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Abstract: Financing needs exploration (FNE), which explores financially constrained small- and medium-sized
enterprises (SMEs), has become increasingly important in industry for financial institutions to facilitate SMEs’
development. In this paper, we first perform an insightful exploratory analysis to exploit the transfer phenomenon
of financing needs among SMEs, which motivates us to fully exploit the multi-relation enterprise social network
for boosting the effectiveness of FNE. The main challenge lies in modeling two kinds of heterogeneity, i.e., transfer
heterogeneity and SMEs’ behavior heterogeneity, under different relation types simultaneously. To address these
challenges, we propose a graph neural network named Multi-relation tRanslatIonal GrapH aTtention network (M-
RIGHT), which not only models the transfer heterogeneity of financing needs along different relation types based
on a novel entity–relation composition operator but also enables heterogeneous SMEs’ representations based on
a translation mechanism on relational hyperplanes to distinguish SMEs’ heterogeneous behaviors under different
relation types. Extensive experiments on two large-scale real-world datasets demonstrate M-RIGHT’s superiority
over the state-of-the-art methods in the FNE task.
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1 Introduction

As financial markets become increasingly
volatile with the outbreak of crises such as the
coronavirus disease-2019 (COVID-19) pandemic and
geopolitical wars, more and more small- and
medium-sized enterprises (SMEs) are facing finan-
cial stress and are in need of financing, which mo-
tivates us to study the problem of financing needs
exploration (FNE). The FNE problem aims to ex-
ploit those financially constrained SMEs, which is

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com


Liang et al. / Front Inform Technol Electron Eng 2023 24(3):388-402 389

significant for financial institutions to facilitate the
development of those struggling SMEs. However, the
transfer of financing needs among SMEs within the
enterprise social network causes the complicated ex-
ternal factors of SMEs’ financing needs (Ceptureanu
et al., 2021), which makes it very difficult to ad-
dress the FNE problem effectively. Therefore, it is of
utmost necessity to devise an effective graph-based
method that can model the transfer phenomenon of
financing needs for accurate FNE.

A motivating example of FNE is given below.
An SME’s financing need will transfer to its related
SMEs, which will have influences on their degree of
financing needs. Fig. 1 depicts this phenomenon via
a toy example, in which a color bar denotes the de-
gree of an SME’s financing need and the colors of
edges denote the transfer intensities. In this ex-
ample, SME A is extremely financially constrained,
which will transfer this constraint to its subsidiary
SMEs and its upstream SMEs, resulting in increases
in the degree of financing needs of its related SMEs.
This phenomenon is common in real practice that a
parent SME is likely to reduce financial support for
its subsidiary, while a downstream company tends
to owe money to the upstream company if it is fi-
nancially constrained. An effective FNE method is
supposed to consider such a significant transfer fac-
tor to improve its performance. More details about
the transfer phenomenon of financing needs among
SMEs are elaborated in the supplementary materials
based on an industrial dataset from MYbank (refers
to Zhejiang E-commerce Bank, which is a Chinese
company that offers banking services for SMEs).

The above example motivates us to construct
an SME graph, in which the nodes are SMEs and
the edges are the relations among SMEs, and ap-
ply graph representation learning methods to model
the transfer phenomenon of financing needs among
SMEs for facilitating the FNE task.

However, in a real scenario, the SME graph con-
tains multiple relation types; the above idea faces
two kinds of heterogeneity, i.e., transfer heterogene-
ity and behavior heterogeneity, which makes it very
challenging to model the transfer of financing needs
among SMEs. On one hand, transfer heterogeneity
(CH1) indicates that the transferred financing needs
are different under different relation types. As shown
in Fig. 1, in general, the financing needs transferred
from SME A to its subsidiaries are stronger in in-

tensity than those transferred to its upstream SMEs.
This is because a “parent” SME usually has substan-
tial capital control over its subsidiary, which means
that the parent SME generally has a great influence
on its subsidiaries. In comparison, SME A is only
one of the many downstream enterprises of SME G,
which means that SME A’s financing condition will
only partially affect that of SME G, and the transfer
intensity of SME A’s financing needs is unlikely to
be too large. Such transfer heterogeneity increases
the complexity of an effective FNE method. On the
other hand, behavior heterogeneity (CH2) indicates
that each SME has different behaviors under differ-
ent relation types. As shown in Fig. 1, SMEs B, C,
and D are all subsidiaries of SME A, and their fi-
nancing needs are also affected by those of SME A.
Intuitively, SMEs B, C, and D should have similar
financing need conditions, which, however, does not
hold. Even though SME B has similar behavior to
SMEs C and D under the relation type “subsidiary,”
it may behave differently under other relation types,
which leads to their differences in financing need con-
ditions. Such behavior heterogeneity is likely to orig-
inate from the fact that SMEs have different roles
under different relations, which complicates an FNE
method.

In this paper, to address the two kinds of het-
erogeneity for facilitating the FNE task, we propose
a novel Multi-relation tRanslatIonal GrapH aTten-
tion network, named M-RIGHT, which includes two
key modules, i.e., the transfer heterogeneity learn-
ing module and the behavior heterogeneity learn-
ing module. Specifically, the transfer heterogeneity
learning module attentively transfers the message of
financing needs among connected SMEs under dif-
ferent relation types based on our devised entity–
relation composition operator, where the operator is
able to distinguish heterogeneous transferred mes-
sages by using the heterogeneous representations of
different relation types (for addressing CH1). The
behavior heterogeneity learning module first learns
the heterogeneous representations of SMEs under
different relation types by performing SME repre-
sentation translations on each relational hyperplane,
which helps distinguish each SME’s heterogeneous
behaviors (for addressing CH2), and then leverages
SMEs’ representations to predict the graph triplets
and compute the corresponding loss for the model’s
update in a self-supervised learning manner. Finally,



390 Liang et al. / Front Inform Technol Electron Eng 2023 24(3):388-402

SME B

SME C

SME D

Subsidiary

SME GSubsidiary

Subsidiary

SME A

SME E

SME F

Upstream

Upstream

Upstream

Upstream

Financially 

sufficient

 Financially

constrained

Financially

 sufficient

 Financially

constrained

Fig. 1 A motivating example: financing needs transferred from SME A to different SMEs under different
relation types (SME: small- and medium-sized enterprise). References to color refer to the online version of
this figure

M-RIGHT leverages a tree-based method to predict
financially constrained SMEs based on the learned
SMEs’ representations.

