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based on the Lü system to perform specific types of missions*#
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Abstract: We propose a novel parameter value selection strategy for the Lü system to construct a chaotic robot to accomplish 
the complete coverage path planning (CCPP) task. The algorithm can meet the requirements of high randomness and coverage 
rate to perform specific types of missions. First, we roughly determine the value range of the parameter of the Lü system to 
meet the requirement of being a dissipative system. Second, we calculate the Lyapunov exponents to narrow the value range 
further. Next, we draw the phase planes of the system to approximately judge the topological distribution characteristics of 
its trajectories. Furthermore, we calculate the Pearson correlation coefficient of the variable for those good ones to judge its 
random characteristics. Finally, we construct a chaotic robot using variables with the determined parameter values and 
simulate and test the coverage rate to study the relationship between the coverage rate and the random characteristics of the 
variables. The above selection strategy gradually narrows the value range of the system parameter according to the randomness 
requirement of the coverage trajectory. Using the proposed strategy, proper variables can be chosen with a larger Lyapunov 
exponent to construct a chaotic robot with a higher coverage rate. Another chaotic system, the Lorenz system, is used to verify 
the feasibility and effectiveness of the designed strategy. The proposed strategy for enhancing the coverage rate of the mobile 
robot can improve the efficiency of accomplishing CCPP tasks under specific types of missions.

Key words: Chaotic mobile robot; Lü system; Complete coverage path planning (CCPP); Parameter value selection strategy; 
Lyapunov exponent; Pearson correlation coefficient
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1  Introduction

The task of complete coverage path planning 
(CCPP) of a mobile robot is to make the robot cover 
the whole workplace except obstacles with a low repe‐
tition rate or high coverage rate in a given workplace 

(Galceran and Carreras, 2013). Currently, this tech‐
nology has been widely used in commercial robots, 
such as cleaning (Lakshmanan et al., 2020) and dust 
removal and mowing (Huang et al., 2021). In addi‐
tion, there are some robots that perform specific types 
of missions, such as patrolling (Hoshino and Taka‐
hashi, 2019), surveillance (Martins-Filho and Macau, 
2007; Curiac and Volosencu, 2014), and demining 
(Prado and Marques, 2014), which require to not 
only perform the CCPP task of the whole workplace, 
but also find intruders and explosives by a random 
or unpredictable path. The demand for such robots to 
perform specific types of missions has increased due 
to the COVID-19 outbreak. This kind of robot, which 
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can patrol independently, has been introduced in 
many crowded public places, such as schools, hospi‐
tals, stations, sports venues, and customs. People use 
them for temperature measurement, disinfection, de‐
livery of goods, and guard patrols, which can save 
manpower and time costs of prevention and control, 
reduce the possibility of cross infection of epidemic 
prevention and control staff, and ensure personnel 
safety effectively.

Mobile robots with chaotic characteristics can 
meet the need to perform the above specific types of 
missions. Sekiguchi and Nakamura constructed a 
chaotic mobile robot using the Arnold system for the 
first time (Sekiguchi and Nakamura, 1999; Nakamu‐
ra and Sekiguchi, 2001), where the chaotic character‐
istics of the system were imparted to the mobile robot 
to accomplish the CCPP tasks under specific types 
of missions. The prominent features of chaotic sys‐
tems are expressed in their topological transitivity 
and sensitive dependence on the initial conditions, 
which can meet the requirement of performing the 
above tasks exactly (Lorenz, 1997; Rajagopal et al., 
2020). The characteristic of topological transitivity 
can ensure that a chaotic robot completely covers the 
whole patrol area without repetition. The patrol or 
surveillance robot desires an unpredictable or random 
trajectory that can be guaranteed by the feature of the 
sensitive dependence on the initial conditions. Fur‐
thermore, a chaotic system is distinct from a random 
signal. It is unpredictable to the external observer but 
is also based on determinism, which can be predicted 
or controlled by the system designer in advance (Li 
et al., 2019).

The current research idea is to construct a chaotic 
robot by combining the dynamic system with chaotic 
characteristics with the kinematic equation of a mobile 
robot, to generate a complete, random, or unpredict‐
able moving trajectory to meet the requirement of 
autonomous robots when performing specific types 
of missions. Many studies have emerged in the past 
20 years, among which the work of the Curiac team 
and Volos team is outstanding. The Curiac team used 
mainly the chaotic system to monitor specific areas 
or produce confused positions of obstacles in pursuit 
missions (Curiac and Volosencu, 2009, 2012, 2014, 
2015; Curiac et al., 2018). Curiac and Volosencu (2009) 
presented a study on the design of two-dimensional 

