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Abstract: As an interdisciplinary research approach, traditional cognitive science adopts mainly the experiment,
induction, modeling, and validation paradigm. Such models are sometimes not applicable in cyber-physical-social-
systems (CPSSs), where the large number of human users involves severe heterogeneity and dynamics. To reduce
the decision-making conflicts between people and machines in human-centered systems, we propose a new research
paradigm called parallel cognition that uses the system of intelligent techniques to investigate cognitive activities and
functionals in three stages: descriptive cognition based on artificial cognitive systems (ACSs), predictive cognition
with computational deliberation experiments, and prescriptive cognition via parallel behavioral prescription. To
make iteration of these stages constantly on-line, a hybrid learning method based on both a psychological model
and user behavioral data is further proposed to adaptively learn an individual’s cognitive knowledge. Preliminary
experiments on two representative scenarios, urban travel behavioral prescription and cognitive visual reasoning,
indicate that our parallel cognition learning is effective and feasible for human behavioral prescription, and can thus
facilitate human-machine cooperation in both complex engineering and social systems.
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1 Background of cyber-physical-social-
systems

The networking and automation of traditional
devices and equipment have fiercely expanded the
complexity of cyber-physical-social-systems (CPSSs)
(Wang, 1999, 2003, 2010), such as the manipulation
of aerospace craft, nuclear power plant surveillance,
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and high-speed railway control. Such CPSSs require
efficient collaboration between humans and machines
to jointly complete final tasks (Wang, 2013; Zhang
JJ et al., 2018; Wang and Wang, 2020). During their
constant interaction, the fast exchange of informa-
tion or control instructions among system compo-
nents and operators may create human-machine con-
flicts, which then leads to many sorts of safety acci-
dents (Bi et al., 2017; Palmer, 2020). Despite the
variety of potential reasons, one fundamental issue
is that traditional system design internalizes opera-
tors as part of the system and strictly regulates their
operations according to pre-determined operational
rules or instructions.
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This design principle characterizes mainly
coarse human operator requirements and assumes
that they can “perfectly” undertake their assigned
subtasks. However, different operators have different
physiological and psychological foundations such as
cognitive load, distraction, and knowledge level. Dis-
tinct cognitive status may result in different decision-
making styles, or even unsafe operations (Walters
et al., 2005). To consider such differences in the
human-centered design paradigm, monitoring is re-
quired to “learn” the operator’s physiological and
mental states (like the fatigue or risk preference) and
further prescribe operator actions to reduce uncon-
scious human errors.

Apart from the above interactive human-
machine systems, the demand for prescribing hu-
man behaviors derives from another typical CPSS—
the management of social group decisions (Wang,
2004, 2020; Wen et al., 2013). Because the collec-
tive strategy stems from a bottom-up aggregation
of the group members’ decisions, the macro emer-
gent phenomenon is also grounded in one’s micro
cognitions and behaviors. However, because most
members are self-interested and have access to only
local information, their “myopic” decisions may not
lead to the optimal choice overall. With the support
of social media, which seriously accelerates people’s
social process, even a few myopic actions can result
in inefficient operation of the whole system or rad-
ical public events (Gover et al., 2020). Therefore,
scholars concentrate on modeling and analyzing so-
cial behavior by capturing individual cognitive fea-
tures and the interaction between actual social and
physical systems, and on a mechanism design that
can prescribe behavior that maximizes the utility of
the social system. Some research has already begun,
but further achievements are still expected (Ye and
Wang, 2018; Ye et al., 2020).

Virtual reality (VR), augmented reality (AR),
artificial intelligence (AI), and other emerging tech-
nologies provide tools to achieve the goal of pre-
scribing human behavior. By creating a virtual
environment that is consistent with the real situ-
ation, we can present particular stimuli to an op-
erator to lead him/her to react or respond in spe-
cific ways. This would supply personalized oper-
ational services and deal with individual cognitive
heterogeneity. Based on the demands and techno-
logical support mentioned previously, we propose a