Our main contributions are as follows:
1. We provide in-depth exploratory analyses to

exploit the transfer phenomenon of financing needs
in the enterprise social network, i.e., an SME graph,
which indicates the transfer heterogeneity and be-
havior heterogeneity in real practice.

2. We propose a novel graph representation
learning based method, named M-RIGHT, which ef-
fectively models the two kinds of heterogeneity in the
transfer phenomenon of financing needs. To the best
of our knowledge, this is the first method to model
the transfer phenomenon of financing needs in SME
graphs, which is beneficial to the FNE task.

3. We conduct comprehensive experiments on
two real-world datasets, demonstrating M-RIGHT’s
superiority over the state-of-the-art methods in the
FNE task.

2 Related works

In this section, we survey two lines of studies
highly relevant to FNE.

2.1 Financing needs exploration

Existing methods for the FNE task can be
categorized into two kinds, i.e., rule-based methods
and machine learning based methods. A rule-based
method designs various objective functions manu-
ally based on empirical rules and uses rating mod-
els (Angilella and Mazzù, 2015; Luo et al., 2021)
to predict the probability of financial constraint of
SMEs. Such methods depend heavily on expert
advice, which fail to capture SMEs’ financial pat-

terns automatically. To facilitate automatic FNE,
some financial institutions have been using machine
learning based methods, which model SMEs’ finan-
cial patterns (Graesch et al., 2021; Jeon, 2021) and
explore the financially constrained SMEs (Kshetri,
2016; Tian et al., 2018) based on machine learning al-
gorithms. Although few studies have reported their
methods in detail, they claimed that methods for
exploring potential customers could be reference so-
lutions. For example, Zhang B et al. (2021) designed
a clustering algorithm to target customers in an e-
commerce platform. Xu ZP et al. (2021) leveraged
the contextual bandit to model the funnel structure
in email marketing campaigns. Rogic and Kascelan
(2019) and Rogić et al. (2022) used support vector
machines to predict the values of customers. Graesch
et al. (2021) devised a method to direct the market-
ing campaigns in retail banking based on a deep be-
lief network. Duan and Ma (2018) and Chen et al.
(2020) leveraged an extreme gradient boosting al-
gorithm, XGBoost, to mine the potential customers
that require their products. Lessmann et al. (2021)
proposed an ensemble learning framework including
XGBoost to target potential customers for profit. In
addition to the studies on customer targeting, deep
learning based models (Cheng et al., 2016; Guo et al.,
2017) and tree-based models (Chen et al., 2020) are
common solutions for the FNE task in real industrial
practice.

Despite the success of these methods, they can
hardly achieve satisfying performance in the FNE
task because these methods focus only on SMEs’
financing needs induced by their own operational
conditions and ignore the transfer phenomenon of
financing needs within the enterprise social network.
In real scenarios, the financing needs of SMEs are
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affected by not only independent internal factors,
but also the external factors conveyed by the rela-
tions between SMEs (Ceptureanu et al., 2021).

2.2 Graph representation learning

Graph representation learning methods are
popular for embedding graphical structural data,
which can be applied for exploring SME graphs for
boosting FNE. Existing graph representation learn-
ing methods can be categorized into two kinds.

2.2.1 Homogeneous graph representation learning

Homogeneous graph representation learning
methods are designed to model graph data with ho-
mogeneous node types or relation types. Early stud-
ies are relatively shallow, which first perform random
walks (Perozzi et al., 2014; Grover and Leskovec,
2016) on graph data to generate node sequences
and then input these node sequences into word2vec
(Mikolov et al., 2013) to obtain node representations.
With the development of deep learning, graph neu-
ral networks (Wu et al., 2021) have attracted great
attention from researchers, among which the graph
convolution network (Kipf and Welling, 2017) has
achieved great success. Based on the graph con-
volution network, Hamilton et al. (2017) designed
an inductive graph convolution network, which can
efficiently perform message passing between con-
nected nodes. To further improve the effective-
ness, Veličković et al. (2018) incorporated atten-
tion mechanisms and Xu KYL et al. (2019) incorpo-
rated the Weisfeiler–Lehman test into the message-
passing process. Attention-based graph neural net-
works have been proven to be effective in various
tasks (Liao et al., 2022; Wang Y et al., 2022). De-
spite the success of homogeneous graph representa-
tion learning methods, they are not referenced so-
lutions for the FNE problem due to their lack of
considerations of the graph’s multiple relation types.