(2D) chaotic trajectories for an intelligent vehicle 
based on two points of interest that had to be moni‐
tored, using a rotation and a scale transformation 
with the two attractors being placed exactly in the in‐
terest positions of the mentioned points. Curiac and 
Volosencu (2012) used the chaotic Hénon system to 
produce an unpredictable trajectory to accomplish  
boundary patrol. The main goal of the bioinspired 
strategy proposed by Curiac et al. (2018) was to pre‑
sent the varying behavior by changing the reference 
trajectory suddenly and randomly to perform the 
overall task of the robot. The above strategy trans‐
ferred the chaotic characteristics of the 2D Arnold to 
each reference path segment. The Volos team mainly 
transformed the chaotic system to a chaotic random 
bit sequence and sent them to the mobile robot to 
generate chaotic displacement to accomplish the CCPP 
task under specific types of missions (Volos et al., 
2012a, 2012b, 2012c, 2013; Moysis et al., 2020, 2021; 
Petavratzis et al., 2020). Volos et al. (2012a, 2012b, 
2012c) constructed double-scroll chaotic attractors 
by a nonlinear circuit to produce the random and cha‐
otic sequences of the mobile robot to accomplish the 
CCPP task of the entire terrain. Other studies (Volos 
et al., 2013; Moysis et al., 2020, 2021; Petavratzis 
et al., 2020) used mainly the logistic map to pro‐
duce random chaotic bit sequences and convert them 
to the robot’s trajectory to implement a robot’s 
movement in four or eight directions. Fahmy (2012) 
used a well-known three-dimensional (3D) chaotic 
system, such as Arnold, Lorenz, and Chua, to construct 
a chaotic robot combining the chaotic system with 
the robot kinematic equation. Martins-Filho and Macau 
(2007) used the Taylor-Chirikov map, also called the 
standard map, to build a planner of the goal position 
sequence and impart the chaotic behavior to the mo‐
bile robot.

The above research can be roughly divided into 
two directions. One is to construct a chaotic robot by 
combining a continuous chaotic system with the dy‐
namic equation of a mobile robot to generate the tra‐
jectory performing the CCPP task. The other is to 
generate a chaotic trajectory by sampling the time 
series generated by the chaotic equation, which is 
directly used as the subtarget point during the robot’s 
movement. We have systematically studied the above 
two strategies regarding how to construct a chaotic 
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robot and produce the coverage trajectory with a high 
coverage rate (Li et al., 2015, 2016, 2017, 2018, 
2019) based on the chaotic system, such as Logistic, 
Standard map, Chebychev map, Lorenz, and Arnold. 
Our research finds that in the latter construction 
method, it is easy to produce the coverage trajectory 
with high randomness of a chaotic system. The disad‐
vantage is that the produced trajectory is discrete 
and likely to change the chaotic performance of the 
original system. Furthermore, the running environ‐
ment is fixed in a grid map, and there are only four 
or eight fixed movements in the map for a robot to 
choose from. While the first method is the tradi‐
tional one, which has a complex structure and rela‐
tively low randomness, there is no restriction on the 
running direction of the robot, and it is generated 
by itself. The produced trajectory is continuous and 
more in line with the characteristics of a real robot. 
These two methods are suitable for different applica‐
tions. Our study is mainly along the first strategy at 
present.

In addition, most of the current studies use only a 
set of classical fixed values of the system parameters 
to construct a chaotic robot. There is also a lack of 
systematic research on the system parameters and the 
chaotic and random characteristics of the variables 
used. Selecting the values of system parameters is a 
complex problem. The randomness of system vari‐
ables produced by different values of system parame‐
ters is very different; it is also distinct under the same 
set of values due to sensitivity characteristics. The 
coverage rates of the trajectory generated by the cha‐
otic robot, which are constructed by different values 
of parameters and variables, are also different at the 
same time. Therefore, we study the values of the 
system parameters and variables for constructing a 
chaotic robot by a comprehensive selection strategy 
based on the Lü system. The purpose is to select the 
optional values of the system parameters and chaotic 
variables with the best random performance to con‐
struct a chaotic robot to produce the trajectory with 
higher randomness and coverage rate, so that the robot 
can better accomplish the complete coverage task 
under specific types of missions. The Lü system comes 
from the famous Lorenz family, which is similar to the 
Lorenz system. However, the Lü system has simpler 
structure with rich dynamic behavior and better chaotic 

performance than the Lorenz system (Lü and Chen, 
2002).

We analyze the chaotic performance of the Lü 
system under a set of classical parameters including 
phase space, phase plane, time series, bifurcation dia‐
gram, and Lyapunov exponent. A comprehensive se‐
lection strategy is introduced based on the Lü sys‐
tem to gradually determine the optional value range 
of its parameter. It studies the change in chaotic per‐
formance with the parameter varying by analyzing 
the dissipative system, the Lyapunov exponents, the 
phase plane, and the Pearson correlation coefficients 
of the variables. We construct a chaotic robot using 
chaotic variables and selected values of the system to 
produce the complete coverage trajectory, and re‐
search the influence of the values of the system pa‐
rameters on the coverage trajectory and the relation‐
ship between the sensitive characteristics of the system 
and the coverage rate of the constructed trajectory. 
Then we provide the Lorenz system to test and verify 
the feasibility and effectiveness of the designed com‐
prehensive selection strategy, which is based on the 
Lü system.

2  General analysis of the chaotic performance 

of the Lü system

The Lü system is a chaotic system proposed by 
Lü and Chen (2002). Its structure is as follows:

ì

í

î

ïïïï

ïïïï

ẋ = a ( y − x ) ,

ẏ = cy − xz,

ż = xy − bz,
(1)

where a, b, and c are the parameters of the Lü sys‐
tem, and x, y, and z are the three chaotic variables 
or system states. Common literature usually takes a 
set of classical values of system parameters for re‐
search, such as a=36, b=3, and c=20 (Mehdi and 
Kareem, 2017). We analyze the chaotic performance 
of the Lü system by the phase space, phase plane, 
time series, and Lyapunov exponent with the values 
of these parameters and combine qualitative and quan‐
titative methods to analyze the chaotic performance, 
chaotic degree, and random characteristics of the 
system.
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The 3D phase space is shown in Fig. 1. Fig. S1 
(see supplementary materials for Figs. S1–S10) lists 
three 2D phase planes, and Fig. S2 draws the time se‐
ries of the three variables, where the initial state [x0, 
y0, z0]=[0, 1, 20], the iteration step h=0.01, and the 
number of iterations n=10 000. It can be seen from 
the phase space and phase planes that the system to‐
pologically covers and demonstrates the characteris‐
tics of a chaotic attractor. The three variables of the 
system change with time and show random character‐
istics (Fig. S2). Fig. S3 shows the part bifurcation 
diagram (Rabah et al., 2018) regarding the value of 
parameter c, where c∈[10, 35]. It can be seen from the 
figure that the system changes from period to chaos 
with varying parameter c. The above methods quali‐
tatively analyze the chaotic characteristics of the 
system through graphics.