new research paradigm—parallel cognition—to com-
putationally interpret, learn, predict, and prescribe
individual behaviors under certain circumstances in
given tasks, as underlined initially in Wang (2018a,
2018b, 2018c, 2018d) and Wang et al. (2019). Paral-
lel cognition starts by integrating existing psycholog-
ical models into a virtual agent, and then exploits AI
to build equivalent machine learning surrogates. Us-
ing a data-driven approach, the learning surrogates
will adaptively extract new cognitive knowledge from
an individual’s environment-action data flow to ad-
just or enrich his/her customized cognitive model.
This stage focuses on describing one’s mental state,
and is thus called “descriptive cognition.” By re-
combining the fine-grained cognitive knowledge, the
virtual agent will computationally search numerous
deliberative paths to investigate one’s probable de-
cisions in different situations. The search process
is called “computational deliberation experiments”
and represents “predictive cognition.” Finally, with
the best response to the current environment, the
intelligent agent will select the most appropriate en-
vironmental signals to direct the individual’s action
in the expected way, which is called “prescriptive
cognition.” The learning–search–prescription loop
(like the human perception–reasoning–decision loop)
is constantly executed during the whole interaction,
so the human-machine system would be iteratively
optimized through the entire life of the task. The
contribution of this paper is three-fold: (1) a new re-
search paradigm called parallel cognition is proposed
to reduce the human-machine conflicts in decision-
making in CPSSs and harmonize their cooperation
in human-centered interaction; (2) a hybrid learning
method based on both a model and data is proposed
to adaptively learn an individual’s cognitive knowl-
edge; and (3) the proposed architecture and method
are tested and validated in travel-related behavioral
management and vision-reasoning tasks.

2 Research paradigms of cognitive sci-
ence

Proposed by Prof. George Miller in the 1970s,
cognitive science is an interdisciplinary research ap-
proach that includes six traditional fields as Fig. 1
shows (Miller, 2003). Miller initially saw psychol-
ogy, linguistics, and computer science as central, and
the three other fields as peripheral. However, the
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six fields were fully connected later to form the fa-
mous hexagon in the figure. From the top down in
a clock-wise direction, philosophy, linguistics, and
anthropology represent mostly right brain functions.
They are affective knowledge from social sciences.
From the bottom up, by contrast, neuroscience, AI,
and psychology stand for left brain functions, where
the rational thinking from an engineering perspec-
tive is “encoded.” As the breadth of cognitive sci-
ence is so great, we will review mainly the research
paradigms of cognitive psychology, AI, and cognitive
neuroscience, which share some common links.
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Fig. 1 Hexagon of cognitive science

Partly originated from cybernetics, which was
defined as “the science of control and communica-
tion in the animal and the machine,” cognitive sci-
ence first attempts to uncover the mechanisms of
cognitive behaviors using an approach referred to
as cognitivism (Wiener, 1948). The birth of the
cognitivist paradigm, and its sister discipline, AI,
dates from a conference held at Dartmouth College
in 1956. The basic thought of cognitivism is that
cognition is achieved by computations performed on
one’s internal knowledge. By exploiting the newly
invented computer at that time as a literal metaphor
for cognitive function and operation, internal knowl-
edge is encoded as a collection of explicit symbols—
localized abstract encapsulations of information that
denote the state of the world around the agent. In
this way, symbolic information about things and ac-

tions is associable and the cognitive agent can then
reason effectively about the knowledge to reach con-
clusions, make decisions, and execute actions they
deem appropriate (Morse and Ziemke, 2008). This
reasoning usually adopts a heuristic search in its
implementation. Allen Newell and Herbert Simon, in
their 1975 ACM Turing Award Lecture, summarized
that a physical symbol system has the necessary and
sufficient means for general intelligent actions and it
exercises its intelligence in problem-solving by search
(Newell and Simon, 1976).

Although the operation of knowledge in cogni-
tivism is quite intuitive, it does not seem biologically
plausible. Thus, the emergent paradigm of cognitive
science seeks to maintain the autonomy in cognition
(Brachman, 2002). Different from cognitivism, many
emergent approaches adhere to the principle that the
primary mode of cognitive learning is through dis-
tributed information processing rather than knowl-
edge, as is the case in cognitivism (Christensen and
Hooker, 2000). Emergent cognition takes the ab-
stract structure of the biological brain and tries to
“reproduce” the process of human cognition from
the bottom up. By adopting a hierarchical struc-
ture, the bottom level simulates the human cortex
and neurons using an artificial neural network in AI,
while the top level simulates the active consciousness
(Medler, 1998). The psychological knowledge of the
world in this paradigm is implicitly encoded in the
state of neural networks, and intelligent behavior is
produced among the interactions of such relatively
simple neural connections.