2.2.2 Heterogeneous graph representation learning

Heterogeneous graph representation learning
methods are designed to model graph data with dif-
ferent node types or different relation types, which
can be categorized into three kinds (Yang C et al.,
2022). The first kind of method is the proximity-
preserving method, which obtains node representa-
tions by preserving the similarity of the node to its

heterogeneous neighbors, such as the similarities in
random walks (Dong et al., 2017; Shi et al., 2018b;
Wang X et al., 2019), under different relation types
(Tang et al., 2015), from different perspectives (Shi
et al., 2018a), or in different meta-paths (Zhang
WT et al., 2022). However, these methods are too
shallow to be applicable to the increasingly com-
plex high-order data. The second kind of method is
the message-passing method, which aggregates node
representations from their heterogeneous neighbors
in the deep graph neural network. Schlichtkrull
et al. (2018) and Shang et al. (2019) proposed ex-
tensions of graph convolution networks on heteroge-
neous graphs, which first model the message pass-
ing under different relation types separately and
then aggregate the node representations from var-
ious message-passing paths. Furthermore, Ye et al.
(2019) and Vashishth et al. (2020a) proposed learn-
ing node and relation representations simultaneously
to improve the modeling of heterogeneous graphs. In
addition, Fu et al. (2020), Zhao et al. (2021), and
Zhang WT et al. (2022) proposed learning node rep-
resentations under different meta-paths, where the
design of meta-paths is task-specific and highly de-
pendent on expert knowledge. To eliminate the de-
pendency on the meta-paths, Yu et al. (2022) auto-
matically captured the meta-paths in heterogeneous
graph neural networks. The disadvantage of these
kinds of methods is their lack of knowledge mod-
eling in heterogeneous graphs, such as the knowl-
edge of subsidiaries and upstream SMEs in SME
graphs, which is of great importance. The third
kind of method is relation-learning method (Ji et al.,
2022), which focuses on preserving the knowledge
structure, i.e., knowledge triplets, based on different
triplet scoring functions and is common for knowl-
edge graph embedding. Traditional relation-learning
methods include triple translation methods (Bordes
et al., 2013; Wang Z et al., 2014; Sadeghian et al.,
2021) and semantics-based triplet-matching methods
(Yang BS et al., 2015; Nickel et al., 2016; Trouillon
et al., 2016), which are too shallow to capture the
complex knowledge in the triplets. Instead, deep
neural network based methods use deep node em-
beddings for calculating the triplets (Dettmers et al.,
2018; Shang et al., 2019; Vashishth et al., 2020b;
Li et al., 2022). However, existing relation-learning
methods do not take into consideration the het-
erogeneous representations of nodes under different
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relations, which means that it is difficult to guaran-
tee their performances in recognizing the behavior
heterogeneity in the FNE task.

In conclusion, existing graph representation
learning methods are ineffective in modeling SME
graphs because of their inability to address the two
kinds of heterogeneity in FNE.

3 Methodology

3.1 Problem settings and preliminaries

Definition 1 (SME graph) An SME graph is de-
noted as G = (V , E ,�,H ,R). Here, V is the set of
nodes that represent the SMEs; E is the set of het-
erogeneous relation types among the SMEs; � is the
set of triplets, each of which (s, r, o) ∈ � contains
the head node s, relation type r, and tail node o;
H ∈ R

|V|×dh
0 and R ∈ R

|E|×de
0 denote the original

node feature matrix of all SME nodes and the rela-
tion feature matrix of all relation types, respectively.
Definition 2 (Financing needs exploration) Given
the SME graph G and the labeled financially con-
strained SMEs as the training set, in which y = 1

denotes that the SME is financially constrained and
y = 0 denotes that the SME is financially sufficient,
the goal of the FNE task is to predict the financially
constrained SMEs in the future.
Definition 3 (Graph representation learning)
Graph representation learning methods aim to learn
the representations of nodes and their relations that
encode the structural information of the graph given
an SME graph G. In the FNE task, the learned rep-
resentations can be used as inputs of the downstream
model to predict financially constrained SMEs.

The main notations in this study are shown in
the supplementary materials.

3.2 Overview of M-RIGHT

Overall, M-RIGHT first learns the representa-
tions of SMEs and their relation types and then
leverages the learned representations to facilitate
the downstream FNE task. The architecture of M-
RIGHT’s representation learning process is pre-
sented in Fig. 2, which includes two key modules, i.e.,
the transfer heterogeneity learning module and the
behavior heterogeneity learning module. The trans-
fer heterogeneity learning module attentively trans-
fers representations among connected SMEs based

on our devised entity–relation composition operator
(which is able to distinguish heterogeneous trans-
ferred messages under different relation types) and
then obtains a representation of each SME after the
message transfer. The behavior heterogeneity learn-
ing module first enables heterogeneous representa-
tions of each SME under different relation types by
performing SME representation translations on each
relational hyperplane (which helps distinguish each
SME’s heterogeneous behavior) and then leverages
the SMEs’ heterogeneous representations to predict
the scores of graph triplets for the model’s update in
a self-supervised learning manner. Finally, with the
learned SMEs’ representations, M-RIGHT leverages
XGBoost to predict financially constrained SMEs.
The following subsections elaborate on M-RIGHT’s
transfer heterogeneity learning module and behavior
heterogeneity learning module.

3.3 Transfer heterogeneity learning

In this module, M-RIGHT performs hetero-
geneous message passing via L graph convolution
layers and obtains the representations of SMEs.
Specifically, M-RIGHT leverages our devised entity–
relation composition operator in the message-passing
process to distinguish heterogeneous transferred
messages under different relation types. To further
improve the effectiveness of the message passing, M-
RIGHT uses a self-attention mechanism to differenti-
ate the importance of neighbors. Here, we introduce
the message-passing process and the self-attention
mechanism.