Lyapunov exponent (LE) is one of the most im‐
portant indices to measure the sensitive dependence 
on the initial conditions, which is one of the two 
characteristics of a chaotic system. An n-dimensional 
system has n LE’s. A system can be concluded to be a 
chaotic system when the maximum LEmax is positive 
(Peitgen et al., 2004). LE can be considered the aver‐
age logarithmic rate of convergence or separation of 
two adjacent points of two time series xn and yn sepa‐
rated by an initial distance ΔR0.

LE = lim
n → ∞

1
n∑i = 1

n

ln
|

|
|
||
| ΔRi

ΔR0

|

|
|
||
|
,

ΔR0 = ||x0 − y0||2,

(2)

where i is the sequence number of the ith value of xn 
and yn. When the maximum index LEmax is positive, 
the system enters a chaotic state. In general, the 
greater the value of positive LEmax is, the larger the 

number of positive LE’s is, and the better the chaotic 
performance or randomness of the system is. The 
three LE values of assuming classical system values 
of the Lü system can be obtained according to the 
above definition of LE: LE1=1.898, LE2=−0.461, and LE3=−20.296.

Because the maximum exponent LE1 is positive, 
the Lü equation is concluded to be a chaotic system 
when assuming the classical values of the parameters 
a=36, b=3, and c=20.

3  Comprehensive selection strategy for the 

Lü system

The method of constructing a chaotic robot 
based on a chaotic system is generally to randomly 
select a chaotic variable x, y, or z in the chaotic sys‐
tem, such as the one given by Eq. (1), among a set 
of fixed classical values. It is the commonly used Lü 
system. We need to answer the following questions. 
Does the system have a good chaotic performance 
under this set of values? Which of the chaotic variables 
x, y, and z has the best random characteristics and is 
more suitable for constructing a chaotic robot? There 
are many combinations of system parameter values 
in the optional range. Which combination of them 
is the best? Which variable is the best in each group? We 
introduce a comprehensive selection strategy to gradu‐
ally determine the optional value range of its parame‐
ter by analyzing the dissipative system, Lyapunov 
exponents, phase plane, and Pearson correlation co‐
efficient of the variable based on the extended dis‐
cussion of the chaotic performance of the Lü system.

3.1  LE analysis of different parameter values

The values of the two parameters of the Lü 
system are fixed in the study, a=36, b=3. We discuss 
the chaotic characteristics, chaotic degree, and variety 
of LE of the system with parameter c changing to de‐
termine its optimal value range, where parameter c 
is limited to a positive integer.

3.1.1  Value range of parameter c to ensure a dissipa‐
tive system

The Lü system belongs to the Lorenz family, 
and is the first discovered dissipative system that 

Fig. 1  Phase space (or attractor) of the Lü system
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can show chaotic motion. Its trajectory evolves into 
an invariant set of attractors over time, thus being a 
dissipative system. The volume change rate of the 
phase space is

∇V =
∂ẋ
∂x

+
∂ẏ
∂y

+
∂ż
∂z

. (3)

To become a chaotic system, ∇V should be smaller 
than zero. It can be deduced from Eqs. (1) and (3) 
that

∇V =
∂ẋ
∂x

+
∂ẏ
∂y

+
∂ż
∂z

=  − a + c − b

=− 36 + c − 3 =− 39 + c < 0.  

It is deduced that when c is smaller than 39, 
the Lü system is a dissipative system and is likely a 
chaotic attractor. Therefore, the upper limit of parame‐
ter c is roughly determined.

3.1.2  LE research with the Lü system being a dissipative 
system

We calculate each LE of c when it takes a posi‐
tive integer less than 39. It is found that when c as‐
sumes a value greater than 35, LE cannot be obtained, 
which indicates that the chaotic characteristics of the 
system are not significant, so only the values of c 
less than or equal to 35 are assumed. When c is less 
than 10, LE is negative, which does not meet the con‐
dition of being a chaotic system. We draw the part 
LE spectrum when c∈ [10, 35], as shown in Fig. 2. 

The figure shows that only when parameter c is greater 
than 13, is the largest LE greater than 0. Then, the val‐
ue range of parameter c is further reduced to 
[14, 35].

3.1.3  Analysis of the phase plane

The Lü system remains in a chaotic state as pa‐
rameter c∈[14, 35]. When c takes every integer value, 
the chaotic characteristics of the system must be dif‐
ferent. Some values of the parameter can perform well, 
while some perform poorly. Which value of system 
c has the best chaotic characteristics? Here, we use 
the phase plane as a tool for qualitative analysis. 
There are three sets of planes for analysis: x–z, x–y, 
and y–z. Because the chaotic properties of the three 
groups are the same, only one of them is needed.

Fig. S4 illustrates the x–z phase planes at each 
integer value of system c, c∈[14, 35]. The topology 
characteristics of the system are good when c∈ [20, 
28], in which the trajectories are dense and cover the 
whole workplace. However, others behave worse. 
Then, the value range of c is reduced to [20, 28].