The connectionism in emergent cognition fur-
ther relates to the study of cognitive neuroscience,
whose objective is to examine the internal activ-
ities of the brain that lead to particular deci-
sions. Generally, cognitive neuroscience techniques
can be divided into two main categories. Mea-
surement techniques, as the name implies, measure
changes in the brain function while a research par-
ticipant (human or animal) engages in some cog-
nitive activity (Huang et al., 2005). A typical ex-
periment using a measurement technique might re-
quire the participant to make a series of simple
decisions while researchers record changes in neu-
ronal firing or metabolic activity. Five main tech-
niques are usually exploited to measure the neu-
ronal axonal signaling and dendritic integration:
single-unit recording (Matsumoto and Hikosaka,
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2009), electroencephalography (EEG) (Gehring
and Willoughby, 2002), magnetoencephalography
(MEG) (Hunt et al., 2012), positron emission
tomography (PET) (Huettel et al., 2009), and
functional magnetic resonance imaging (fMRI)
(Huettel et al., 2006). Manipulation techniques,
in contrast, investigate how perturbations of the
brain’s function—by transiently changing neuronal
firing rates or neurotransmitter levels or by perma-
nently damaging tissue—change cognitive functions
or behavior. They are sometimes called causal ap-
proaches. In brain stimulation, two popular tech-
niques, transcranial magnetic stimulation (TMS)
and transcranial direct current stimulation (tDCS)
technologies, are used to impose weak electric sig-
nals on brain regions, which alters the choices peo-
ple make (e.g., in interactive games) (Walsh and
Pascual-Leone, 2003; Knoch et al., 2006; Fecteau
et al., 2007). In animal experiments, invasive micro-
stimulation or lesion study is used to shape im-
plicit brain-behavior relationships (Romo and Sali-
nas, 2001; Tsai et al., 2009).

In summary, the research paradigms in cogni-
tive psychology, AI, and cognitive neuroscience fo-
cus mostly on the deep understanding of how one’s
decision is achieved. Although there are some brain
stimulation techniques to influence people’s choices
in cognitive neuroscience, they are based in only a
few experiments on research participants. In real sys-
tems, brain stimulation cannot be applied to a group
of people and the model can rarely grasp the hetero-
geneity of individuals limited by the small scale of
experiments.

3 Parallel cognition: prescribing het-
erogeneous behaviors computationally

As indicated by Prof. Marvin Minsky, a fa-
ther of AI, it is vast individual diversity that causes
the emergence of intelligence (Minsky, 1986; Wang,
2016). Such diversity derives from different mental
beliefs of the world. Individual cognitive differences
can ultimately result in the emergence of systemic
complex dynamics, sometimes chaotic, sometimes
oscillating, and sometimes in a nice order. Descrip-
tion, analysis, and even prescription of such individ-
ual heterogeneity demand distinct cognitive models,
or at least distinct parameter levels. The traditional
modeling approach that relies on the “experiment–

induction–modeling–validation” cycle, however, is
probably not applicable for real systems such as com-
plex CPSSs. On one hand, subjects in psychological
or neural biological experiments usually account for
quite a small part of the whole studied group. This
often creates sampling bias, leading to inaccurate
cognitive models that do not reflect behavioral dif-
ferences among individuals. On the other hand, the
final cognitive models from the traditional approach
are “static.” They can hardly model the dynamic
cognitive process: human reasoning and decision-
making patterns may evolve as their knowledge and
skills gradually accumulate (such accumulation usu-
ally comes from learning, imitation, socialization,
etc.). Therefore, to analyze and prescribe hetero-
geneous human behavior, we propose the research
paradigm of parallel cognition.

The parallel cognition framework is composed
of two peer systems—artificial and real human cog-
nitive systems. These two cognitive systems form
their own autonomous computational loops and keep
running throughout the task in an independent way
(Fig. 2). Either system operates on classic feedback,
but performs interactions with the other in three
stages: descriptive cognition, predictive cognition,
and prescriptive cognition. Such interactions corre-
spond to the modeling of artificial systems, compu-
tational deliberation experiments, and parallel be-
havioral prescription. Accordingly, we elaborate on
these three stages in detail as follows.

3.1 Descriptive cognition: modeling of an ar-
tificial cognitive system

The first step of building an artificial cognitive
system (ACS) is to synthesize an artificial population
that characterizes the basic attributes and structures
of studied groups. This step is essential for the analy-
sis and prescription of social group behaviors that in-
volve multiple members’ decisions. For some human-
machine interactions that are composed of only a few
operators, the population synthesis is optional. The
acquired artificial population acts as a start point
of the subsequent computational deliberation exper-
iments and parallel behavioral prescription. Thus, it
needs to generate the “best possible” estimates of the
actual population according to statistical metrics or
other available micro individual data. Currently, the
mainstream methodologies of population synthesis
include joint distribution inference (Ye et al., 2017),
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Fig. 2 Interactive loops of parallel cognition for human-machine systems (GIS: geographic information system)

copula-based estimation (Ye and Wang, 2018), and
tensor-based optimization (Ye et al., 2021b).

