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Abstract: The blast furnace is a highly energy-intensive, highly polluting, and extremely complex reactor in the
ironmaking process. Soft sensors are a key technology for predicting molten iron quality indices reflecting blast
furnace energy consumption and operation stability, and play an important role in saving energy, reducing emissions,
improving product quality, and producing economic benefits. With the advancement of the Internet of Things,
big data, and artificial intelligence, data-driven soft sensors in blast furnace ironmaking processes have attracted
increasing attention from researchers, but there has been no systematic review of the data-driven soft sensors in
the blast furnace ironmaking process. This review covers the state-of-the-art studies of data-driven soft sensors
technologies in the blast furnace ironmaking process. Specifically, we first conduct a comprehensive overview of
various data-driven soft sensor modeling methods (multiscale methods, adaptive methods, deep learning, etc.)
used in blast furnace ironmaking. Second, the important applications of data-driven soft sensors in blast furnace
ironmaking (silicon content, molten iron temperature, gas utilization rate, etc.) are classified. Finally, the potential
challenges and future development trends of data-driven soft sensors in blast furnace ironmaking applications are
discussed, including digital twin, multi-source data fusion, and carbon peaking and carbon neutrality.

Key words: Soft sensors; Data-driven modeling; Machine learning; Deep learning; Blast furnace; Ironmaking
process
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1 Introduction

With the acceleration of the carbon neutrality
target, green intelligent manufacturing has become
an inevitable trend in the development of the manu-
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facturing industry. Iron and steel manufacturing oc-
cupies a pivotal position in the industrial field, and
blast furnace ironmaking is one of the most energy-
consuming processes in the iron and steel industry
(Yu and Tan, 2022). Therefore, iron and steel enter-
prises urgently need stable and efficient intelligent
operations in the ironmaking process to achieve the
goal of producing better-quality, low-carbon, green,
and sustainable products.

The majority of the world’s steel is extracted
from iron ores, and blast furnace ironmaking is a
key stage in the overall production process (Geerdes
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et al., 2020). The whole structure of the blast fur-
nace is depicted in Fig. 1. The principal process
flow of blast furnace ironmaking is as follows: Solid
fuels (coke, coal, etc.), iron-containing raw materials
(sinter, pellets, and lump ore), and fluxes (dolomite,
limestone, manganese ore, etc.) are continuously fed
into the feeding and distribution system in layers
from the top to the bottom of the blast furnace.
The main process is completed in the mutual con-
tact reaction between the furnace charge and the
coal gas. Specifically, the furnace burden steadily
descends from the top, while the high-temperature
gas generated from bubbling hot air and coal com-
ponents rises from the bottom. Molten iron is even-
tually produced through a series of complex physical
and chemical reactions. The impurities in the ores
react with the flux to form slag. The slag eventually
falls down to the hearth area and is mixed into the
molten iron. The molten iron flows through the tap
hole, and the slag is discharged through the skim-
mer (Azzedine et al., 2021). The major blast furnace
concern is to produce high-quality molten iron in the
production process at reduced production costs. To
realize this goal, real-time monitoring and control of
the blast furnace ironmaking process are required.

f
b

Fig. 1 Schematic of the blast furnace

In blast furnace ironmaking, the most important
molten iron quality (MIQ) indices are the silicon con-

tent, molten iron temperature, gas utilization rate
(GUR), etc. These MIQ indices generally reflect the
operating status and energy consumption of the blast
furnace ironmaking process. For example, the silicon
content indicates the reserving condition of coke and
can reflect the thermal state of the blast furnace.
Low silicon content is preferred from the perspective
of energy efficiency, but there is a boundary to avoid
hearth cooling. The molten iron temperature, also
known as the hot metal temperature (HMT), is also
required to estimate the MIQ and control the blast
furnace conditions. GUR reflects the energy con-
sumption, cast iron quality, and the distribution of
gas flow in a blast furnace.

Direct measurement of these MIQ indices is dif-
ficult primarily due to the complicated running en-
vironment. For example, the internal reactions of
the blast furnace are extremely sophisticated with
various physical and chemical reactions, nonuniform
heat transfer, and multiphase fluids (Geerdes et al.,
2020). In addition, unfavorable factors such as high
temperature, high pressure, and a corrosive environ-
ment are involved in the blast furnace ironmaking
process. Therefore, the internal status of the blast
furnace should be evaluated using the existing ob-
servable states, that is, the inflow and outflow to-
gether with the conditions at the furnace boundaries
(Saxén et al., 2013). Soft sensors are a key technique
that can be used for indirect measurement of these
MIQ indices based on other easy-to-measure process
variables.

At an early stage, the soft sensor models de-
rived from first principles were expected to be es-
tablished for the indirect measurement of these MIQ
indices. However, due to the complicated internal
phenomena of the blast furnace, it was difficult to
develop first-principles-based models with sufficient
prediction accuracy. Nevertheless, efforts to develop
physical models have continued. As a result, success-
ful applications of a blast furnace operation guidance
system based on a physical model have been reported
(Hashimoto et al., 2019a, 2019b). This system is
based on a transient two-dimensional (2D) model of
a blast furnace (Hashimoto et al., 2018), which is
integrated with nonlinear model predictive control
(MPC) and moving horizon estimation.

Compared with the first-principles-based mod-
els, data-driven models do not require detailed prior
process knowledge and are derived directly from
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process data. Data-driven models aim to use arti-
ficial intelligence methodologies (including machine
learning, deep learning, and big data analytics) to
predict the MIQ indices of the blast furnace. With
the advance in data acquisition systems, enormous
amounts of data are generated in the blast furnace
ironmaking process. The availability and increasing
quantity of data have enabled data-driven soft sensor
models to be widely and successfully applied to the
blast furnace ironmaking process (Zhang XM et al.,
2019a).

There have been investigations of data-driven
models in the industrial domain, but few investiga-
tions have involved data-driven soft sensors in blast
furnace ironmaking. The advancement of the In-
ternet of Things, big data, and artificial intelligence
has prompted increased research attention on this
subject, but despite this interest, there has been no
comprehensive survey of the development of data-
driven soft sensors in blast furnaces. This paper
seeks to remedy that situation, and makes the fol-
lowing contributions:

1. We summarize the evolution of data-driven
soft sensors in blast furnace ironmaking. The state-
of-the-art studies of data-driven soft sensors in blast
furnace ironmaking are categorized and discussed
from the perspectives of modeling methods and en-
gineering applications. Within each type of method,
the different model variants and their application
performances are discussed.

2. We discuss some promising future directions
for data-driven soft sensors in blast furnace ironmak-
ing, followed by some of our thoughts and insights on
the limitations and challenges faced by the blast fur-
nace ironmaking field.

3. This review serves not only as a friendly guide
for new researchers in the field of blast furnace iron-
making, but also as a dictionary for experienced
researchers looking for possible directions in future
work.

4. To our knowledge, this is the first exhaustive
survey of data-driven soft sensors in blast furnace
ironmaking.

2 Backgrounds

Data-driven soft sensors have been proposed as
a valuable tool in many industrial fields to solve prac-
tical problems such as measuring system back-up,

what-if analysis, real-time prediction for plant con-
trol, sensor validation, and fault diagnosis strategies
(Fortuna et al., 2007; Zhang XM et al., 2020a; Du
et al., 2021; Gao S et al., 2022; Yan et al., 2022). The
environment in which measuring devices commonly
work is hostile and maintenance and calibration will
result in unnecessary workload and cost, so it is not
beneficial or economical to install and use physical
sensors to monitor abundant process variables (Jiang
YC et al., 2021a). Furthermore, the existence of un-
expected faults and time delays in the physical sen-
sors can impair the efficiency of the control strategy.
When it comes to the MIQ indicators, such as silicon
content measured in the actual blast furnace case, a
typical approach is to determine the silicon content
index in the laboratory through offline sample anal-
ysis, which results in discontinuous measurements
(Warne et al., 2004). Therefore, soft sensors provide
an effective solution for these problems that can in-
directly measure the target indicator based on some
easily measurable process variables. As a result of
developments in modern data acquisition systems,
enormous amounts of data are generated every day
in the steel industry. Data-driven soft sensors have
gained increasing attention owing to the fact that
large databases are being established and analysis of
complex systems is desired.

The construction procedure of data-driven soft
sensors is shown in Fig. 2. It includes mainly data
collection and filtering, model structure selection,
model identification, and model validation. Appro-
priate data collection strategies, such as feature se-
lection and filtering, are important to reveal the cur-
rent system’s pivotal information. Noises should be
filtered, and missing data or outliers caused by faults
in measuring and transmission devices or unexpected
disturbances, which may spoil the model quality,
need to be identified. In addition, expert experience
and knowledge sometimes need to be considered in
the model construction process.

Moreover, different soft sensor structures are se-
lected depending on the specific application circum-
stances. In terms of the blast furnace case, mechanis-
tic modeling can be cumbersome and it is difficult to
perform parameter identification with satisfying re-
sults. Data-driven models are thus introduced which
use rich historical and online data to achieve high ac-
curacy for multiple blast furnace tasks. Conventional
data-driven soft sensor models are involved mainly
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Fig. 2 Construction procedure of data-driven soft
sensors

with various statistical learning and machine learn-
ing techniques, and are later extended to the scope of
deep learning with different network structures (Sun
and Ge, 2021).

Model identification is carried out based on
diverse strategies that correspond to the selected
model. In general, a loss function is developed to
depict the bias from the practical condition. Then,
various nonlinear optimization algorithms, including
gradient descent and genetic algorithms, are imple-
mented. Eventually, the constructed model should
be validated. A common way to test the model is
using K-fold cross-validation (Masson et al., 1999).
Confidence levels have also been introduced as an
approach for model validation (Papadopoulos et al.,
2001).