3.1.4  LE analysis

Furthermore, we quantitatively analyze the char‐
acteristics of each system when c∈[20, 28], and calcu‐
late each LE at every integer value. Table 1 lists all the 
calculated LE values. Table 1 shows that the values 
of LE are different when parameter c takes different 
integer values, so the chaotic and random characteris‐
tics of the systems are also distinct. In general, the 
greater the value of positive LE and the larger the 
number of positive exponents, the better the chaotic 
characteristics of the system. However, when there 
are two positive LE’s in the systems, the chaotic char‐
acteristics are affected by both values, so it is difficult 
to judge which system is better. Table 1 shows that 
when c∈[20, 23], the maximum LE of them, LE1, is not 
as large as that when c∈[24, 28], and each value of 
the second LE of them, LE2, is negative, so the chaotic 
performance of the systems when c∈ [20, 23] is not 
as good as that when c∈[24, 28]. Therefore, the value 
range of c is further reduced to [24, 28].

We can compare the chaotic characteristics when 
c=26 and 28 according to the two positive LE’s in 
Table 1. The values at c=28 are smaller than their 
corresponding values at c=26, indicating that the 

Fig. 2  LE spectrum of the Lü system
The three lines represent the maximum, medium, and mini‐
mum indices of LE from top to bottom, which are represented by 
LE1, LE2, and LE3, respectively

235



Li et al. / Front Inform Technol Electron Eng   2023 24(2):231-244

chaotic characteristics of the system at c=28 are not 
as good as those at c=26. Therefore, the value of c=28 
can be removed first, and the range of c narrows to 
[24, 27]. For four other values, it is difficult to judge 
which one has the best performance. Table 1 shows 
that LE1 varies from small to large, while LE2 changes 
in the opposite direction, as c∈[24, 27]. Therefore, it 
is difficult to judge the random and chaotic results 
based on the judgment of the two values of LE. Fur‐
thermore, we combine the Pearson correlation coeffi‐
cient to judge the random characteristics of the system 
and variables.

3.2  Pearson correlation coefficient

The Pearson correlation coefficient, represented 
by PXX', is a measure of the strength of the linear rela‐
tionship between two variables X and X', and takes 
values in the closed interval [−1, +1]. The smaller the 
absolute value of PXX' is, the more irrelevant the two 
variables X and X' are (Profillidis and Botzoris, 
2019). Here, we use it to roughly judge the random 
characteristics of two chaotic variables. Suppose X is 
a chaotic variable; then, obtain a variable X' by in‐
creasing a tiny value ΔX of X, X' =X+ΔX.
Definition 1    If the absolute value of the Pearson 
correlation coefficient |PXX'| between chaotic variable 

X and its slightly changed variable X' is very small and 
tends to zero, the random characteristics of the chaotic 
variable X are better.

We design a procedure of calculating the Pear‐
son correlation coefficient of chaotic variables for 
the Lü system under a set of parameters (a, b, c), given 
an initial value (x0, y0, z0), iteration step h, and number 
of iterations n. The length of the obtained time series 
is N=n/h. Then, the steps of calculating the Pearson 

correlation coefficient of chaotic variable X are as 
follows, based on a small change value ΔX and 
variable X':

1. Calculate the time series of chaotic variable 
Xi ( i=1, 2, …, N ) in Eq. (1) according to a set of given 

initial values.
2. Calculate the time series of chaotic variable 

Xi' (i=1, 2, …, N) based on X and a tiny value ΔX.
3. Count the means of the two variables:

ì

í

î

ï
ïï
ï

ï
ïï
ï

X̄ =
1
N∑i = 1

n

Xi ,

X̄' =
1
N∑i = 1

n

Xi' .

(4)

4. Calculate the variances of the two variables:

ì

í

î

ï
ïï
ï

ï
ïï
ï

D ( X ) =
1
N∑i = 1

N

( Xi − X̄ ) ,

D ( X' ) =
1
N∑i = 1

N

( Xi' − X̄' ) .

(5)

5. Find the covariance of the two variables:

Cov ( X, X' ) =
1
N∑i = 1

N

( Xi − X̄ ) ( Xi' − X̄' ). (6)

6. Count the Pearson correlation coefficient:

PXX' =
Cov ( X, X' )

D ( X ) D ( X' )
. (7)

We can calculate the Pearson correlation coeffi‐
cients of the three chaotic variables x, y, and z of Eq. (1) 
according to the above procedure, where ΔX=0.01, 
a=36, b=3, c∈ [24, 27], h=0.01, n=1000, N=n/h=
100 000, (x0, y0, z0)=(0, 1, 20).

We calculate four sets of absolute values Pv of 
the Pearson correlation coefficients of the three chaotic 
variables (x, y, z) at each integer value of parameter c 
(Table 2), where Pxx', Pyy', and Pzz' are the Pearson cor‐
relation coefficients of the three chaotic variables x, y, 
and z, respectively, and Pa denotes their mean value.