3.3.1 Message passing with entity–relation composi-
tion operator

In the lth layer of the graph convolution net-
work, M-RIGHT obtains a set of SME representa-
tions, i.e., node embeddings h = {hl

1,h
l
2, . . . , h

l
|V|},

where hl
i ∈ R

dl , and a set of relation embeddings
r =

{
rl
1, r

l
2, . . . , r

l
|E|

}
, where rl

i ∈ R
dl . Then, M-

RIGHT calculates the representation of each SME
by message passing from their one-hop neighbors.
To distinguish the information transferred from dif-
ferent relation types, we devise an entity–relation
composition operator Φ(·) : Rdl × R

dl → R
dl , which

aggregates their representations from both the neigh-
bors and the corresponding relation types during
the message-passing process. Then, each SME’s
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Fig. 2 Architecture of M-RIGHT’s representation learning process, which includes the transfer heterogeneity
learning module and behavior heterogeneity learning module: (a) given an SME graph with initial SME
representations h∗, relation features r∗, a true triplet �, and a fake triplet �′, M-RIGHT first leverages the
transfer heterogeneity learning module to obtain the corresponding SME representations, and then leverages
the behavior heterogeneity learning module to obtain the triplets’ scores and the corresponding loss for the
model’s update; (b) details of transfer heterogeneity learning to obtain representations of SMEs based on the
entity–relation composition operator, which distinguishes heterogeneous transferred messages under different
relation types; (c) details of the scoring function in behavior heterogeneity learning to obtain triplets’ scores,
which enable SMEs’ heterogeneous representations, i.e., heterogeneous behavior, under different relations (M-
RIGHT: Multi-relation tRanslatIonal GrapH aTtention network; SME: small- and medium-sized enterprise)

output representation in this layer is obtained by a
shared linear transformation parameterized by a ma-
trix, W l

h ∈ R
dl×dl+1, along with a nonlinear transfor-

mation parameterized by a non-linear function f(·).
The representations of each SME u in this layer are
calculated as follows:

hl+1
u = f

⎛
⎝ ∑

v∈N (u)

W l
hΦ

(
hl
v, r

l
T (u,v),h

l
u

)
⎞
⎠ , (1)

whereN (u) denotes the one-hop neighbor set of SME
u, and T (u, v) denotes the relation type between
SMEs u and v. Note that the number of relations
between two SMEs is allowed to be more than one.
The instantiation of the entity–relation composition
operation will be elaborated in Section 3.4.

In addition, because the update of SMEs’ repre-
sentations in Eq. (1) will transform the original vec-
tor space, the representations of each relation type i

in layer l should be transformed similarly with trans-
formation matrix W l

r ∈ R
dl×dl+1 to obtain the out-

put relation type representation as follows:

rl+1
i = f

(
W l

rr
l
i

)
. (2)

Overall, Eqs. (1) and (2) allow our proposed M-
RIGHT to model the transfer heterogeneity while
keeping the space complexity of the relation type
modeling to be O(|E|dl), i.e., linear in the number of
feature dimensions.

3.3.2 Convolution with multi-head self-attention

One drawback of the SME representation up-
date introduced in Eq. (1) is that it can neither deal
with variable-sized neighbors as input nor focus on
the most relevant neighbors for message passing. To
address these problems, we use a self-attention mech-
anism (Veličković et al., 2018) that updates each
SME’s representation by attending over its neigh-
bors. Similar to the graph attention network (GAT)
(Veličković et al., 2018), to stabilize the learning pro-
cess of self-attention, we extend the mechanism to
apply multi-head attention, in which K independent
self-attention processes are performed independently
and concatenated jointly to replace Eq. (1).

Specifically, in the kth head, for each SME u, the
attention coefficient of its neighbor v is computed
with a shared attentional single-layer feed-forward
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neural network a : Rdl+1 × R
dl+1 → R as follows:

eku,v = a
(
W l

h,kh
l
u,W

l
h,kΦ(h

l
v, r

l
T (i,j),h

l
u)
)
, (3)

where W l
h,k ∈ R

dl×
dl+1
K is the linear transforma-

tion metric shared among all SMEs in the attention
head k of layer l. We choose the attentional single-
layer feed-forward neural network a to be parame-
terized by a weight vector a ∈ R

2dl+1
K , and apply

the leaky rectified linear unit (LeakyReLU) (Maas
et al., 2013). Fully expanded out, Eq. (3) may then
be expressed as follows:

eku,v =

{
exp

(
LeakyReLU

(
aT

[
W l

h,kh
l
u‖W l

h,k

· Φ(hl
v , r

l
T (u,v),h

l
u)
]))

}

·
{ ∑

m∈N (u)

exp

(
LeakyReLU

(
aT

·
[
W l

h,kh
l
u‖W l

h,kΦ(h
l
m, rl

T (i,m),h
l
i)
]))}−1

,

(4)

where “‖” is the concatenation operation.
The attention coefficient computed using Eq. (3)

indicates the importance of SME u’s representation
to that of SME v. To make coefficients easily compa-
rable across different neighbors, the attention coeffi-
cient of SME u is normalized across all its neighbors
using the softmax function, as follows:

αk
u,v = softmaxv

(
eku,v

)

=
exp

(
eku,v

)
∑

m∈N (u) exp
(
eku,m

) . (5)

With these normalized attention coefficients, M-
RIGHT first calculates the representation for every
SME u under the kth head attention and then con-
catenates the representations from K independent
attention mechanisms to obtain the output repre-
sentation of each SME. In other words, the output
representation for every SME u is calculated using
Eq. (6), which is used to substitute Eq. (1) under
the multi-head attention setting as follows:

hl+1
u = ‖Kk=1f

⎛
⎝ ∑

v∈N (u)

αk
u,vW

l
h,kΦ(h

l
v , r

l
T (u,v),h

l
u)

⎞
⎠ .