3 Data-driven soft sensors in the blast
furnace

In this section, the state-of-the-art studies of the
applications of data-driven soft sensors in the blast
furnace ironmaking process are surveyed. Each sub-
section below corresponds to a category in Fig. 3.
The modeling methods are classified mainly accord-
ing to the model structures and prior suggestions.

3.1 Fuzzy models

Fuzzy models are based on fuzzy logic with
a mathematical system that analyzes analog input
values in terms of logical variables that take on con-
tinuous values between 0 and 1. Although alterna-
tive approaches, such as genetic algorithms and neu-
ral networks (NNs), can perform just as well as fuzzy

logic in many cases, fuzzy logic solution to the prob-
lem can be cast in a form that human operators can
understand. Therefore, fuzzy models are often em-
ployed as an alternative for blast furnace prediction
and control tasks that were traditionally performed
by humans.

Zhang WL et al. (2016) proposed a fuzzy model
to measure the pressure of the blast furnace gas sys-
tem with a multiobjective hierarchical genetic al-
gorithm. In the modeling process, a Levenberg-
Marquart Bayesian regularization algorithm was
used to alleviate the fuzzy model overfitting prob-
lem. The performance of the proposed fuzzy model
was validated using a series of real blast furnace data,
and the results were compared with those of the G-
fuzzy model, least-squares support vector machine
(LSSVM), and echo state network (ESN). Li JP et al.
(2018) created a nonparallel hyperplane fuzzy clas-
sifier (NHFC) to determine the tendency of molten
iron silicon content according to the blast furnace
operation data. In NHFC, the cross-classification
problem was transformed into a binary classification
by embedding high-dimensional blast furnace data
into a 2D space. Compared with the traditional sup-
port vector machine (SVM) and LSSVM, NHFC ex-
hibits better interpretability and higher classification
accuracy.

Takagi-Sugeno fuzzy models, also known as T-S
fuzzy models, have attracted great attention due to
their capability to approximate any nonlinear system
with arbitrary precision. Li JP et al. (2021b) con-
structed a novel multi-input multi-output (MIMO)
T-S fuzzy model by employing an output transfer
matrix. In the MIMO T-S fuzzy model, the low-
rank learning of the correlation matrix was presented
to identify the correlation between variables. Ad-
ditionally, the issue of missing MIQ can be man-
aged through a complete complementary matrix de-
rived from the original incomplete matrix. Further-
more, Li JP et al. (2022) proposed a Bayesian-based
T-S (BSTS) fuzzy model that exploits the Bayesian
method to recognize the consequent parameters of
the T-S-based model. In the BSTS fuzzy model,
the sparse prior is used to intensify the stability
of the fuzzy model with strong generalization abil-
ity. Experimental results have shown that the BSTS
fuzzy model achieved a smaller root-mean-square er-
ror (RMSE) and a higher prediction hit rate than the
ANFIS, SpareFIS, H-spareFIS, and genfis3 models.
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Non-parallel hyperplane fuzzy classifier

Takagi-Sugeno (T-S) fuzzy models
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Rule-based fuzzy system

 Hybrid models

Computational fluid dynamics with SVM
Heat transfer model with least-squares
Infrared thermography with NN and SVR
Material balance with time-series models
Expert knowledge with factor analysis

 Multiscale models
Multiscale entropy
Nonuniform delay-coordinate embedding
Multiscale fusion
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Piecewise linear switching system
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Just-in-time learning
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Multiple kernel learning SVM
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Regularized RVFLNN

Incremental RVFLNN
 Orthogonal incremental RVFLNN
 M-estimation based RVFLNN
 Broad learning based RVFLNN
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Artificial neural network
Nonlinear autoregressive exogenous NN
Autoencoder
Echo state network
Wavelet neural network
Recurrent neural network
Convolutional neural network

 Others Tree-based model
Factor analysis
Partial least-squares regression
Manifold learning

Subspace identification
Fractal time-series analysis
Volterra series predictor

Fig. 3 Models of data-driven soft sensors in the blast furnace

Li S et al. (2022) proposed a blast furnace coke
ratio model that combines fuzzy c-means (FCM)
clustering with grid-search-optimized support vector
regression (SVR). The proposed model is referred to
as FCM-GS-SVR. In FCM-GS-SVR, FCM is used
to determine the different operation conditions. Ex-
perimental results showed that the FCM-GS-SVR
model achieved higher accuracy and stability for the

coke ratio prediction of molten iron than the decision
tree, original SVR, and GS-SVR with a raceway com-
putational fluid dynamics (CFD) model. Lughofer
et al. (2021) developed a rule-based fuzzy model
to predict silicon concentration, temperature, and
cooling capacity from a large database collected at
a particular blast furnace process. The rule-based
fuzzy model is developed based on a novel feature
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ranking approach and a unique granular rule extrac-
tion procedure. The rule-based fuzzy model is vali-
dated on two separate test data sets, demonstrating
that it maintains stable predictive behavior and out-
performs other data-driven methods including deep
neural networks (DNNs). For the fuzzy models, the
determination of fuzzy rules is the key to ensuring
the accuracy of the models. Therefore, how to de-
sign appropriate fuzzy rules for the complex blast
furnace ironmaking process is a challenge.

3.2 Hybrid models

In blast furnace ironmaking, the hybrid model
refers to a modeling method that combines some
prior knowledge with the traditional data-driven
model to obtain better accuracy. For example,
hybrid models are built by combining data-driven
models with expert experience, fluid dynamics,
mass/energy balance, etc.

Zhou P et al. (2018e) presented a soft sensor to
detect the cohesive zone information in the blast fur-
nace based on the online measurement of the cooling
water information with offline CFD. The shape and
position of the cohesive zone under different circum-
stances were recorded in a database according to the
offline CFD computation. Therefore, the final po-
sition and shape of the cohesive zone were acquired
through the match operation in the database. Li JL
et al. (2021) constructed a hybrid prediction model
that combines off-line CFD computation and SVM
to track the position of the cohesive zone in the blast
furnace. The CFD model was performed in the form
of an axisymmetric 2D steady-state simulation in the
blast furnace shaft. The internal information of the
cohesive zone, such as the fluid flow, heat, and mass
transfer, was obtained through the CFD calculation,
and the prediction of the cohesive position was ac-
complished by SVM. Pan et al. (2018) developed a
temperature measurement method that combines a
temperature reduction model and infrared thermog-
raphy technology to detect the molten iron tempera-
ture in the blast furnace. The infrared thermal image
of the molten iron after the skimmer was analyzed
by thermography technology, and the corresponding
temperature can be obtained. A temperature reduc-
tion model was also derived to identify the relation-
ship between the molten iron temperatures at the
taphole and skimmer. Thus, the molten iron tem-
perature at the taphole was indirectly determined

by a temperature reduction model and the molten
iron temperature after the skimmer.

Jiang ZH et al. (2018) proposed a hybrid model
consisting of a heat transfer model and a main
pipeline temperature drop model to predict the
molten iron temperature in the taphole of a blast
furnace. The molten iron temperature at different
positions in the main pipeline based on the heat
transfer model was employed as the input of the
parametric identification in the temperature drop
model. A least-squares optimization method was
selected to recognize the respective parameters and
predict the molten iron temperature at the taphole.
Li YR and Yang (2021) presented a genetic algo-
rithm based model that combines domain knowledge
to perform the silicon content prediction task in iron-
making by adjusting different genetic mutations and
crossover operators. In addition, the interpretable
features were extracted from the industrial modeling
by redefining the populations.

Azadi et al. (2022) developed a hybrid dynamic
model to predict the molten iron silicon content and
the slag basicity during the blast furnace ironmaking
process. The relationship between the input vari-
ables is depicted by a first-principles-based steady-
state model. A data-driven model was constructed to
compensate for the insufficiency of the mechanistic
model. Hu YF et al. (2022) constructed a compre-
hensive evaluation model based on factor analysis
and expert knowledge to reduce CO2 emissions in
the blast furnace ironmaking process. The status
of the blast furnace was classified into four classes:
good, normal, poor, and warning. Although the hy-
brid models are usually better than their prototype
data-driven methods due to the introduction of rea-
sonable prior knowledge, in some cases, it is difficult
to obtain accurate prior knowledge.

3.3 Multiscale models

Multiscale models are a type of modeling
method in which important features at multiple
scales of time or space are considered. The multiscale
modeling and analysis of the blast furnace ironmak-
ing process have received much attention over the
past few decades.

For example, Li J and Gao (2010) exploited mul-
tiscale entropy to investigate the complexity of the
blast furnace at different time scales. They analyzed
specific cases of dissimilarly sized blast furnaces and
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found that the sulfur series tended to be more com-
plicated than the silicon series in terms of time com-
plexity, and the large blast furnace was prone to be
steadier than the small blast furnace. Gao CH et al.
(2011b) carried out a multiscale recognition model to
conduct the real-time monitoring of the blast furnace
system from the perspective of silicon and sulfur con-
tent. It turned out that various dynamic phenomena,
i.e., chaos, randomicity, and limit cycle, existed with
different contribution rates in the blast furnace sys-
tem. Furthermore, Chu and Gao (2014) proposed a
data-driven multiscale model that can recognize the
variables most relevant to the output. The model
integrates these input variables with the output to
construct a linear or nonlinear multiscale model.
Experiments showed that the multiscale-data-driven
model had better performance than the traditional
data-driven model over a fixed scale. Moreover, Gao
CH et al. (2021) discussed the multiscale features
of the blast furnace system and presented a multi-
scale prediction method derived from the nonuniform
delay-coordinate embedding using Taylor expansion.
The discrete binary particle swarm optimization was
used to optimize the relevant parameters including
the time lag and the embedding dimension. The
results showed that the proposed nonuniform delay-
coordinate embedding model was superior to the uni-
form embedding model and lower embedding dimen-
sion model.