To facilitate comparison, the Pv values under each 
group of parameter c are further given in Fig. 3. It can 
be seen from Table 2 and Fig. 3 that the Pv values of 
the four groups are all small and no more than 0.05, 

Table 1  LE values when c∈[20, 28]

c

20

21

22

23

24

25

26

27

28

LE1

1.898

2.042

2.185

2.511

2.740

2.884

3.002

3.209

2.893

−0.461

−0.480

−0.040

−0.016

0.207

0.170

0.132

0.002

0.054

LE2 LE3

−20.296

−19.465

−19.070

−18.434

−17.897

−17.020

−16.105

−15.191

−13.936

236



Li et al. / Front Inform Technol Electron Eng   2023 24(2):231-244

which shows that the random performances of the 
chaotic system are good according to Definition 1. 
The Pv values are smaller when c takes values of 24 
and 25, indicating better randomness of chaotic vari‐
ables. The values at 26 and 27 are larger, and the cha‐
otic performance is relatively poor. The Pv value is 
not very accurate, however, because of the sensitive 
characteristics of chaotic time series. The random 
performance of variables will not be strictly distin‐
guished when the difference between them is small.

No previous research has pointed out the rela‐
tionship between the value of the Pearson correlation 
coefficient Pv of the chaotic variable and the cover‐
age trajectory generated by the constructed chaotic 
robot. Of course it is unclear whether the smaller the 
coefficient is, the better the randomness behaves, and 
the better the distribution feature of the coverage tra‐
jectory is. We use the chaotic robot constructed below 
to test and verify this relationship.

4  Construction and coverage trajectory ana-

lysis of a chaotic robot based on the Lü system

The strategy of constructing the chaotic robot is 
to select a variable from the three chaotic states in 

Eq. (1) and combine it with the robot kinematics 

equation to transfer the chaotic properties to the 

robot. The constructed chaotic robot produces a 

complete coverage trajectory with chaotic proper‐

ties to accomplish CCPP tasks under specific types of 

missions. The coverage rate and random performance 

of its trajectory are evaluated to obtain a better cover‐

age effect.

4.1  Construction of the chaotic robot

A chaotic robot is usually constructed based on 

the differential structure of a mobile robot. Its kine‐

matic model is

ì

í

î

ïïïï

ïïïï

ẋr = vrt cos (θr (t ) ),

ẏr = vrt sin (θr (t ) ),

θ̇r = ω ( t ) ,

(8)

where (xr , yr) is the position of the robot, vrt is the ve‐

locity of the robot, assumed to be a constant value, 

θr(t) is the moving direction of the robot, and ω(t) is 

the angular velocity of the robot.

The chaotic robot can be built in place of θr(t) in 

Eq. (8) with a variable chosen from Eq. (1). Suppose 

that we choose variable x; then, the designed chaotic 

robot is as follows:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

ẋ = a ( y − x ) ,

ẏ = cy − xz,

ż = xy − bz,

ẋr = vrt cos x,

ẏr = vrt sin x.

(9)

Eq. (9) includes five first-order differential equa‐

tions embedding the 3D subspace of the Lü system. 

The chaotic characteristics of the system are imparted 

to the robot by the chaotic variable x, which controls 

its angular velocity. Then, the chaotic coverage tra‐

jectory composed of the robot coordinates (xr, yr) is 

produced step by step, and the CCPP task can be 

accomplished.

In addition to the five variables in Eq. (9), the 

Runge‒Kutta method is usually used by discretizing 

the differential equations to find the solution to the 

robot trajectories. Its common fourth-order model is 

as follows:

Fig. 3  Comparison of Pv of the Lü system

Table 2  The absolute values of Pearson correlation coef‐
ficients of the variables of the Lü system when c∈∈[24, 27]

c

24

25

26

27

Pxx'

0.0173

0.0145

0.0375

0.0428

Pyy'

0.0171

0.0147

0.0386

0.0406

Pzz'

0.0193

0.0198

0.0251

0.0210

Pa

0.0179

0.0163

0.0337

0.0348
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ì

í

î

ï

ï
ïïï
ï

ï

ï

ï

ï
ïïï
ï

ï

ï

Yn + 1 = Yn +
1
6

( K1 + 2K2 + 2K3 + K4 ),

K1 = hf ( Xn, Yn ),

K2 = hf ( Xn + 0.5h, Yn + 0.5K1 ),

K3 = hf ( Xn + 0.5h, Yn + 0.5K2 ),

K4 = hf ( Xn + h, Yn + K3 ).

(10)

Then, four groups of discretization parameters, K1, 
K2, K3, and K4, of the differential equations in Eq. (10) 
are 

ì

í

î

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

K x
1 =  − axn + ayn,

K y
1 = cyn − xn zn,

K z
1 = xn yn − bzn,

K x
2 =  − a ( )xn +

Δt
2

K x
1 + a ( )yn +

Δt
2

K y
1 ,

K y
2 = c ( )yn +

Δt
2

K y
1 − ( )xn +

Δt
2

K x
1 ( )zn +

Δt
2

K z
1 ,

K z
2 = ( )xn +

Δt
2

K x
1 ( )yn +

Δt
2

K y
1 − b ( )zn +

Δt
2

K z
1 ,

K x
3 =  − a ( )xn +

Δt
2

K x
2 + a ( )yn +

Δt
2

K y
2 ,

K y
3 = c ( )yn +

Δt
2

K y
2 − ( )xn +

Δt
2

K x
2 ( )zn +

Δt
2

K z
2 ,

K z
3 = ( )xn +

Δt
2

K x
2 ( )yn +

Δt
2

K y
2 − b ( )zn +

Δt
2

K z
2 ,

K x
4 =  − axn + ayn − aΔtK x

3 + aΔtK y
3 ,

K y
4 = c ( yn + ΔtK y

3 ) − ( xn + ΔtK x
3 ) ( zn + ΔtK z

3 ),

K z
4 = ( xn + ΔtK x

3 ) ( yn + ΔtK y
3 ) − b ( zn + ΔtK z

3 ).