(6)

In the last layer, we substitute the concatenation
operation by an averaging operation as follows:

hl+1
u =

1

K

K∑
k=1

f

⎛
⎝ ∑

v∈N (u)

αk
u,vW

l
h,kΦ(h

l
v , r

l
T (u,v),h

l
u)

⎞
⎠ .

(7)
Such an attention mechanism is efficient because

it is parallelizable across pairs of neighbor nodes.
Moreover, the model is directly applicable to induc-
tive learning problems, including tasks in which the
model has to generalize to completely unseen nodes.

Note that our transfer heterogeneity learning
module follows the message-passing framework in
most graph neural networks (Hamilton et al., 2017;
Veličković et al., 2018; Vashishth et al., 2020a), in
which our terms SME and relations correspond to
the terms node and edge, respectively, in tradi-
tional graph neural networks. The main novelty of
our proposed transfer heterogeneity learning process
over the traditional process, e.g., the attention-based
message-passing process in GAT, is that we intro-
duce an effective entity–relation composition opera-
tor to consider transfer heterogeneity along different
relation types in calculating both the neighbors’ at-
tentions and the transferred messages.

3.4 Behavior heterogeneity learning

In this module, M-RIGHT first obtains the het-
erogeneous representations of each SME under dif-
ferent relations, which correspond to SME’s het-
erogeneous behaviors in different environments, and
then reads out the graph’s structure, i.e., calculating
margin-based ranking loss of each triplet pair, for the
model’s update.

To enable an SME’s heterogeneous representa-
tions, we introduce a translation mechanism on rela-
tional hyperplanes. Specifically, under each relation
type r, this mechanism uses a vector wr to project
the representation hs of each SME s into a hyper-
plane, and the representation of SME can be ob-
tained as follows:

hs⊥r = hs −wT
r hswr. (8)

Then, the score of each triple (s, r, o) can be
calculated as follows:

fr(hs,ho) =
∥∥(hs −wT

r hswr

)

+rr −
(
ho −wT

r howr

)∥∥2
2
.

(9)
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In other words, when calculating the triplets,
the translation mechanism on relational hyperplanes
enables each SME to have distinguishable represen-
tations under different relation types, which avoids
collapsing the SMEs’ representations to be the same.

With this scoring function and by treating in-
relation and out-relation separately, Φ in each layer l
in the transfer heterogeneity learning process can be
instantiated as follows:

Φ(hs, rr,ho) =

⎧
⎪⎪⎨
⎪⎪⎩

hs⊥r + rr + ho

−ho⊥r, (s, r, o) ∈ �in,

hs⊥r − rr + ho

−ho⊥r, (s, r, o) ∈ �out,
(10)

where �in and �out denote the in-relational triplet
and out-relational triplet, respectively. In this
entity–relation composition operator, the first two
terms are equivalent to passing heterogeneous mes-
sages on the relational hyperplane, and the last two
terms are equivalent to projecting the aggregated
messages back to the original space.

In addition, in each layer l in the transfer hetero-
geneity learning module, each relational hyperplane
projection vector wr will be transformed by matrix
W l

w ∈ R
dl×dl+1 as follows:

wl+1
r = f

(
W l

ww
l
r

)
. (11)

The score is expected to be higher for a ground-
truth triplet � and lower for a generated fake
triplet �′. To maximize the discriminations between
ground-truth triplets and the generated fake triplets,
we use the following margin-based ranking loss:

L =
∑

(s, r, o) ∈ �(
s′, r′, o′

)
∈ �′

[fr(zs, zo) + γ − fr′ (z
′
s, z

′
o)]+ ,

(12)
where zi denotes the SME i’s representation after
L graph convolution layers, γ is the margin separat-
ing positive and negative triplets, and “ [ ]+” is an
operator that converts a negative value to zero. To
guarantee that the output representation of each r

from the graph convolution network, i.e., rL+1
r , is in

the relational hyperplane and is regularized, the fol-
lowing constraints are considered when we minimize
L:

⎧
⎪⎨
⎪⎩

∀r ∈ E ,
∣∣wT

r r
L+1
r

∣∣ / ∥∥rL+1
r

∥∥
2
≤ ε,

∀r ∈ E , ‖wr‖2 = 1,

∀v ∈ V , ‖zv‖2 ≤ 1,

(13)

where ε is an error term to ensure orthogonality.
Then, Eq. (12) can be rewritten as follows:

L =
∑

(s, r, o) ∈ �(
s′, r′, o′

)
∈ �′

[fr(zs, zo) + γ − fr′ (z
′
s, z

′
o)]+

+ C

{∑
v∈V

[
‖zv‖22 − 1

]
+

+
∑
r∈E

[(
wT

r r
L+1
r

)2
∥∥rL+1

r

∥∥2
2

−ε2

]

+

⎫
⎬
⎭ .

(14)
We adopt stochastic gradient descent to mini-

mize the above loss function, with which M-RIGHT’s
parameters, including the shared metrics W l

h,k, W
l
r ,

and W l
w in each lth layer, the weight vector α, and

the hyperplane’s norm vector wr of each relation r,
can be updated. The sets of ground-truth triplets are
randomly traversed multiple times. When a ground-
truth triplet is visited, a fake triplet with the same
nodes and a randomly selected fake relation is con-
structed based on the self-adversarial negative sam-
pling mechanism (Sun et al., 2019).

Note that compared with most graph neural net-
works, e.g., GAT, which directly use the node repre-
sentations after message passing for the node classi-
fication or link prediction task, our proposed behav-
ior heterogeneity learning module is equivalent to an
additional step for further optimizing node represen-
tations before performing downstream tasks. Such
an additional step is not only beneficial for modeling
the heterogeneity of node representations, but it also
increases the flexibility of M-RIGHT in performing
various downstream tasks because it is trained in a
self-supervised manner that is not limited to a spe-
cific task.