An et al. (2019) concentrated on the multiscale
fusion model to adjust the GUR in the blast fur-
nace. The multiscale characteristics between the
GUR and the operations were studied, and a de-
composition method together with a reconstruction
method was introduced to obtain a short-time-scale
part and a long-time-scale part of the GUR. Finally,
different time-scale models were fused to predict the
GUR. Shen et al. (2020) adopted an approach simi-
lar to the methods in An et al. (2019) and designed
a control strategy for the hot-blast supply and bur-
den distribution for the multiscale features during
the blast furnace procedure. Specifically, a reinforce-
ment learning algorithm for burden distribution con-
trol was proposed to improve the GUR trend on a
long time scale. Yin et al. (2020) presented an inter-
val multiscale prediction model to predict the GUR
in the blast furnace. A multiscale point prediction
model based on SVM was established. Moreover, an
interval prediction model was optimized using the

multiobjective optimization method and considering
the interval prediction index and the point predic-
tion model. Experimental results demonstrated that
the interval multiscale prediction model was more
accurate than the point prediction model.

3.4 Adaptive models

Adaptive models are popular modeling methods
for dynamic systems and have been widely used in
the blast furnace ironmaking process. Several adap-
tive strategies, such as piecewise linear switching,
adaptive weighting, and just-in-time (JIT) learning,
have been adopted to construct adaptive models in
blast furnace ironmaking.

For example, Saxén et al. (2016) presented a
self-organizing model based on the identification of
piecewise linear switching systems to predict the sil-
icon content in the blast furnace. The approach as-
sumes that the mode switches in a random manner,
and the authors presented a switched linear model
to seize the complicated dynamic features of the
process. Numerical cases and industrial data were
studied to validate the effectiveness of the adap-
tively switched method. Wen et al. (2018) devel-
oped a model-free adaptive control method based
on compact form dynamic linearization (CFDL) to
manage the multivariate MIQ system by extending
the original single-input single-output (SISO) sys-
tem to the MIMO system. Experimental results
showed that it outperformed the conventional data-
driven MPC while guaranteeing the bounded-input
bounded-output stability of the entire system.

Fang and Jiang (2020) proposed an adaptively
weighted echo state network (AW-ESN) for inter-
val prediction of silicon content in the blast furnace
using the ensemble approach. Bootstrap was first
used to reshape the training data into subsets. The
AW-ESN was introduced to approximate the silicon
content while establishing interval predictions. Fang
et al. (2020) presented an adaptively stacked poly-
morphic model to forecast the silicon content online.
First, an adaptive uncertain fuzzy clustering algo-
rithm was used to simplify the computation burden
and refine the existing data. Then, AW-ESN and
time difference AW-ESN were stacked to construct
polymorphic models. Finally, the ensemble submod-
els were adopted to mitigate the overfitting problem.
The application results suggested that the adaptive
polymorphic model possessed a better trend-tracking
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capability than AW-ESN and ESN.
JIT learning is a machine learning method that

can update the predictive model when a quality pre-
diction is required for a query sample. The JIT learn-
ing methods have been proven to have the ability to
cope with changes in process characteristics as well as
nonlinearity. Liu Y and Gao (2015) proposed a JIT
model integrated with a support vector clustering
(SVC) based outlier detection for online prediction
of the silicon content in blast furnace ironmaking.
A local model was well preserved using the strategy
of updating a healthy relevant data set in a sensible
way. A healthier relevant data set was constructed to
build a more reliable local prediction model. More-
over, the historical data set was updated repetitively
in a reasonable way. Experimental results in an in-
dustrial blast furnace demonstrated that the SVC-
based JIT least-squares support vector regression
(LSSVR) model performed better than SVC-LSSVR,
JIT-SVR, and LSSVR in terms of RMSE and hit rate
criteria.

Chen K and Liu (2017) presented a JIT learning
prediction strategy with flexible feature-weighting
for online quality prediction in the blast furnace.
A unique similarity criterion was introduced into a
dual-objective joint-optimization system to quantify
the weight shared between similar samples. In addi-
tion, the hyperparameter in the dual-objective sys-
tem was automatically calculated, thus avoiding the
arduous cross-validation work. Ding et al. (2017)
developed an ensemble non-Gaussian local regres-
sion (ENLR) model by implementing the JIT learn-
ing strategy to predict silicon content. Independent
component analysis (ICA) was performed to acquire
the hidden information between the chosen similar
data. Next, a local stochastic model was built using
Gaussian process regression (GPR), and the result-
ing probabilistic results were used as the final pre-
diction. The effectiveness of ENLR was compared
with those of three local modeling methods includ-
ing JIT-GPR (JGPR), JIT-LSSVR (JLSSVR), and
ICA-JLSSVR on the silicon content prediction task.
The results showed that ENLR outperformed other
models in prediction accuracy.

Chen K et al. (2017) described a JIT
correntropy-data-drivenmodel to predict silicon con-
tent during the ironmaking process. A correntropy
SVR was used to alleviate the influence of extreme
operating conditions. In addition, the JIT learning

method was introduced in the correntropy SVR by a
clustering strategy and a refreshing data set. Finally,
higher prediction accuracy was achieved by the JIT
correntropy model as compared with JLSSVR, cor-
rentropy SVR, and LSSVR. He X et al. (2019) pro-
posed a bagging JIT model with a semi-supervised
learning method (BJSM). The entire model combines
JIT learning, bagging, and the semi-supervised ex-
treme learning machine (SELM) to obtain robust
prediction performance. Experimental results indi-
cated the effectiveness of BJSM over the local SELM
and JLSSVR models in terms of the RMSE and hit
rate criteria.

Zhou P et al. (2021a) proposed a JIT recursive
multi-output LSSVR (M-LSSVR) model which was
highly efficient in handling multivariable prediction
and control of blast furnaces. This method inte-
grates M-LSSVR based on multitask transfer learn-
ing with the JIT learning strategy. An incremen-
tal learning algorithm was introduced to conserva-
tively prune the model to optimize the speed. In
the meantime, an inverse decremental learning algo-
rithm was employed to preserve the size of the model.
The proposed JIT recursive M-LSSVR control was
compared with the global prediction modeling-based
LSSVR and JLSSVR nonlinear predictive control.
The resulting integral of absolute error (IAE) values
and the integral of squared error (ISE) values of the
molten quality control of the proposed JIT recursive
M-LSSVR method were lower than those of other
models.

Locally weighted partial least-squares (LW-
PLS) regression is a JIT modeling method, where
partial least-squares (PLS) is used to build a lo-
cal regression model based on the similarity be-
tween the query and historical samples. Zhang
XM et al. (2020b) developed a fast locally weighted
PLS (FLW-PLS) regression model, which aims to
reduce the cumbersome computation of the tradi-
tional LW-PLS. The core idea is to employ the ex-
act Euclidean-locality-sensitive hashing algorithm to
reduce the computational complexity caused by the
linear search of similar data in conventional LW-PLS.
Experimental results proved that FLW-PLS can pro-
cess large-scale industrial data in a much shorter
time without a significant loss of prediction accuracy
as compared to LW-PLS. Note that the prediction
accuracy of the JIT learning model is highly depen-
dent on the similarity between the query sample and
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historical data. Therefore, how to calculate an ap-
propriate similarity that fully considers the relation-
ship between process variables and quality variables
is very important.

3.5 Support vector machine

In machine learning, SVM is a popular super-
vised learning algorithm for classification. SVM
uses kernel tricks to construct hyperplanes in high-
dimensional spaces and can perform nonlinear classi-
fication efficiently. In addition, SVM can be general-
ized to the regression domain in the form of SVR.
Over the past few years, SVM or SVR has been
widely used in the blast furnace ironmaking process.

Jian et al. (2011) presented a sliding-window
smooth SVR (SW-SSVR) to capture the inner ther-
mal state of the blast furnace. The SW-SSWR model
focuses on the changing trend of silicon content, and
the fluctuation trends can be easily tracked with a
time-forgetting factor in the model. Experimental
results showed that SW-SSVR outperformed SSVR
and SVR in prediction accuracy and computation
efficiency. Liu Y et al. (2011) proposed an effective
outlier detection method based on an SVC strategy
without any assumption of data distribution. SVR
online modeling was then followed after the detection
process to predict the silicon content online. This
proposed method is referred to as SVC-SVR. Ex-
perimental results showed that the SVC-SVR model
had better performance than the Mahalanobis dis-
tance SVR, resampling by half-means SVR, and the
smallest half-volume SVR models.

Wang ZY et al. (2011) developed a model
that integrates kernel principal component analy-
sis (KPCA) into the LSSVM framework to predict
the molten iron silicon content of the blast furnace.
In LSSVM, KPCA is used as a data preprocessing
method to extract the principal features of the data.
Jian et al. (2012) developed a multi-kernel SVM of
the Hilbert space to analyze the nonlinear blast fur-
nace system. Experimental results indicated that
multi-kernel SVM was more competitive than single
kernel learning LSSVM or ordinary LSSVM. Jian
and Gao (2013) proposed a binary coding SVM to
predict molten iron silicon trends, which can provide
guidance for blast furnace control. The upper error
bound of the prediction results was also estimated
for practical manufacturing. The test results showed
that compared to the traditional one-against-all and

one-against-one strategies, the proposed binary cod-
ing SVM was capable of conducting multiclass cat-
egorization for the blast furnace system with log2N

binary classifiers.
Xu et al. (2016) presented an SVR model opti-

mized by the dynamic multi-swarm particle swarm
optimizer with a new cooperative learning strategy
(DMS-PSO-CLS), which achieved better generaliza-
tion performance in silicon content prediction of a
blast furnace. The optimizer was a derivative form
of DMS-PSO which exploits the merits of DMS-PSO
and the cooperative learning strategy to improve
both the convergence speed and prediction accuracy
of SVR. Experimental results indicated that the pro-
posed DMS-PSO-CLS achieved better accuracy with
higher convergence speed to optimize the SVR pa-
rameters compared with PSO and DMS-PSO. Wu
et al. (2018) employed SVR to identify the burden
distribution parameters to improve the energy con-
sumption efficiency of the blast furnace. A proba-
bilistic case-matching model was then constructed by
the target data to forecast the trend of the carbon-
monoxide utilization rate (CMUR). Zhou P et al.
(2018b) presented an M-LSSVR based inverse sys-
tem identification method for prediction and control
of the blast furnace system. First, M-LSSVR was
constructed using multitask transfer learning tech-
nology. Then, M-LSSVR was used to identify the
inverse system model of the controlled blast furnace
ironmaking process by means of the multiobjective
parameter optimization algorithm. The application
results on the real data showed that the proposed
method had obvious superiority in the prediction and
control of the MIQ indices of the blast furnace.