(11)

Finally, the discrete form of Eq. (9) for the chaotic 
mobile robot is
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xn = xn − 1 +
Δt
6

( K x
1 + 2K x

2 + 2K x
3 + K x

4 ),

yn = yn − 1 +
Δt
6

( K y
1 + 2K y

2 + 2K y
3 + K y

4 ),

zn = zn − 1 +
Δt
6

( K z
1 + 2K z

2 + 2K z
3 + K z

4 ),

xr.n = xr. (n − 1) + hvrt cos yn,
yr.n = yr. (n − 1) + hvrt sin yn,

(12)

where Δt is the sampling time, h is the iteration step, 
and subscript n indicates the number of iterations. 
Here, ∆ t=1, h=0.01. Given the initial position (xr.0, 

yr.0) of the robot, the initial state (x0, y0, z0) of the Lü 
system, and the iteration time nit, the moving trajectory 
(xr.n, yr.n) of the robot at any time n can be obtained. 
Fig. 4 shows two sets of coverage trajectories pro‐
duced by the chaotic mobile robot constructed based 
on Eqs. (11) and (12), nit=1000. Fig. 4a takes the clas‐
sical values of system parameters a=36, b=3, and c=
20, while Fig. 4b shows the trajectory when c=24 for 
comparison. In the figures, curves express the cover‐
age trajectories, and “○ ” and “◇ ” show the start 
point and the end point, respectively. Fig. 4 shows that 
given an initial state, the chaotic mobile robot can 
produce a continuous coverage trajectory, and dif‐
ferent values of parameter c of the system can pro‐
duce completely different coverage trajectories. Sim‐
ilarly, the two other variables y and z of the Lü sys‐
tem can be combined with Eq. (8) to construct a cha‐
otic robot. The initial state (x0, y0, z0) of the Lü system 
remains unchanged in the following.

4.2  Sensitivity of the chaotic robot to the initial value

We can obtain the coverage trajectories of the 
constructed chaotic robot according to the different 
parameters and qualitatively test the sensitivity of the 
coverage trajectories to the initial values of the robot 
at specific parameters. Here, (xr.0, yr.0)=(0.5,0.5). Fig. 5 
shows the contrast iteration trajectories by increasing 
xr.0 with Δxr.0=0.01 when c∈ [20, 27], while the other 
initial value yr.0 remains unchanged, where the red 
dotted line is the trajectory after xr.0 changes. The 
number of iterations nit takes a smaller value for com‐
parison, nit=500. Because the start point changes lit‐
tle, the positions of the two start points (marked by 
○) basically coincide in the figure. The end points 
(marked by ◇) of the trajectories basically coincide 
with the small difference (Fig. 5a) after 500 iterations 
at c=20, indicating poor sensitivity. The difference 

Fig. 4  Coverage trajectories based on the Lü system: (a) c=
20; (b) c=24
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of the two trajectories becomes increasingly signifi‐
cant after a certain number of iteration steps, show‐
ing that the randomness is becoming better from 
Fig. 5b to Fig. 5e. In Figs. 5e–5h, red dotted lines all 
change significantly and show that they all have bet‐
ter random characteristics. The above phenomena 
reflect the changing trend of sensitivity coinciding 
with the values of LE in Table 1. Therefore, we only 
take the parameters with good sensitivity to con‐
struct the chaotic robot, i.e., c∈ [24, 27]. This is the 
circumstance caused by chaotic robots constructed by 
variable x of the Lü system. The same conclusion can 
be obtained for the robot constructed with variables 
y and z.

Below we will test whether the chaotic robot 
system with a high coverage rate can have good 
randomness.

4.3  Coverage performance evaluation of the chaotic 
robot

Coverage trajectories demonstrate very different 
performances using different values of the system 
and state variables produced by the constructed chaotic 

robot. Different values of parameters, system start 

points, and robot start points can produce completely 

different coverage trajectories under the same sys‐

tem. The evaluation indices of coverage performance 

include randomness of the coverage trajectory or sen‐

sitivity to the initial values, distribution characteris‐

tics, and the coverage rate.

4.3.1  Coverage rate

Coverage rate is used to describe the working 

efficiency of the robot, defined as the ratio of the 

covered area Wc to the total workplace Wmn:

rc =
Wc

Wmn

. (13)

If a given workspace is quantified as a grid map 

of equal size, rc can be defined as the ratio of the 

number of grids that have been covered to that of the 

total ones:

rc =
1
M∑i = 1

M

G ( i ) , (14)

Fig. 5  Test of sensitive dependence on the chaotic robot’s initial conditions of the coverage trajectory at different values of 
system c based on the Lü system: (a) c=20; (b) c=21; (c) c=22; (d) c=23; (e) c=24; (f) c=25; (g) c=26; (h) c=27 
References to color refer to the online version of this figure
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where M is the total number of grids and G(i) is the 
assignment of each grid, having two values:

G ( i ) =
ì
í
î

1,   grid covered,

0,   grid not covered.
(15)

We use the latter method to calculate the coverage 
rate. Using the state variable with the highest cover‐
age rate to construct a chaotic robot can also produce 
a trajectory with high performance to improve the 
working efficiency of the robot.

4.3.2  Static obstacle avoidance

Usually, the robot should work in a fixed work‐
place, so it is necessary to avoid obstacles along the 
running boundaries of the robot. At present, the com‐
monly used static obstacle avoidance algorithm for 
chaotic robots is the mirror mapping algorithm (Naka‐
mura and Sekiguchi, 2001; Fahmy, 2012; Volos et al., 
2013; Liu et al., 2017; Li et al., 2019). The working 
principle is shown in Fig. 6.