Overall, M-RIGHT’s representation learning
process is shown in Algorithm 1.

Detailed analysis of our proposed M-RIGHT is
presented in the supplementary materials.

4 Experiments

In this section, we verify the effectiveness of our
proposed M-RIGHT on the FNE task in MYbank.
The comprehensive experiments are conducted on
two large-scale real-world datasets to answer the fol-
lowing questions:

Q1: How does M-RIGHT perform on the FNE
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Algorithm 1 M-RIGHT’s representation learning
process
Input: SME graph G = (V, E ,�,H,R); depth L; num-

ber of attention heads K; neighborhood function
N : h → 2V

Output: Final representations of SMEs {zi,∀i ∈ V}
1: while not converged do

# Embedding of each layer
2: for l = 0, 1, ..., L do

# Attention under each head
3: for k = 1, 2, ..., K do

# Representation of each SME
4: for u ∈ V do

# Attention of each neighbor
5: for v ∈ N (u) do
6: eku,v = a

(
W l

h,kh
l
u,

W l
h,kΦ(h

l
v, r

l
T (i,j),h

l
u)
)

7: αk
u,v = softmaxv(e

k
u,v)

8: end for
9: end for

10: end for
11: hl+1

u = ‖Kk=1f
(∑

v∈N (u) α
k
u,vW

l
h,k

·Φ(hl
v , r

l
T (u,v),h

l
u)
)

12: ∀i ∈ E , rl+1
i = f

(
W l

rr
l
i

)

13: ∀i ∈ E , wl+1
i = f

(
W l

ww
l
i

)

14: end for
15: ∀u ∈ V : zu = hL+1

u

# Backpropagation with loss
16: L =

∑

(s, r, o) ∈ �(
s′, r′, o′

)
∈ �′

[fr(zs,zo) + γ − fr′ (z
′
s,z

′
o)]+

+C

{
∑

v∈V

[‖zv‖22 − 1
]
+
+

∑

r∈E

[
(wT

r rL+1
r )2

‖rL+1
r ‖2

2

−ε2
]

+

}

17: end while

task compared with state-of-the-art methods?
Q2: How do the SMEs’ relations contribute to

M-RIGHT’s performance on the FNE task?
Q3: How do the two key modules, transfer het-

erogeneity learning module and behavior hetero-
geneity learning module, contribute to M-RIGHT’s
performance?

4.1 Experimental settings

4.1.1 Dataset description

In this subsection, we use two datasets, i.e., ap-
plication program (APP) and short messaging ser-
vice (SMS), collected from MYbank, each of which
contains an SME graph and the financing need labels
of SMEs. The detailed FNE scenario in MYbank is
presented in the supplementary materials. The de-

tails of the two datasets are presented in Table 1.
Each dataset is organized chronologically, in

which the earlier 85% data are used for training and
validation, while the latter 15% data are used for
testing. In this way, we can guarantee that the data
from the training set and the validation set are ahead
of the test set, which ensures that the predictions are
on the future.

4.1.2 Evaluation metrics

We evaluate the performance of different FNE
methods using three metrics, i.e., classification ac-
curacy (CA), micro-averaged F1 score (micro-F1),
and area under the receiver operating character-
istic (ROC) curve (AUC), which are widely used
in graph representation learning studies (Veličković
et al., 2018; Xu KYL et al., 2019) and financial stud-
ies (Yang S et al., 2020). More details of the metrics
are presented in the supplementary materials.

4.1.3 Comparison methods

The comparison methods can be categorized
into two groups, as follows:

1. Graph-free methods
ANOVA-XGBoost (Chen et al., 2020) uses the

extreme gradient boosted tree method for prediction.
SVM-RE (Rogic and Kascelan, 2019) uses a hybrid
support vector machine rule extraction method for
prediction. DeepFM (Guo et al., 2017) combines fac-
torization machines and deep learning for prediction,
which is a common method in real practice.

2. Graph-based methods
GIN (Xu KYL et al., 2019) is a homogeneous

graph representation learning method that lever-
ages the Weisfeiler–Lehman test for message pass-
ing. GraphSAGE (Hamilton et al., 2017) is an
inductive homogeneous graph representation learn-
ing method. GAT (Veličković et al., 2018) is an
attentive homogeneous graph convolution network.
RGCN (Schlichtkrull et al., 2018) is a heterogeneous
graph convolution network that models the message
passing under different relation types. CompGCN
(Vashishth et al., 2020a) is a heterogeneous graph
convolution network that jointly learns the represen-
tations of nodes and relations. MHGCN (Yu et al.,
2022) is a meta-path-based heterogeneous graph neu-
ral network. HRAN (Li et al., 2022) is a heteroge-
neous graph neural network that fuses and attends
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Table 1 Dataset description

Dataset
Number of SMEs Number of relations Number of relation Number of node Number of positive

(nodes) (edges) types features SMEs

APP 42.45 million 1.26 billion 27 1164 3.89 million
SMS 62.92 million 1.54 billion 27 885 5.68 million

APP: application program; SMS: short messaging service; SME: small- and medium-sized enterprise

semantic-specific information through the relation
path.

More details on the experimental settings are
presented in the supplementary materials.