Luo et al. (2020) developed an AdaBoost-based
weighted SVM (W-SVM) ensemble predictor to cope
with the imbalanced binary classification problem
existing in the silicon content prediction of the blast
furnace. The different performances of the classifier
served as criteria for the dynamic weight distribu-
tion to enhance the reliability. Experiments on five
benchmark data sets demonstrated higher efficiency
and accuracy of the AdaBoost-based W-SVM com-
pared with SVM, W-SVM, extreme learning machine
(ELM), and online sequential ELM (OSELM). Zhai
et al. (2020) exploited a genetic algorithm based on
SVR to select features, and exploited SVR to predict
the fuel ratio (FR) in the blast furnace ironmaking
process. Chen SH and Gao (2020) presented a partly
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transparent soft-margin SVM (pTsm-SVM) model to
handle the silicon classification tasks in the blast fur-
nace process. In pTsm-SVM, an intelligent algorithm
is first used to mine linear prior knowledge from data,
and the prior knowledge is then integrated into SVM.
Experimental results indicated that the pTsm-SVM
model was more effective than the soft-margin SVM
from the perspective of Cohen’s Kappa coefficient.

Li WY et al. (2021) proposed an improved SVM
model based on principal component analysis (PCA)
and CFD to estimate the raceway depth from ther-
mal images in a blast furnace. The thermal images
were generated using a raceway CFD model. PCA
was implemented to reduce the data dimensional-
ity and extract crucial features of the data. SVM
was used to construct the mapping between race-
way depth from CFD simulations and extract fea-
tures from PCA. Wang ZY et al. (2021) performed
a comparative study on the prediction of hot metal
quality of the blast furnace by SVM and ELM. Af-
ter linear and nonlinear correlation analysis, feature
selection, and normalization, the application results
showed that SVM exceeded ELM in both the average
absolute error and hit rate.

3.6 Extreme learning machine

ELM is a single hidden layer feedforward neural
network training algorithm that has higher learning
speed and better generalization performance than
traditional methods. ELM has been widely used in
many fields such as classification, regression, cluster-
ing, sparse approximation, compression, and feature
learning.

In blast furnace ironmaking, Zhou P et al.
(2015a) proposed a data-driven dynamic model in-
corporating ELM with PCA for the online prediction
of silicon content in the blast furnace. The most crit-
ical variables were extracted from multiple factors
with the help of PCA. Then, a new ELM framework
with a self-feedback structure was developed which
has an input node at a previous time to store the
data feature across the time domain. The test results
indicated that the proposed ELM with self-feedback
had higher accuracy compared to the artificial neural
network (ANN) with self-feedback and ELM without
self-feedback.

Yang et al. (2016) presented a modified ELM to
measure the silicon content in molten metal. The
original random weight generation method was re-

placed by a modified pruning algorithm to optimize
the weight. Compared to the back-propagation (BP)
algorithm and SVM, the model proved to be more
accurate from the tests on the industrial data set.
Zhang HG et al. (2016) employed the PCA technique
to reduce the dimension of the hidden layer output
matrix of ELM to obtain a soft sensor for molten
iron temperature in a blast furnace. The training
procedure was accelerated without major informa-
tion loss. Experimental results showed that the pro-
posed model had better generalization performance
and stability than ANN, SVM, and optimally pruned
ELM (OP-ELM).

Su et al. (2018) described a novel multi-layer
ELM architecture called W-PCA-ML-ELM to pre-
dict the permeability index of the blast furnace.
W-PCA-ML-ELM was designed based on PCA and
wavelet transform. PCA was used to simplify the
last hidden layer output matrix that is usually not
in the full column rank. The wavelet transform was
applied to tackle the noise existing in the production
data. The application results showed that the pro-
posed W-PCA-ML-ELM was superior to weighted
ELM (W-ELM), W-P-ELM, and W-ML-ELM in pre-
diction accuracy. Zhang HG et al. (2018) developed
a W-ELM model for the prediction of silicon con-
tent in molten iron. The imbalanced operating data
and outliers tended to reduce the confidence of the
existing models, so an outlier detection based on W-
ELM was performed. Experimental results showed
that the proposed W-ELM model had better pre-
dictive performance compared to common ELM and
LSSVM methods.

Li YJ et al. (2019) developed an improved ELM
called GR-ELM to predict the GUR of the blast
furnace. GR-ELM was designed based on gray re-
lational analysis (GRA) and a residual modifica-
tion mechanism. The input attribute optimization
was carried out using GRA and the entropy weight
method. The residual modification mechanism was
implemented due to the limited capacity of ELM.
The mutual information between the process vari-
ables and the output was used to determine the cor-
responding time delay. Experiments showed that
GR-ELM outperformed ANN, SVM, and random
forest (RF). Furthermore, Li YJ et al. (2020) pro-
posed a kernel ELM algorithm to find the appro-
priate burden surface distribution of the blast fur-
nace. The problem was handled as a multiobjective
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optimization issue, and a modified two-stage intelli-
gent optimization strategy was adopted to set the ini-
tial values of the burden surface. Feedback compen-
sation was used to enhance the reliability of the opti-
mization strategy. Su et al. (2020) developed an im-
proved multi-layer OSELM model, called EVFF-ML-
OSELM, to predict the silicon content online. Com-
pared with the conventional ML-OSELM, a vari-
able forgetting factor (VFF) and an ensemble strat-
egy were incorporated into EVFF-ML-OSELM. The
VFF was used to realize dynamic prediction and the
ensemble strategy was employed to fix the overfit-
ting problem. Simulation results demonstrated that
the EVFF-ML-OSELM model had a higher predic-
tion accuracy than OSELM, WOS-ELM, and ML-
OSELM.

Wang P et al. (2022) proposed a multiobjective
nonlinear ensemble learning model based on ELM
to predict silicon content. The model adopted an
evolutionary algorithm to select the pivotal features
and considered the nonlinear and coupling relation-
ships between features in the modeling process. All
parameters of each ELM including the structure pa-
rameters were taken as decision variables, and they
were optimized fusing a modified nondominated sort-
ing differential evolution algorithm. The ensemble
strategy was based on differential evolution, rather
than a linear combination of the individual results.
Experimental results suggested that the novel en-
semble method outperformed the linear average and
ordinary multiobjective evolutionary ensemble learn-
ing methods. Li YJ et al. (2022) proposed a novel
dual ensemble OSELM (DE-OSELM) for silicon con-
tent prediction considering the time-varying charac-
teristics of the blast furnace ironmaking process. In
DE-OSELM, the recursive modification based online
sequential ELM (RM-OSELM) was first constructed
to address the dynamic issues. A combination of the
output weights corresponding to OSELM and RM-
OSELM was introduced to form a final updating rule
for sequential implementation. Experimental results
indicated that DE-OSELM converged faster than
OSELM and was more accurate than RM-OSELM.

Li YJ et al. (2021) combined the broad learning
based W-ELM prediction model with a twin informa-
tion fusion based pre-setting model to determine the
setting values of the burden surface in the blast fur-
nace. In addition, the knowledge mining based feed-
back compensation model, data-based production

status evaluation, and knowledge-based adjustment
model were integrated to adjust the setting values
of the burden surface according to the change in the
production status. Hu TH et al. (2021) developed a
novel ELM based on multiobjective evolutionary op-
timization and nonlinear ensemble learning to depict
the silicon content during the ironmaking process. A
modified discrete multiobjective evolutionary algo-
rithm was adopted to optimize the input features of
the base learners. Then, ELM was used to combine
the previous base learners to enhance the credibility
of the model. Test results showed that the accuracy
of the new ELM was improved compared to the ELM
using fixed feature selection.

3.7 Random vector functional-link neural
network

Similar to ELM, random vector functional-link
neural network (RVFLNN) has a single-layer feed-
forward neural network structure. In RVFLNN, the
weights and biases of the hidden neurons are ran-
domly generated within an appropriate range, while
the output weights are computed by a simple closed-
form solution. RVFLNN has attracted significant
attention due to its superior performance in several
different domains such as visual tracking, classifica-
tion, and regression.

In blast furnace ironmaking, Zhou P et al.
(2015b) proposed an online sequential RVFLNN
(OS-RVFLNN) with PCA and self-feedback struc-
ture for the multivariate prediction of MIQ in the
blast furnace. PCA was used to choose the most
relevant indicators from redundant input variables.
Then, an output self-feedback structure was imple-
mented based on the original OS-RVFLNN. The
proposed OS-RVFLNN with feedback connections
proved to be faster and more precise than ordi-
nary OS-RVFLNN and ANN with self-feedback.
Zhou P et al. (2018c) presented a Cauchy distribu-
tion weighted M-estimation based robust RVFLNN
(Cauchy-M-RVFLNN) for an online approximation
of MIQ. In addition, canonical correlation analysis
(CCA) was performed to recognize the most piv-
otal variables influencing the quality indices. Finally,
comparative experiments demonstrated that the pro-
posed Cauchy-M-RVFLNN produced better predic-
tion accuracy and stronger stability than LSSVR,
robust LSSVR, and ordinary RVFLNN.