According to the mirror mapping strategy, mi' 
is reflected back to the workplace, recorded as 
mi+1(xr.i+1, yr.i+1), which is the new initial value of the 
chaotic robot to continue its iteration procedure to ac‐
complish the CCPP task in the given workplace (Li 
et al., 2019).

We limit the workplace in Fig. 4 to a 1×1 size run‐
ning environment, where the mirror mapping strategy 
is used for static obstacle avoidance during the robot’s 

running procedure. Fig. 7 shows the produced trajec‐
tories after 5000 iterations at c=20 and 24. The “*” 
on the boundaries expresses the mirror reflected points. 
Calculating them by Eq. (14), the coverage rate of 
Fig. 7a is 79.5%, while in Fig. 7b it is 91.25%.

4.3.3  Coverage performance evaluation

The initial values of the system remain unchanged. 
Then, we research the coverage performance of 
chaotic robots constructed by different values of c at 
fixed values of a=36 and b=3. The trajectory distri‐
bution characteristics of most chaotic robots con‐
structed by c are good when c∈[24, 27]. When itera‐
tion time nit=10 000, most of the coverage rates rc’s 
exceed 90%. Figs. S5–S8 show the coverage trajecto‐
ries produced by the constructed chaotic robot using 
three variables x, y, and z, separately, where the start 
point of the robot is ( xr.0, yr.0 )=(0.5, 0.5). It can be 

seen that within a certain number of steps, the robot 
can accomplish the CCPP task.

The coverage rate is also affected by the start 
point of the robot due to the characteristics of the 
chaotic system. Different start points lead to different 
coverage rates, always with great differences. We 
sample the start point evenly in the workplace within 
the size of 1×1 and take points every 0.01 interval in 
the horizontal and vertical coordinates to form the size 
99×99 test points to better compare the performance of 
the system under each value of c. Then, we use the 
three variables under each value of c to construct the 
chaotic robot to generate the coverage trajectories at 
each point, test each coverage rate, and take its mean 
value for comparison. The test results are shown in 
Table 3. Fig. 8 lists the values in Table 3 as a histo‐
gram. cxyz is the mean value of the coverage rate of 
the three variables, and fa is the coverage rate of the 

Fig. 6  Mirror mapping
The brown bold line is the boundary of the workplace, mi(xr.i, 
yr.i) is the current position of the robot, mi' (xr.i', yr.i') is the next 
position about to run out of the boundary, mo is the collision 
point between the robot and the boundary, and mi+1(xr.i+1, yr.i+1) 
is the reflection point of the mirror mapping. References to 
color refer to the online version of this figure

Fig. 7  Coverage trajectories formed after static obstacle 
avoidance based on the Lü system: (a) c=20; (b) c=24
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trajectory. It can be seen in Table 3 and Fig. 8 that 
when c=24 and 25, higher coverage rates can be ob‐
tained, and the average values exceed 95%. However, 
when c=26 and 27, the coverage rates are relatively 
low, below 90%. Comparison of the test results with 
those in Table 2 and Fig. 3 shows that parameters 
and variables with better randomness can achieve 
higher average coverage rates. Therefore, we can 
select the chaotic parameter variables with good ran‐
domness to construct a chaotic robot by analyzing the 
chaotic and random characteristics of the chaotic sys‐
tem, to increase the coverage rate and the working ef‐
ficiency of the robot. In total, the value of c=24 or 25 
is preferred for the Lü system, and it is better to se‐
lect variable x or y of the system to construct a cha‐
otic robot. If the classical value of parameter c=20 is 
selected to construct a chaotic robot, the randomness 
of the coverage trajectory is poor, and a high coverage 
rate cannot be obtained.

5  Test and comparison with the Lorenz system

We test the proposed selection strategy with an‐
other chaotic system, the Lorenz system, which 
was the first chaotic attractor discovered in 1963. It 
can also be used to construct chaotic robots (Fahmy, 

2012; Volos et al., 2012b; Li et al., 2016) to accom‐
plish the CCPP task. The structure of the Lorenz 
system is as follows:

ì

í

î

ïïïï

ïïïï

ẋ = a ( y − x ) ,

ẏ = cx − y − xz,

ż = xy − bz,
(16)

where a, b, and c are the system parameters that deter‐
mine the chaotic state and degree of the system. It can 
be seen from Eq. (16) that the Lorenz system is more 
complex than the Lü system as given in Eq. (1) as 
its second differential equation has one more variable.

First, we need to judge how to meet the require‐
ment of being a dissipative system according to the 
procedure of the designed comprehensive selection 
strategy. The above conditions can be met as long as 
parameters a and b take positive values, while there 
is no limit on parameter c. Suppose that a and b take 
a fixed set of values, a=10, b=8/3. We discuss the 
chaotic characteristics of the system with change 
in parameter c by analyzing the LE spectrum of the 
Lorenz system. It is found that when c takes an inte‐
ger greater than 24, there is one and only one LE 
index greater than 0, indicating that the system enters 
into the chaotic state. By analyzing only the phase 
planes of the system, such as the Lü system in Fig. S4, 
the random characteristics with different parameter 
values of the Lorenz system cannot be distinguished, 
because their distribution characteristics are similar 
when c takes integers greater than 24. Therefore, we 
only take c=25 and 28 for the following research, 
where LE1, the largest Lyapunov exponent of c=28, is 
greater than that of c=25, which means that the sys‐
tem of c=28 has better chaotic and random character‐
istics. Then, a high coverage rate of the trajectory can 
be obtained by the chaotic robot, constructed by the 
system of c=28. Table 4 lists the calculated LE when c=
25 and 28. The last judgment of the designed strategy 
is to calculate the Pearson correlation coefficient of 
the variable under each value of parameter c=25 and 
28. Table 5 lists the absolute values of the Pearson cor‐
relation coefficients of the Lorenz system variables. We 
find that variable y of the Lorenz system has the low‐
est Pv value, and z is the largest. It can be concluded 
that y is the most suitable variable for constructing 
a chaotic robot.