4.2 Experimental results and analysis

4.2.1 Evaluation on FNE (for Q1 and Q2)

To answer Q1, we compare M-RIGHT with all
comparison methods. Among the comparison meth-
ods, the graph-free methods use the initial graph-
free SMEs’ features as inputs to predict the finan-
cially constrained SMEs. M-RIGHT uses the ini-
tial graph-free features as input to train its graph
model and outputs the 128-dimensional SMEs’ rep-
resentations, which are then concatenated with the
initial graph-free SMEs’ features as the inputs of the
ANOVA-XGBoost to predict the SMEs’ financing
needs. To better investigate the usefulness of the
graph-based methods in exploiting relations and en-
sure a fair comparison in answering Q2, we process all
the comparison graph-based methods similarly to M-
RIGHT. In other words, we obtain the SMEs’ repre-
sentations from each graph-based method, which are
then concatenated with the initial graph-free SMEs’
features as the inputs to the ANOVA-XGBoost for
calculating the final classification results. The re-
sults are reported in Table 2.

In Table 2, M-RIGHT outperforms all the
comparison methods in terms of CA, micro-F1,
and AUC values, with an average improvement of
1.10%, 2.90%, and 2.69%, respectively, over the
best-performing comparison methods, which demon-
strates the effectiveness of M-RIGHT in the FNE
task. On one hand, M-RIGHT outperforms the
comparison graph-free methods because M-RIGHT
is able to consider the SMEs’ relations among SMEs.
Note that all the graph-based methods outperform
the graph-free methods with respect to all three met-
rics on APP and SMS. Such improvements demon-
strate the importance of modeling SMEs’ relations in
the FNE task. On the other hand, M-RIGHT out-

performs the comparison graph-based methods. M-
RIGHT outperforms the homogeneous graph repre-
sentation learning methods, i.e., GIN, GraphSAGE,
and GAT, because M-RIGHT can address the trans-
fer heterogeneity with our novel entity–relation com-
position operator. M-RIGHT outperforms the het-
erogeneous graph representation learning methods,
i.e., RGCN, CompGCN, MHGCN, and HRAN, be-
cause M-RIGHT can address the behavior hetero-
geneity based on the translation mechanism on rela-
tional hyperplanes. These results not only demon-
strate that the relation modeling is significant, but
also indicate that M-RIGHT’s relation modeling
mechanism is superior to the state-of-the-art graph-
based methods in the FNE task.

4.2.2 Evaluation with respect to relation sparsity
(for Q2)

To investigate how the relation information
among SMEs affects the performance of M-RIGHT,
we evaluate M-RIGHT’s performance under differ-
ent relation sparsities. Specifically, we randomly
filter each training dataset into four sub-datasets
based on different sparsities. For example, a spar-
sity of 10% suggests that 10% of the relations are
filtered out in the training dataset. The performance
of M-RIGHT under different sparsities is presented
in Fig. 3. Furthermore, we calculate the following
values in the datasets: (1) relation densities, i.e.,
the number of actual relations among the SMEs di-
vided by the maximum number of relations in a fully
connected graph; (2) improvements of modeling rela-
tions, i.e., the improvements of graph-based methods
to the graph-free methods; (3) M-RIGHT’s degra-
dation of missing relations, i.e., the degradation of
M-RIGHT’s performance from 10% to 70% sparsity.
The results are shown in Table 3.

From Fig. 3, we can make three conclusions.
First, M-RIGHT shows degradation in performance
when some existing relations are unavailable. Specif-
ically, M-RIGHT’s CA, micro-F1, and AUC values
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Table 2 Performance of all methods on CA, micro-F1, and AUC values (mean±range, computed across
10 runs)

Category Method
APP

CA Micro-F1 AUC

Graph-free
methods

ANOVA-XGBoost 0.6688±0.006 0.2303±0.035 0.8585±0.012
SVM-RE 0.5072±0.005 0.1794±0.026 0.5567±0.022
DeepFM 0.5821±0.005 0.2041±0.029 0.8344±0.033

Graph-based
methods

GIN 0.6708±0.000 0.2344±0.005 0.8550±0.001
GraphSAGE 0.6645±0.001 0.2302±0.004 0.8601±0.000
GAT 0.6752±0.000 0.2377±0.005 0.8649±0.000
RGCN 0.6697±0.001 0.2294±0.005 0.8648±0.001
CompGCN 0.6695±0.001 0.2295±0.007 0.8660±0.001
MHGCN 0.6690±0.007 0.2305±0.011 0.8659±0.002
HRAN 0.6761±0.001∗ 0.2395±0.006∗ 0.8664±0.004∗

Our
proposed
methods

M-RIGHT 0.6906±0.001 0.2456±0.007 0.9006±0.001
M-RIGHT-w/o-rt 0.6760±0.001 0.2382±0.009 0.8788±0.001
M-RIGHT-w/o-rs 0.6743±0.001 0.2334±0.007 0.8737±0.001

Improvement (%)1 2.1447 2.5470 3.9474
p-value2 0.000 0.004 0.000

Category Method
SMS

CA Micro-F1 AUC

Graph-free
methods

ANOVA-XGBoost 0.9780±0.002 0.4094±0.003 0.9306±0.000
SVM-RE 0.9803±0.002 0.1078±0.001 0.7324±0.000
DeepFM 0.9769±0.002 0.3668±0.002 0.9234±0.001

Graph-based
methods

GIN 0.9783±0.001 0.4110±0.001 0.9289±0.000
GraphSAGE 0.9724±0.001 0.4141±0.002 0.9285±0.001
GAT 0.9833±0.001 0.4094±0.001 0.9275±0.000
RGCN 0.9752±0.003 0.4152±0.003∗ 0.9336±0.001
CompGCN 0.9828±0.003 0.4120±0.004 0.9298±0.001
MHGCN 0.9835±0.001∗ 0.4133±0.001 0.9312±0.000
HRAN 0.9831±0.004 0.4150±0.007 0.9338±0.001∗