Furthermore, Zhou P et al. (2019) developed
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an improved orthogonal incremental RVFLNN (I-
OI-RVFLNN) model to achieve a compressed model
structure and reduce the computational effort for
quality prediction in the blast furnace ironmaking
process. The Schmidt orthogonalization method was
employed to orthogonalize the output matrix of the
hidden layer. The hidden nodes were prefixed in
numbers to cut out the dispensable nodes in conven-
tional incremental RVFLNN. Experimental results
showed that the proposed I-OI-RVFLNN achieved
much better performance in convergence speed and
accuracy than I-RVFLNN and OI-RVFLNN. Zhou
P et al. (2020) presented a robust online sequential
RVFLNN (ROS-RVFLNN) with a forgetting factor
for the data modeling in a blast furnace. A similar
Cauchy distribution function weighted M-estimator
was exploited to boost the stability of the model.
Compared with OS-RVFLNN and robust RVFLNN,
the proposed ROS-RVFLNN was more resistant to
stochastic interruptions and more accurate through
real industrial tests.

Li WP and Zhou (2020) proposed a robust reg-
ularized RVFLNN algorithm to predict the MIQ in-
dices. CCA was carried out for the feature selec-
tion of the prediction model, and a Gaussian dis-
tribution weighted M-estimation was constructed to
temper the influence of outliers. The L1 regular-
ization and L2 regularization based on the least-
squares loss function were implemented to achieve
the sparseness of the output matrix. Experiments
using industrial data from a blast furnace indicated
that the proposed robust regularized RVFLNN out-
performed LS-RVFLNN and Huber-M-RVFLNN in
terms of estimation accuracy and modeling stability.
Li JP et al. (2021a) proposed a MIMO-RVFLNN to
exploit the correlations among the multivariate MIQ
indices. An output space transfer matrix was em-
ployed to alleviate the effect of the missing values
in quality indices. The corresponding optimization
algorithm with guaranteed convergence proof was
given. The simulation results of a blast furnace illus-
trated that the proposed MIMO-RVFLNN obtained
better prediction performance than the Cauchy dis-
tribution weighted M-RVFLNN and the robust mul-
titask LSSVR. Zhou P et al. (2021b) developed an
improved incremental RVFLNN to predict the qual-
ity of the molten iron without input-output direct
links or output bias. The proof of the model’s abil-
ity to fit a continuous function with fewer hidden

nodes was given compared to the original structure.
The terminal condition of the incremental algorithm
was stated by the difference in RMSE between two
successive iterations. Experimental results on bench-
mark simulations and real blast furnace data showed
that the improved incremental RVFLNN had bet-
ter performance in terms of prediction accuracy and
efficiency.

3.8 Deep learning

Unlike SVM, ELM, and RVFLNN, deep learning
has a deep architecture, which usually contains mul-
tiple hidden NN layers, to learn data representation
with multiple abstract levels. Compared with shal-
low learning methods, deep learning methods have
significant ability to extract the inherent character-
istics of data and deal with nonlinear processes. Deep
learning has produced very promising results in dif-
ferent fields, including the ironmaking process.

In the field of blast furnace ironmaking, differ-
ent types of NNs have been developed and widely
used. For example, Radhakrishnan and Mohamed
(2000) presented an NN-based soft sensor to predict
the quantity of the hot metal and slag, as well as
their silicon and sulfur compositions, in the blast
furnace. Jiménez et al. (2004) developed a data-
driven model based on NNs to predict the molten
iron temperature of the blast furnace. The model
incorporated the time factor as an internal param-
eter in the NN architecture to cope with sequential
information and was validated through actual plant
data. Rajesh et al. (2010) discussed the application
of NN modeling in the blast furnace ironmaking pro-
cess, including the prediction of molten iron silicon,
burden distribution, and heat levels.

Zhao J et al. (2011) developed an ESN-based
two-stage method to forecast the generated gas
amount and consumption demand in the blast fur-
nace. The ESN-based two-stage method was con-
structed by combining ESN with gray correlation.
The test results indicated that the ESN-based two-
stage method outperformed the radial basis function,
SVM, and original ESN on real-world data. Yuan
et al. (2015) proposed a novel multivariate method
for MIQ prediction on the basis of PCA and a dy-
namic genetic NN. A hybrid optimization algorithm
consisting of adaptive genetic algorithms and BP was
adopted to bypass the local minima and improve the
convergence speed. An et al. (2016) constructed an



Luo et al. / Front Inform Technol Electron Eng 2023 24(3):327-354 339

Elman neural network to capture the dynamic char-
acteristics of the missing temperature information
caused by the faulty temperature sensor on the blast
furnace wall. In addition, the correlation between
temperature sensors was derived according to the
maximal information coefficient (MIC) to enhance
the reliability of the current model.

Zhou P et al. (2018d) presented a wavelet neural
network (WNN) designed to minimize the 2D prob-
ability density function (PDF) shaping of modeling
errors for hearth temperature prediction in blast fur-
naces. The modeling error PDF was tracked using
kernel density estimation (KDE), and the quadratic
sum of 2D deviations was then computed as a per-
formance metric for WNN optimization. According
to the experimental results, compared with the tra-
ditional WNN, the target PDF modeling loss func-
tion adopted in the improved WNN showed better
generalization performance when used as a criterion
for the optimization process. Cui et al. (2018) con-
structed a time-series NN for the hearth tempera-
ture prediction based on multi-information fusion,
taking account of tuyere images and other process
features. The validation was conducted using the
online data and tuyere images of a 2500 m3 blast
furnace in a steel plant, and the application results
showed that the proposed model effectively improved
the prediction precision compared with DNN and
WNN without the tuyere images. Pan et al. (2018)
presented a data-driven model with a compensa-
tion method based on an ensemble neural network
and SVR for molten iron temperature measurement
from the perspective of infrared computer vision.
The texture features influenced by dust were derived
through the temperature-level co-occurrence matrix
and the neighboring temperature-level-dependence
matrix, and the ensemble neural network and SVR
were employed to compensate for the errors caused
by dust.

Zhao XD et al. (2020) presented an ameliorated
moth-flame optimization (AMFO) algorithm to iden-
tify the parameters of a fast learning network (FLN)
to predict molten iron silicon content in the blast fur-
nace. The Gaussian mutation produces flames, and
the modified position updating mechanism of moths
constitutes a crucial part of the proposed algorithm
to dodge the local minima. Experimental results in-
dicated that the AMFO-FLN model achieved a more
stable hit ratio and higher precision compared with

the conventional moth-flame optimization (MFO).
Xie and Zhou (2020) constructed a robust stochas-
tic configuration network (RSCN) based on KDE to
detect MIQ during the blast furnace ironmaking pro-
cess. The model implements an incremental method
by adding neurons one by one using the original
stochastic configuration network (SCN) algorithm.
KDE was introduced into the construction process of
SCN in the form of probability density estimates for
each training set. Meanwhile, determination of the
output weight of the proposed RSCN was improved
as compared to the abnormality that occurred when
the traditional RSCN output weight was calculated
in the multi-output situation. The performance of
the proposed RSCN proved to be better than those
of SCN and RVFL.

Diniz et al. (2021) presented an intelligent algo-
rithm for the long-term prediction of silicon content
in the blast furnace using maximal overlap discrete
wavelet packet transform (MODWPT) and nonlin-
ear autoregressive (NAR) networks. The silicon con-
tent time sequence was decomposed into several sub-
sequences by MODWPT, and each subsequence was
trained by an NAR network to yield the final pre-
diction results. Experimental results showed the su-
periority of the NAR network against the nonlinear
input-output model. Cardoso and di Felice (2021)
proposed an NN model with Bayesian regularization,
and applied it to predict the molten iron silicon con-
tent. This Bayesian regularization based NN model
was more robust than conventional BP networks and
can also avoid cumbersome cross-validation in the
modeling process. Experimental results showed that
the Bayesian regularization based NN model was su-
perior to the genetic algorithm based multiobjective
NN model.

3.8.1 Autoencoder

An autoencoder is a type of NN used to learn
data encodings in an unsupervised manner (Kramer,
1991). In an autoencoder, the encoder is used to
generate a low-dimensional feature representation
from inputs, while the decoder is used to reconstruct
the inputs from the encoder’s output by minimiz-
ing a loss function. An autoencoder is specifically
useful for data denoising, dimensionality reduction,
and feature extraction. In the field of blast fur-
nace ironmaking, a number of autoencoder-based
models have been proposed and widely used. For
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example, Zhou P et al. (2018a) proposed an im-
proved RVFLNN model which combines an autoen-
coder and PCA to estimate multivariable MIQ in-
dices online. In RVFLNN, an autoencoder was first
used to extract representative features from real in-
dustrial data. Then, PCA was introduced to reduce
the complexity of the hidden layer output matrix and
settle the multicollinearity by reducing the number
of hidden nodes. Finally, the RVFLNN algorithm
was used to carry out the online prediction of the
MIQ indices in the blast furnace ironmaking pro-
cess. Application results on a blast furnace demon-
strated that the improved RVFLNN had better pre-
dictive performance than the conventional RVFLNN
and autoencoder-RVFLNN. Liu C et al. (2020) devel-
oped a stacked autoencoder (SAE) based deep learn-
ing framework to perform the prediction task in the
blast furnace. First, SAE was used to extract the
intrinsic features by means of unsupervised learn-
ing. A sparse Bayesian regression (SBR) layer was
designed as the top layer to predict the mean value
and estimate the uncertainty boundary of the predic-
tion. To further boost the accuracy of the network,
a smart algorithm based on an improved differential
evolution (IDE) was introduced to select model hy-
perparameters, which can avoid the cumbersome ef-
fort of setting them manually. Experimental results
validated the deep learning model’s superiority in ac-
curacy and error bar approximation compared with
IDE-SVR, IDE-LSSVM, IDE-KELM, and IDE lin-
ear regression stacked autoencoder (IDE-LRSAE).
Zhu et al. (2022) proposed a multi-gate mixture-
of-experts SAE (MMoE-SAE) model to predict the
silicon content of molten iron in the blast furnace
ironmaking process. MMoE-SAE was built based
on a multi-gate hybrid expert structure, and had
a selected series of SAE networks as experts. Ap-
plication results showed that MMoE-SAE had bet-
ter prediction performance than SAE and Bagging-
SAE. He BC et al. (2022) proposed a faster dynamic
feature extractor (called TempoATTNE-DFE) and
used it to predict the silicon content of an indus-
trial blast furnace. In TempoATTNE-DFE, a new
encoder-decoder structure is developed which can be
implemented in parallel for data sequences. The re-
sults showed that TempoATTNE-DFE had higher
computational efficiency in offline training and on-
line prediction of the blast furnace application.