Table 3  The mean coverage rate of the constructed chaotic 
robot based on the Lü system when c∈∈[24, 27]

c

24

25

26

27

x (%)

97.1

97.6

88.5

83.8

y (%)

96.5

96.6

89.1

86.9

z (%)

95.1

95.5

92.2

92.6

cxyz (%)

96.2

96.5

89.9

87.7

Fig. 8  Comparison of the mean coverage rate based on the 
Lü system when c∈∈[24, 27]
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We discuss the coverage rate constructed by the 

chaotic Lorenz system when c=25 and 28, in the 

same simulation environment and test conditions of 

the Lü system. Figs. S9 and S10 show a set of cover‐

age trajectories, where nit=10 000 and the start point 

of the robot is ( xr.0, yr.0 )=(0.5, 0.5). Table 6 lists their 

mean coverage rates.

Figs. S9 and S10 and Table 6 show that the cha‐

otic robot constructed by variable y and c=28 can 

produce trajectories with a higher coverage rate. These 

results show that the chaotic variable and system with 

better random and chaotic characteristics can pro‐

duce trajectories with a better coverage rate. This is 

consistent with the conclusion drawn from the Lü 

system, which shows that the designed selection strat‐

egy is feasible and effective. Furthermore, the larg‐

est values of LE of the Lü system are larger than 

those of the Lorenz system (as shown in Tables 1 

and 4). Therefore, the chaotic and randomness char‐

acteristics of the Lorenz system are worse than those 

of the Lü system, and its coverage rates are also 

smaller (as shown in Tables 3 and 6 and Figs. S5– 

S10). This further proves that the parameters and 

variables with high randomness also have a high cov‐

erage rate of the constructed chaotic robot, which can 

be derived from the designed comprehensive selection 

strategy.

6  Conclusions

We propose a comprehensive selection method 
for determining the values of parameters and vari‐
ables of a chaotic system to construct a chaotic robot 
for the Lü system. It is found that the parameters 
and variables with high randomness have a high cov‐
erage rate of the constructed chaotic robot to per‐
form the CCPP task under specific types of missions. 
Another chaotic system, the Lorenz system, is used 
to verify the feasibility and effectiveness of the de‐
signed strategy. The proposed algorithm has the follow‐
ing advantages and characteristics:

1. It is easier to generate the coverage trajectory 
with good randomness and high coverage rate to 
choose the Lü system as the construction equation of 
the chaotic robot due to its better chaotic performance 
and randomness.

2. Combining the deterministic system, phase 
plane, LE index, and Pearson correlation coefficient 
can gradually reduce the selection range of parame‐
ters and finally determine the best values of parame‐
ters and variables to construct a chaotic robot with 
high randomness and coverage rate.

3. The system parameters and variables with a 
high coverage rate can be chosen by considering only 
the chaotic characteristics and randomness of the sys‐
tem and variables.

4. This research considers only the selection 
method of the best values of parameter c. The selec‐
tion strategies of two other system parameters a and 
b are basically the same. They can be chosen based 
on the selected optimal parameter.

5. The system can also obtain better distribution 
characteristics of individual variables in the positions 
where the parameter combinations have a lower 
value of LE and the average coverage rate is low. The 
value of the average coverage rate is basically consis‐
tent with that of LE.

6. This method is universal. It is applicable not 
only to Lü and Lorenz systems, but also to Arnold, 
Rössler, Chua, and other 3D chaotic systems that can 
be used to construct the chaotic robot to perform the 
CCPP task.

However, the current research is not perfect. Only 
when the Pearson correlation coefficient difference is 
large, can the chaotic time series clearly distinguish 

Table 6  The mean coverage rate of the constructed chaotic 
robot based on the Lorenz system

c

25

28

x (%)

67.5

75.4

y (%)

73.9

82.9

z (%)

47.8

52.8

cxyz (%)

63.1

70.4

Table 4  LE values of the Lorenz system

c

25
28

LE1

0.878
1.138

LE2

−0.718
−0.695

LE3

−13.741
−14.034

Table 5  The absolute values of the Pearson correlation 
coefficients of the Lorenz system variables

c

25

28

Pxx'

0.2357

0.1916

Pyy'

0.2167

0.1692

Pzz'

0.2478

0.2231

Pa

0.2334

0.1946
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the randomness difference of the system or variable 
due to the sensitivity of the chaotic system. In addi‐
tion, when choosing an optimal value of the parame‐
ter of a chaotic system, various factors should be 
comprehensively considered. The chaotic and random 
characteristics of chaotic time series are affected by 
the values of the chaotic system parameters, the 
initial values of the system and robot, etc. Future 
research should comprehensively consider and study 
various methods and means to select the appropriate 
chaotic values of parameters and variables, so that 
the constructed chaotic robot can better meet the re‐
quirements of randomness and distribution charac‐
teristics of coverage trajectories to accomplish the 
CCPP task under specific types of missions.
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