayer
dynamic execution network (MDEN) model to quan‐
tify the testing priority of each class based on proba‐
bilistic risk analysis. In addition, they proposed a strat‐
egy to devise an optimal integration testing order,
which ensures that high-risk classes can be tested ear‐
lier and minimizes the complexity of the test stubs.
Experiments on six open-source projects showed that
the approach outperforms the baseline approaches for
software with different scales.

Cross-project software defect prediction solves
the problem of insufficient training data for traditional
defect prediction. However, there are still two chal‐
lenges: (1) Many irrelevant and redundant features in
the training process of the model affect the training effi‐
ciency and decrease the prediction accuracy; (2) The
distribution of metric values varies greatly from proj‐
ect to project due to the development environment,
resulting in lower prediction accuracy when the model
is applied in cross-project prediction. To address these
two challenges, Saihua CAI and his collaborators pro‐
posed a new software defect prediction method with
metric comprehension based on feature selection and
transfer learning. Experimental results showed that
the proposed approach shows better performance.

Methods in programs must be accurately named
to facilitate source code analysis and comprehen‐
sion. With the evolution of software, method names
may be inconsistent with their implemented method
bodies, leading to inaccurate or buggy method names.
Many studies have focused on suggesting accurate
method names when the method bodies have been

662



Zhang et al. / Front Inform Technol Electron Eng 2022 23(5):661-663

modified; however, there are two problems appear‐
ing in these studies: (1) a lack of analysis of the
structure of method names and (2) a lack of effi‐
cient capture of the programming context information.
To address these problems, Jingxuan ZHANG and
his collaborators proposed a novel method renaming
approach to suggest high-quality method names by
leveraging structural analysis and lexical analysis.
They conducted a series of experiments to validate
the effectiveness of the proposed approach, and the
results showed that it can significantly improve the
state-of-the-art approaches.

Task-oriented virtual assistants are software sys‐
tems that provide users with a natural language inter‐
face to complete domain-specific tasks. However,
due to the well-known complexity and difficulty of
the natural language understanding problem, it is chal‐
lenging to manage a task-oriented virtual assistant soft‐
ware project. Shuyue LI and her collaborators shared
their practices for addressing the problems and pre‐
sented the lessons learned at managing a task-oriented
virtual assistant software project. They also devel‐
oped a novel requirement management tool to im‐
prove the management efficiency for task-oriented
virtual assistant software projects.

Overall, the abovementioned six studies cover
many automated tasks to improve the effectiveness
and efficiency of software production by analyzing
software data. They also provide a series of solutions to
overcome the challenges appearing in previous stud‐
ies. We hope that this collection of interesting and
important topics will be beneficial to those with an
interest in intelligent analysis for software data or in
related areas.

Finally, we would like to express our special
gratitude to the authors and reviewers for their sup‐
port and valuable contributions to this special feature,
the editorial staff, and the Editors-in-Chief Profs.
Yunhe PAN and Xicheng LU.

Tao ZHANG received his BS degree
in automation and ME degree in soft‐
ware engineering from Northeastern
University, China, and his PhD degree
in computer science from University of
Seoul, Korea. After that, he spent one
year with the Hong Kong Polytechnic
University, China as a postdoctoral
research fellow. Currently, he is an
associate professor with the School of

Computer Science and Engineering, Macau University of Sci‐
ence and Technology (MUST), China. He is a senior member
of IEEE and ACM. He has published more than 60 papers in
renowned software engineering and security journals such as
IEEE Trans Softw Eng, IEEE Trans Inform Forens Sec, IEEE
Trans Depend Sec Comput, and IEEE Softw, and conferences
such as ICSE. His current research interests include mining
software repositories and mobile software security.

Xiaobing SUN is a professor in the
School of Information Engineering,
Yangzhou University, China. He re‐
ceived his BS degree in computer sci‐
ence and technology from Jiangsu Uni‐
versity of Science and Technology,
China, in 2007. Then, he joined the
School of Computer Science & Engi‐
neering, Southeast University, China
and received his PhD degree in 2012.

He has published more than 80 papers in refereed journals
(EMSE, STVR, IST, JSS, SCIS, FCS, etc.) and conferences
(ICSE, ASE, ICSME, SANER, ICPC, etc.). His research in‐
terests include software repository mining and intelligence
analysis, software security, etc.

Zibin ZHENG received his PhD de‐
gree from the Chinese University of
Hong Kong, China, in 2011. He is cur‐
rently a professor with the School of
Software Engineering, Sun Yat-sen Uni‑
versity, China. He has published over
150 journal and conference papers, in‐
cluding three ESI highly cited papers.
He received the ACM Distinguished
Paper Award. His research interests

include blockchain, smart contracts, services computing, and
software reliability.

Ge LI is an associate professor with
the School of Computer Science, Pe‐
king University, China. He received his
BS degree from Shandong University
of Technology, China, in 1999, and his
PhD degree from Peking University in
2006. He was a visiting associate pro‐
fessor at the Artificial Intelligence Lab‐
oratory of Stanford University, USA,
in 2013–2014. He is a deputy general

secretary of the CCF Software Engineering Society and the
founder of the Software Program Generation Study Group,
which includes over 100 advanced researchers in China.
His current research concerns mainly applications of proba‐
bilistic methods for machine learning, including program
language processing, program code generation, and natural
language processing.

663