3.8.2 Nonlinear autoregressive exogenous neural
network model

Nonlinear autoregressive exogenous neural net-
work (NARX) is a recurrent dynamic NN and is a
good predictor for time-series data modeling. NARX
has been widely used to model an extensive variety
of nonlinear dynamic systems, such as the blast fur-
nace system. Zhou P et al. (2018c) proposed a robust
multi-output LSSVR (R-M-LSSVR) based NARX
modeling method to estimate and control the MIQ
indices of the blast furnace online. They employed
an NARX model to extract the nonlinear dynamics
of the process at first. Consequently, a multitask
transfer learning method was presented to construct
an M-LSSVR model. Moreover, an M-estimator
was introduced to improve the stability of the M-
LSSVR model. Experimental results showed that
the prediction accuracy of the R-M-LSSVR model
was higher than those of M-LSSVR and M-estimator.
Fontes et al. (2020) combined FCM and NARX to
form a soft sensor (FCM-NARX) for the predic-
tion of temperature and silicon content of molten
iron. FCM was used to group the existing data, i.e.,
to determine the corresponding operational condi-
tions, and the NARX model provided accurate pre-
dictions of molten iron temperature and silicon con-
tent. The experiments verified the superiority of the
FCM-NARX model as compared to the conventional
NARX model.

Azadi et al. (2020) constructed an NARX model
for simultaneous multistep prediction of blast fur-
nace gas utilization, pressure drop, and top gas tem-
perature, which is crucial in the analysis of the oper-
ation status. In this framework, a new set of fast and
slow dynamic features were reconstructed to obtain
multiscale features in the time dimension. Jiang YS
et al. (2020) presented an NARX model to identify
the moisture content of the mixture during sintering
in the blast furnace. Current and historical data were
used to construct a model to control the moisture in
the sintering process. Finally, to improve the stabil-
ity of the online model, offline deep learning with a
supervised method was fused with the online NARX
model in a self-learning manner. Experimental re-
sults showed that the NARX model outperformed
the ordinary least-squares model.
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3.8.3 Recurrent neural network

Recurrent neural networks (RNNs), including
long short-term memory (LSTM), are deep neural
models that consider process dynamics and out-
perform most traditional data-driven models in se-
quence prediction problems. LSTM is a special type
of RNN whose core components are a sequence input
layer and an LSTM layer. LSTM can learn long-
term dependencies between time steps of sequence
data. In blast furnace ironmaking, RNN and LSTM
have been used to manage quality prediction. For
example, Jiang K et al. (2018) presented a fusion
model that combines eXtreme Gradient Boosting
(XGBoost) with LSTM to predict the silicon con-
tent online. First, the trend of silicon content was
approximated by polynomial regression fitting in a
sliding window. Then, the variables most relevant to
the output were automatically picked by XGBoost.
Finally, a fusion model based on XGBoost and LSTM
was constructed to implement the intelligent predic-
tion of the changing trend of silicon content. The
prediction results showed the superiority of the fu-
sion model compared to LSTM and XGBoost. Fur-
thermore, Jiang K et al. (2020) proposed a stacked
denoising autoencoders based RNN (SDAE-RNN) to
classify the variation trend of the silicon content on-
line in the blast furnace. First, the abstract fea-
tures were extracted using SDAE. Then, a multilevel
feature fusion algorithm was used to combine the
raw features, shallow features, and abstract features
to generate a multilevel fusion feature vector. The
multilevel fusion feature vector and corresponding
silicon content trend label were used to train the
RNN model to classify the variation trend of silicon
content. The results demonstrated that the SDAE-
RNN model outperformed PCA-SVM, PCA-RNN,
and SAE-RNN in classification accuracy.

3.8.4 Convolutional neural network

Convolutional neural network (CNN) is a partic-
ular type of NN that has a weight-sharing architec-
ture with convolution and pooling operations. The
convolution operation aims to extract features from
the data using multiple convolution kernels or filters,
which can retain the data spatial information. The
pooling operation aims to reduce the dimensionality
of features extracted from convolution operations.
Over the past few years, CNNs have been widely

used in many applications such as image recognition,
face recognition, video analysis, and blast furnace
ironmaking. For example, Wang GP et al. (2021)
proposed an attention-CNN-indRNN model to pre-
dict silicon content in the ironmaking process. In
the attention-CNN-indRNN model, a CNN is used
to extract the furnace condition features, and is then
integrated with the attention mechanism and the in-
dRNN (Li S et al., 2018) model. The test results
validated the effectiveness of the attention-CNN-
indRNN model compared to LSTM and ANN. Lay-
Ekuakille et al. (2021) described the utilization of the
sensed images to capture the effects of high temper-
atures at the inlet of a blast furnace, and proposed
two comparative algorithms based on a CNN and
monadic technique based on the harsh environment
during the ironmaking process. Virtual sensors were
introduced according to sinogram and back projec-
tion sub-techniques. Experiments showed that the
CNN-based deep learning model brought excellent
results when compared with the monadic method.

However, although deep learning has made sig-
nificant progress in the field of blast furnace ironmak-
ing, training deep models with a large number of free
parameters is a complex optimization problem. In
addition, the interpretability of deep learning needs
to be further explored to help operators understand
the learning and decision-making process.

3.9 Others

In this subsection, some other statistical or ma-
chine learning methods applied to the blast fur-
nace ironmaking process are reviewed, such as frac-
tal analysis, tree-based models, factor analysis, and
manifold learning.

Gao CH et al. (2011a) developed three types of
data-driven models based on the Volterra series to
predict the molten iron silicon content from a tiny
blast furnace. The kernels of three different types
of low-order Volterra filters were updated across the
sliding window. The results showed a high percent-
age of target hits compared with Taylor models,
suggesting that the Volterra predictor could han-
dle the dynamic behaviors of the silicon sequence.
Furthermore, Zhang ZY et al. (2022) performed six
kinds of compact Volterra models, including linear,
second-order, and third-order types corresponding
to the single input and two inputs, for silicon pre-
diction. The ability of the Volterra series to reflect
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the significant inertia of the blast furnace was thor-
oughly explored by referring to high-order Volterra
models. Experimental results indicated that the com-
pact Volterra models had better performance than
the original Volterra models and Taylor expansion
models.

Li YQ et al. (2020) developed a novel prediction
method for the blast furnace gas using the recurrence
plot (RP) and recurrence quantification (RQ) analy-
sis. RP and RQ projected the outputs relevant to the
potential five factors to high-dimensional spaces and
represented their dynamics with a 2D recurrence of
states. In the end, five parameters quantified the
respective influence on the blast furnace gas out-
put. Consequently, the internal dynamics correla-
tion among the blast furnace data was demonstrated
in both qualitative and quantitative ways.

Fractal analysis assesses the fractal characteris-
tics of data. It is a potential tool to mathematically
assess and understand the behaviors of complex sys-
tems like the blast furnace. Zhou L et al. (2011) em-
ployed the Horton-Strahler topological classification
fractal pattern, a conventional fractal method, to dis-
tinguish the fluctuation of the silicon sequence at dif-
ferent scales quantified by the Hurst index. The tests
of the silicon series from large, medium, and small
blast furnaces presented the fractal characteristics
along with the obvious local singularity, which can
be unified by the Horton-Strahler topological classifi-
cation. Finally, some operation strategies were given
to maintain stability of the blast furnace according to
the sequence analysis. Luo et al. (2019) attempted to
evaluate the density distribution for the return inter-
vals of extreme temperature fluctuation in the blast
furnace by identifying the fractal feature of the data
using rescaled range analysis (R/S) analysis and the
Hurst coefficient. The comparison between two blast
furnaces showed the superiority of the novel density
evaluation over the standard KDE based on 100 000
Kolmogorov-Smirnov (K-S) tests.

Subspace identification methods have gained
great significance in practice and are appropriate
for both prediction and control in MIMO systems.
Zeng et al. (2010b) presented a data-driven predic-
tive control method using the subspace identification
method for the blast furnace ironmaking process.
Some practical issues, namely constraint handling
and control objective, are studied during the mod-
eling of MPC. Simulation results revealed the effec-

tiveness of MPC combined with the subspace iden-
tification method against the classical proportional-
integral-differential (PID) control. Song et al. (2016)
developed a more complicated data-driven nonlin-
ear subspace modeling method for multivariate pre-
diction of MIQ. Correlation analysis and CCA were
merged to select the most prominent factors as the
input variables for modeling. In addition, a data-
driven state-space model of MIQ prediction was con-
structed based on the subspace identification with
LSSVM for the Hammerstein system. The computa-
tional burden was reduced by replacing the nonlinear
parts of the kernel functions with the approximated
polynomial parts in the Hammerstein model. Indus-
trial experiment results showed higher accuracy and
shorter computing time of nonlinearity fitted by the
interpolation method than M-LSSVR.