Our
proposed
methods

M-RIGHT 0.9841±0.000 0.4287±0.003 0.9469±0.001
M-RIGHT-w/o-rt 0.9790±0.002 0.4158±0.003 0.9339±0.000
M-RIGHT-w/o-rs 0.9830±0.003 0.4181±0.002 0.9368±0.000

Improvement (%)1 0.0610 3.2514 1.4029
p-value2 0.001 0.000 0.000

APP: application program; SMS: short messaging service; CA: classification accuracy; Micro-F1: micro-averaged F1 score;
AUC: area under the receiver operating characteristic (ROC) curve. 1 Improvement of M-RIGHT over the best-performing
comparison methods. 2 Statistical improvement over the best-performing comparison methods if p-value<0.05 (p-value with
paired t-test). ∗ Results of the best-performing comparison methods

decrease with the increase of relation sparsity, which
indicates that its performance is affected by the avail-
ability of the relations. Without sufficient informa-
tion on the relations among SMEs, M-RIGHT is
unable to capture the external source of SMEs’ fi-
nancing needs, i.e., the financing needs transferred
from their neighbors, which results in its degrada-
tion in performance. Second, the performance degra-
dation under more relation-dependent scenarios is
even more severe. Specifically, Table 3 shows that
SMS contains denser relations, and modeling rela-

tions leads to more improvement on SMS than on
APP, which indicates that SMEs’ financing condi-
tions depend more on relations under the SMS sce-
nario. From the last column in Table 3, we can
conclude that lacking relations on more relation-
dependent scenarios may bring more severe degrada-
tion in performance. Third, M-RIGHT outperforms
the graph-free methods even under the sparsest
training dataset, demonstrating the importance of
relations in transferring neighborhood information.
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(a)                                                            (b)

(c)                                                             (d)

(e)                                                                      (f)

Fig. 3 Performance of M-RIGHT under different
dataset sparsities (mean±range, computed across
10 runs): (a) CA on APP; (b) CA on SMS; (c) Micro-
F1 on APP; (d) Micro-F1 on SMS; (e) AUC on APP;
(f) AUC on SMS (CA: classification accuracy; Micro-
F1: micro-averaged F1 score; AUC: area under the
receiver operating characteristic (ROC) curve; APP:
application program; SMS: short messaging service)

Table 3 Phenomenon with respect to sparisity

Dataset
Relation Improvement of Degradation of
density modeling relations missing relations

APP 30.07% 15.11% 0.69%
SMS 61.10% 16.37% 1.21%

APP: application program; SMS: short messaging service

4.2.3 Ablation experiments (for Q3)

To investigate how the two important mecha-
nisms in M-RIGHT contribute to its performance,
we evaluate the performance of two simplified ver-
sions of M-RIGHT: (1) M-RIGHT-w/o-rt refers to
M-RIGHT without considering transfer heterogene-
ity (namely, the entity–relation composition opera-
tion is discarded and the representations of a node’s
neighbors in the message-passing process do not
consider the relation types); (2) M-RIGHT-w/o-
rs refers to M-RIGHT without considering behav-
ior heterogeneity (namely, Eq. (9) is replaced with
fr(hs,ho) = ‖hs + rr − ho‖22 and Eq. (10) is re-
placed similarly). The results are shown in Table 2.

In Table 2, M-RIGHT outperforms M-RIGHT-
w/o-rt on all three metrics with average improve-
ments of 2.58% and 1.67% on the APP and SMS

datasets, respectively. Without considering the
transfer heterogeneity when aggregating the nodes’
embedding in the graph convolution network, M-
RIGHT is unable to distinguish the differences in
financing needs transferred under different rela-
tion types, leading to a decrease in performance.
Comparing M-RIGHT with M-RIGHT-w/o-rs, M-
RIGHT achieves higher values on all three metrics
with average improvements of 3.57% and 1.24% on
the APP and SMS datasets, respectively. Without
considering the behavior heterogeneity, M-RIGHT
is unable to distinguish SMEs’ roles under different
relation types, leading to a decrease in performance.

4.2.4 Case study

To intuitively demonstrate the capabilities of M-
RIGHT, we conduct a case study of its predicted
results on six randomly selected SMEs in the APP
dataset. Due to the space limit, we present the re-
sults and analysis in the supplementary materials.

5 Conclusions and future work

In this paper, we have conducted exploratory
analysis on the financing needs exploration task,
which indicates the importance of modeling SMEs’
relations. Then, we have proposed a novel method
named M-RIGHT, whose main novelty is that it si-
multaneously addresses two kinds of challenging het-
erogeneity, i.e., transfer heterogeneity and behavior
heterogeneity, in modeling SME graphs with mul-
tiple relations. Specifically, to address the transfer
heterogeneity, M-RIGHT leverages a novel entity–
relation composition operator in the neighborhood
message-passing process, which distinguishes hetero-
geneous transferred messages under different rela-
tion types. To address the behavior heterogeneity,
M-RIGHT enables heterogeneous representations of
each SME under different relation types, which corre-
spond to SMEs’ heterogeneous behaviors in different
environments, by performing SME representation
translations on each relational hyperplane. Com-
prehensive experiments on two real-world datasets
have demonstrated the superiority of M-RIGHT to
the state-of-the-art methods in exploring financially
constrained SMEs.

In the future, we intend to extend our work in
two potential directions. First, given the fact that
the relations among SMEs are changing dynamically,
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we plan to incorporate temporal factors and mecha-
nisms into M-RIGHT such that it can catch up with
the changes. Second, considering that SMEs can be
clustered into several groups and that SMEs in dif-
ferent groups may have different behavior patterns,
we plan to introduce such cluster information into
the relational learning process in the future.
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