Tree-based models are popular machine learning
algorithms because of their understandability and
simplicity. In tree-based models, the target vari-
able can take categorical or continuous values, so
tree-based models are suitable for classification or
regression tasks. Several tree-based models, such as
the classification and regression tree (CART), gra-
dient boosting decision tree (GBDT), XGBoost, and
Light Gradient Boosting Machine (LightGBM), have
been developed and widely used in industrial pro-
cesses. Luo and Chen (2020) exploited XGBoost and
LightGBM to predict molten iron silicon content in
a blast furnace. The test results on real industrial
data showed that XGBoost and LightGBM exhibited
better prediction performance than the traditional
Lasso, RF, SVM, and GBDT algorithms. Zhang XM
et al. (2019b) proposed an ensemble pattern trees
model to predict the molten iron temperature in the
blast furnace. A bagging strategy was employed to
aggregate a set of pattern trees to improve the stabil-
ity of the model to random perturbations. Moreover,
a variable criterion was derived from the ensemble
model to quantify the influence of the process vari-
ables on the MIQ. The validation results showed that
the ensemble pattern tree model outperformed PLS,
decision trees, RF, and ANN.

Factor analysis is a statistical method used to
reduce a large number of variables into a smaller
number of factors. Factor analysis is also intro-
duced into the blast furnace regression problem due
to the interdependence of variables in the ironmak-
ing process. For example, Li HY et al. (2021) built
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a comprehensive evaluation and prediction system
based on factor analysis to predict the blast furnace
status. In addition, the AdaBoost method was used
to perform long-term prediction of the blast furnace
status index in advance.

Manifold learning is a kind of nonlinear di-
mension reduction method that refers to the con-
cept of the topological manifold. It is a prevail-
ing machine learning method designed to determine
the low-dimensional subspace embedded in a high-
dimensional space. Manifold learning has also been
introduced in the blast furnace to handle the com-
plicated data distribution. For example, Zeng et al.
(2010a) proposed a two-stage model based on man-
ifold learning to identify the covered patterns in
a high-ranked blast furnace system, which eventu-
ally contributes to the control and modeling of the
blast furnace system. First, dimension reduction was
performed by locality preserving projection (LPP),
where the input space was projected into the em-
bedded low-dimensional space, and the relationship
of input space before and after the projection was
illustrated by flexible least-squares (FLS). FLS in-
volved the measurement error and the dynamic er-
ror to recognize the time-varying features of the sys-
tem. Simulation results showed that the proposed
two-stage model based on manifold learning can fol-
low the trend of silicon content in the blast furnace
system.

4 Discussion

In this section, data-driven soft sensors are first
discussed from the perspective of application areas.
Then, some possible future research directions for
data-driven soft sensors in blast furnace ironmaking
are presented.

4.1 Application areas of data-driven soft sen-
sors in blast furnace ironmaking

The typical application areas of data-driven soft
sensors in blast furnace ironmaking are classified as
follows: silicon content prediction and tendency fore-
casting, molten iron temperature prediction, GUR
prediction, and control of the blast furnace condi-
tion. Fig. 4 shows the application distribution of soft
sensors in blast furnace ironmaking. The percent-
ages of the model types used to implement each spe-
cific application are thoroughly described in Fig. 5.

The representative models corresponding to each
application field and their references are shown in
Fig. 6.

Fig. 4 Typical application distribution of soft sensors
in blast furnace ironmaking

4.1.1 Silicon content

Silicon content is an important indicator that
reflects the chemical heat of molten iron. The silicon
content can have a significant impact on the proper-
ties of the final steel product, so it is important to
monitor it during the ironmaking process. Fig. 5a
lists some data-driven soft sensor studies conducted
in the silicon content prediction task. As can be seen
in Fig. 5a, deep learning, SVM, ELM, RVFLNN, and
adaptive models are the main approaches applied to
the silicon content prediction task. Among them,
deep learning is the most widely used modeling al-
gorithm. In blast furnace ironmaking, there are two
main ways to deal with the silicon content task: real
number prediction and tendency prediction. For real
number prediction, when the query sample arrives,
the real value of silicon content is predicted. For
tendency prediction, the changing trend of silicon
content needs to be predicted.

As shown in Fig. 6, the deep learning models
widely used for real number prediction of silicon con-
tent are autoencoder, NARX, LSTM, gated recur-
rent unit (GRU), and CNN. Autoencoders attempt
to improve the prediction performance of ANN by
pre-training. NARX aims to handle the tempo-
rality in the blast furnace by dynamically identi-
fying the historical patterns. LSTM and GRU are
popular RNN modeling methods that can capture
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Fig. 5 Model distribution in different application tasks: (a) silicon content; (b) molten iron temperature; (c)
gas utilization rate; (d) blast furnace condition control

the long-term dependencies of input data and have
been widely adopted in blast furnace ironmaking.
CNN is a deep learning algorithm designed to learn
the spatial features of blast furnace data through
convolution and pooling operations. Other popu-
lar modeling methods are variants of SVM, ELM,
and RVFLNN. For example, ELM and RVFLNN are
introduced with sequential design and incremental
training to improve the ability of the original model
for long-term prediction. In addition, some other
studies (i.e., Volterra series model, multiscale model,
and adaptive model) have been developed to deal
with the real number silicon content prediction task.

Compared with real number silicon content pre-
diction, it is more convenient and realistic to es-
timate the tendency of the silicon content (Waller
and Saxén, 2003). As shown in Fig. 6, the most
commonly used algorithms are the fuzzy classifier,
Horton-Strahler topological classification, multiscale

recognition, XGBoost, multilevel feature fusion of
mutual information, and binary coding SVM mod-
els. For example, because of adequate resilience to
the inevitable time delay and coupling phenomena
in the blast furnace, the fuzzy classifier is usually
used in tendency prediction. In the Horton-Strahler
topological classification model, a multiscale trend
decomposition of silicon content is conducted to rec-
ognize the latent patterns for every scale series.

4.1.2 Molten iron temperature

Molten iron temperature is an essential index
that reflects the thermal state of the blast furnace
and the final quality of molten iron (Zhou B et al.,
2016). Fig. 5b shows that the most frequently pre-
ferred modeling algorithms for the molten iron tem-
perature prediction task are deep learning, SVM,
RVFLNN, hybrid model, ELM, and rule-based fuzzy
model. Similar to the silicon content prediction task,
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Fig. 6 Applications of soft sensors in blast furnace ironmaking
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deep learning is the most frequently used modeling
method for the molten iron temperature task.

As shown in Fig. 6, the frequently employed
deep learning models for online prediction of molten
iron temperature include ANN and NARX. For ex-
ample, an ANN model with a multi-information fu-
sion of tuyere images is applied to improve the per-
formance of molten iron temperature prediction. In
addition, an NARX model with the FCM strat-
egy is employed and shows better performance than
the original NARX. Other modeling methods in the
molten iron temperature task are basically derived
from SVM, ELM, and RVFLNN prototypes. For in-
stance, the ensemble approach is commonly used to
enhance the stability and convergence speed of SVM.
Similar to the design in the silicon content task, se-
quential design and incremental training are intro-
duced in the optimization of ELM and RVFLNN to
improve the prediction accuracy. Furthermore, to al-
leviate the collinearity issues that exist in data, PCA
techniques are often implemented before using SVM,
ELM, and RVFLNN for prediction.

In addition to the commonly used modeling al-
gorithms, fractal identification models and hybrid
models have been employed in the molten iron tem-
perature prediction task. For example, the R/S anal-
ysis statistical model using the Hurst index has been
proposed to investigate the time series of molten iron
temperature. This approach allows for the extrac-
tion of easily interpretable fractal features. Hybrid
models combining machine learning and infrared
thermography, heat transfer models, and material
balance are used to forecast molten iron tempera-
ture, and are known for their accuracy and partial
explainability.

4.1.3 Gas utilization rate

GUR is the ratio of the carbon dioxide content
to the total carbon monoxide and carbon dioxide
content in the top gas flow. A high GUR means
adequate burning of coal and reduced consumption.
Fig. 5c shows that ELM, deep learning, fuzzy model,
hybrid model, SVM, and RVFLNN are the main ap-
proaches for predicting the blast furnace GUR.

As shown in Fig. 6, different ELM models, such
as GR-ELM and kernel ELM, have been established
for GUR prediction. In addition, ESN is often ap-
plied in GUR prediction with a large reservoir to
avoid the strenuous optimization process in com-

mon deep learning. NARX is also applied to han-
dle the high auto-correlation of GUR historical data.
In addition, fuzzy models are often proposed with
multiobjective training algorithms to conduct multi-
tasking control of GUR. SVM is commonly used for
interval prediction of GUR using probabilistic case-
matching models. Furthermore, RVFLNN is typi-
cally employed with incremental training methods
such as broad learning, which can compensate for the
influence of extreme GUR patterns. Other models
including RQ analysis and multiscale fusion models
have also been proposed to predict GUR with high
reliability and interpretability.

Previous works have mostly been based on the
process variables to infer the GUR. However, there
is also research that is trying to directly identify
the gas distribution through images during the in-
dustrial combustion process (Liu Y et al., 2017).
CNNs and deep belief networks (DBNs) are the main
approaches for extracting the critical information
from flame images, whereas they both demand large-
scale labeled images to fully reveal the deep features
embedded in images. The generative adversarial
network (GAN) is a commonly used augmentation
method to compensate for the insufficiency of labeled
samples. These vision-based techniques combined
with appropriate augmented methods may provide a
novel solution for online GUR measurement.

4.1.4 Blast furnace condition control

Blast furnace condition control usually refers to
the control of the final MIQ. According to Fig. 5d,
the T-S fuzzy model, deep learning, MPC, multiscale
model, and adaptive model are common methods ap-
plied to blast furnace condition control. As shown
in Fig. 6, T-S fuzzy models are frequently applied
control algorithms for MIQ control. T-S fuzzy mod-
els can integrate quantitative and qualitative knowl-
edge in the limited fuzzy rules, which is helpful in
guaranteeing the ultimate control performance. In
addition, deep learning methods, including NARX
and reinforcement learning, are implemented in blast
furnace condition control. Due to the multiple con-
trol targets and specific characteristics in a real blast
furnace, multitask transfer learning is usually com-
bined with these methods to achieve better control
performance.

MPC is another common approach for control-
ing the blast furnace through different identification
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methods derived from existing data. For example,
MPC with subspace identification is employed to re-
alize a control-oriented nonlinear state-space model
for the control of quality indices. Nonlinear dynamic
modeling enables the full utilization of historical in-
formation. Another method of model identification
with MPC is to apply inverse system identification,
to make the system be a pseudo-linear one with a lin-
ear transitive matrix, which intensifies the explain-
ability of the control strategy. In addition, some
robust control strategies are implemented by incor-
porating manifold learning (such as LPP) to improve
control stability. Moreover, adaptive approaches
such as JIT recursive multi-output SVR can serve
as an alternative way to control the system without
modeling identification.

In practice, for blast furnace condition control,
an operation guidance system has been successfully
implemented in multiple blast furnaces of the JFE
Steel Corp. (Hashimoto et al., 2018, 2019a), which
is based on the transient 2D model, moving hori-
zon estimation, and nonlinear MPC. This applica-
tion would encourage researchers and engineers to
use first principles in the situation where it is diffi-
cult to measure the internal conditions of a process
such as a blast furnace.

In summary, as illustrated in Fig. 5, the number
of deep learning studies in blast furnace ironmaking
is exponentially growing due to its significant con-
tributions to improving model prediction and con-
trol performance. In contrast to shallow learning
approaches, deep learning is characterized by a sig-
nificant increase in the number of successively con-
nected neural layers. The increased number of layers
and transformations can reveal higher-level data fea-
tures and more abstract concepts, as well as reveal
more complex and hierarchical relationships. Thus,
using deep learning to achieve high prediction accu-
racy of data-driven models in an end-to-end manner
is a current trend.

4.2 Possible future research directions of
data-driven soft sensors in the blast furnace

Despite the great success of data-driven soft sen-
sors in blast furnace ironmaking, there are still some
challenges and future work to be considered.

4.2.1 Digital twin modeling

A blast furnace is a complex system, includ-
ing a blast furnace body and many subsystems such
as burden distribution, coal injection, and hot air.
These systems cooperate with each other and their
spatiotemporal relationships are complex. A model
that could continuously change and update with the
physical counterpart in a synchronous manner would
be helpful for operators to mirror and monitor the
blast furnace ironmaking system with an eye to-
ward achieving and maintaining maximum efficiency
throughout the production process. Digital twin is a
virtual model that is designed to accurately mirror a
physical object. A digital twin can span the lifecycle
of a system, update from real-time data, and use
simulation, machine learning, and inference to help
decision-making. For example, by using digital twins
in conjunction with intelligent algorithms, organiza-
tions can enable data-driven operational monitor-
ing and optimization, develop innovative products
and services, and enable value creation and business
model diversification (Glaessgen and Stargel, 2012).
For the blast furnace, it is equipped with various
sensors related to important functional areas. These
sensors generate data on different aspects of physi-
cal object performance, such as temperature, energy
consumption, and pressure. Once these data are ob-
tained, the digital twin model can be used to inves-
tigate performance issues, run simulations, generate
possible improvements, and so on, which can then be
applied to the original physical object. Because data-
driven models face difficulty in predicting variables
that are not measured, it is necessary to introduce
digital twin modeling combined with first principles
in the blast furnace. Actually, researchers have paid
attention to the application of digital twins in the
industry from the perspective of intelligent manu-
facturing (Jiang YC et al., 2021b). So, to achieve
smooth control and high production efficiency of the
blast furnace system, it is of great significance to
further study digital twin approaches that are inte-
grated with physical models in the blast furnace.

4.2.2 Multi-source data fusion modeling

As mentioned earlier, blast furnace ironmak-
ing is a complex production process with charac-
teristics such as complex physical and chemical re-
actions, multiphase flow of solid, liquid, and gas,
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high uncertainty, time-varying, large time delay, and
multi-disturbance factor coupling. Therefore, rely-
ing on a single data source or a single type of data
may not be sufficient to establish an accurate pre-
diction model. On the other hand, in blast furnace
ironmaking, the collected data are commonly multi-
source (i.e., raw material, process, product, machine,
environment, and operator data) and heterogeneous
(i.e., structured or unstructured data). Therefore,
it is reasonable to use comprehensive data to build
a predictive model to predict the blast furnace MIQ
indices. Multi-source data fusion is a technique de-
signed to combine information from multiple sources
and sensors to enable analysis and decision-support
reasoning that cannot be realized by a single sen-
sor or source. By integrating heterogeneous data
from different sources through the data fusion tech-
nique, the comprehensiveness, availability, and ex-
tensibility of data can be greatly improved. An et al.
(2013) proposed a multi-source information fusion
strategy based on reliability theory and Kalman fil-
ters to detect the burden surface temperature of the
blast furnace. However, there are relatively few re-
lated studies on multi-source data fusion modeling of
blast furnace ironmaking, especially in data-driven
soft sensing. Thus, further research on the applica-
tion of multi-source data fusion in data-driven soft
sensor models is attractive and challenging.

4.2.3 Parallel and distributed modeling

As the scale of blast furnace data collection
grows, processing the data becomes more urgent. A
possible solution is to use parallel and distributed al-
gorithms that can run faster and greatly reduce the
training time. In parallel computing, many processes
are executed simultaneously to improve the com-
puting speed and efficiency. In parallel computing,
large computational tasks are divided into sub-tasks,
which can then be solved simultaneously through dif-
ferent processors. A variety of parallel computing
strategies, such as bit-level parallelism, instruction-
level parallelism, data parallelism, and task paral-
lelism, have been proposed. Distributed computing,
on the other hand, aims to use distributed systems
to increase the available computing power, which en-
ables larger and more complex computational tasks
to be performed on multiple machines. Compared
with parallel computing, distributed computing has
higher scalability and resilience. However, there

are few studies on parallel and distributed modeling
of blast furnace ironmaking, thus offering research
study options for the future.

4.3 Carbon peaking and carbon neutrality

The iron and steel industry is a major contrib-
utor to carbon emissions. For example, in China,
the carbon emissions of the iron and steel industry
account for 22% of the total carbon emissions (Yu
and Tan, 2022). Thus, the iron and steel industry
has a vital role to play in helping China achieve its
carbon peak and carbon neutrality goals. However,
the widespread use of coal-based blast furnaces in
steel production leads to high carbon emission in-
tensity, which means that the steel industry faces
challenges in emission reduction. Therefore, how
to reasonably use modern information technology,
such as artificial intelligence and big data analysis,
to help the iron and steel industry achieve the goal
of carbon neutrality and emission peak is interesting
and meaningful work. In general, data-driven soft
sensors are advanced measurement and control sys-
tems that use data analysis, machine learning, and
deep learning technologies to improve the efficiency
and sustainability of industrial processes. By pro-
viding more accurate and real-time process informa-
tion, data-driven soft sensors could be used to iden-
tify and control the variables that have the greatest
impact on carbon emissions, such as the distribu-
tion of fuel consumed. Data-driven soft sensors can
also be involved in the development and application
of new technologies and new processes to help the
ironmaking industry achieve carbon neutrality and
emission peak targets. By providing detailed and
accurate data about the process, data-driven soft
sensors can support the development of new mate-
rials, fuels, and control strategies that reduce emis-
sions and improve process sustainability. As a case
in point, data-driven soft sensors could be used to
evaluate the performance of new types of fuels or
catalysts in the blast furnace, and to optimize the
design of carbon capture and storage systems used
in the process.

5 Conclusions

This paper aims to provide an overview of
data-driven soft sensing techniques for blast fur-
nace ironmaking. By reviewing the state-of-the-art
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data-driven soft sensing algorithms in blast furnace
ironmaking, it can be confirmed that data-driven soft
sensors have great potential for academic research
and industrial applications. From an industrial point
of view, data-driven soft sensors have great poten-
tial as efficient tools to improve the automation de-
gree, efficiency, performance, and product quality
of blast furnace ironmaking systems. From an aca-
demic point of view, data-driven soft sensors can be a
multi-disciplinary integration research topic covering
statistical learning, machine learning, deep learning,
pattern recognition, system recognition, expert ex-
perience knowledge, and so on. However, there are
still some challenges and future work that need to
be considered. For example, it will be interesting
to further study the blast furnace digital twin sys-
tem to help operators mirror and monitor the blast
furnace ironmaking process. It is also of great sig-
nificance to use the multi-source data fusion tech-
nique to combine information from multiple sources
and sensors to improve the performance of reasoning
analysis and decision support. Furthermore, with
the explosive growth of collected blast furnace data,
the current data-driven soft sensing models are tend-
ing to be lightweight and run faster, and thus parallel
and distributed computing strategies are encouraged
to improve the computing speed and efficiency of
soft sensing models. It would also be interesting and
meaningful to design and use data-driven soft sensors
to help the steel industry achieve carbon neutrality
targets and make the ironmaking process more sus-
tainable and efficient.

This survey will motivate more researchers to
strive to overcome the above challenges of soft sens-
ing technology for blast furnace ironmaking. In
the next decade and beyond, it is expected that
more innovative ideas and more advanced soft sens-
ing technologies will be developed and applied to
solve various problems in blast furnace ironmak-
ing. Consequently, the overall benefits of soft sens-
ing are inspiring for their further application toward
smarter, low-carbon, and more sustainable industrial
processes.
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