The second step of building an ACS is to estab-
lish each individual’s cognitive model. Because it is
difficult to acquire human deliberation dynamically,
the ultimate goal of an ACS is to open this cognition
“black-box” by exploiting cognitive psychology and
machine learning. Usually, an ACS adopts multi-
agent techniques, where each agent can represent
a particular individual or a group of people, de-
pending on the model granularity. During compu-
tation, the agent performs a “perception–learning–
reasoning–planning–action” cycle iteratively. The
universal cognitive process is illustrated in Fig. 3,
which is a two-layer structure and involves two par-
allel decision-making cycles (Ye et al., 2020). The
bottom level contains deep neural networks (DNNs)
to send and receive environment signals and social
information from other agents. This layer simulates
an individual’s biological sensory and motor systems.
The perception DNN (proactively or passively) re-
ceives low-level sensory signals from the surrounding
environment and converts them into symbolic con-
cepts or numerical values for the upper-level deliber-

ative layer. Typically, convolutional neural networks
(CNNs), recurrent neural networks (RNNs), gener-
ative adversary networks (GANs), and their deriva-
tives are used to simulate one’s visual, auditory, and
other perceptions, because these are the primary sen-
sory patterns in humans. The actuation DNN con-
trols the agent’s actuators according to the input pa-
rameters provided by the deliberative results. The
interaction network updates the messages from the
agent’s social network. Note that for convenience,
the two neural networks for sending and receiving
social messages are drawn together in the figure.

The upper layer of the cognitive model is an un-
certain symbolic system that simulates human de-
liberative decision-making. As mentioned before,
the decision-making may involve two parallel cycles
(drawn in red lines in Fig. 3). One is the logical rea-
soning that simulates human rational deliberation.
According to classic cognitive science, such rational
deliberations are called system 2, where knowledge
is stored in an explainable way and reasoning is con-
ducted with explicit semantics (the cycle formed by
the uppermost red lines in Fig. 3). A good exam-
ple comes from proving mathematical theory. When
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doing that task, we need to understand every proof
step in logical thinking from the assumptions to the
final conclusions. This requires a common knowledge
set among agents with each concept unambiguously
referring to a specific kind of entity. The reason-
ing path can also be recognized by most people and
can be taught to novices who have not completed
that task before. The cycle of system 2 logic rea-
soning is composed of perception, memory, learn-
ing, reasoning, planning, and actuation. Percep-
tion/Interaction is based on the output of the DNN
in the bottom layer that maps environment signals
into uncertain facts with confidence levels. These
uncertain facts are also called “mental beliefs” or
“declarative knowledge” and are maintained in mem-
ory. They are typically stored as fuzzy logic rules
like

IF x1 = s1 ‘and’ · · · ‘and’ xn = sn THEND(s) − fs.

Here x = (x1, x2, ..., xn) is the input data from uni-
verse U ⊂ R

n, and s = (s1, s2, . . . , sn) ∈ S1 × S2 ×
· · · × Sn represents the linguistic values defined on
U . fs stands for the firing strength of the rule. In
each computational iteration, the agent updates its
beliefs by comparing the current environment state
and historical knowledge. The inconsistency between
the current state and the agent’s expectations may
result in learning, which updates the firing strengths

of common reasoning rules that are stored in the
reasoning module (Wang, 1992). These common rea-
soning rules are also called “procedural knowledge.”
Then a reasoning process is affected by social norms,
personality, and the physical state, and multiple rea-
soning results are selected by motivations that are
sorted in different priorities by attention to satis-
fying the most urgent needs. The motivation with
the highest priority will be decomposed in planning
and generate a series of actions. Such actions will
be maintained until the corresponding motivation is
fulfilled or canceled.

The second decision cycle corresponds to sys-
tem 1 in cognitive science (formed by the lower
red lines in Fig. 3). This cycle is somewhat direct
as it models human-experienced decision-making.
The “perception–learning–reasoning–action” cogni-
tive loop is built on the artificial neural network (es-
pecially DNN), which implicitly encodes the agent’s
endogenous knowledge. Due to the adaptive learning
ability of DNN, the cycle can dynamically imitate
particular decision patterns from the environment
and from others. Usually, reinforcement such as Q

learning is added to this process so that the agent in-
teractively improves its responsive strategies in spe-
cific situations. In general, reasoning of the second
decision cycle involves only numerical computation,
and is thus less complex than the uncertain logic
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reasoning where many possible reasoning paths are
heuristically searched. This has biological founda-
tions. In real human cognition, rational deliberation
represented by logic reasoning consumes more en-
ergy and is much slower than intuitive decision. For
example, if you come across a mathematical theorem
for the first time, try to prove its correctness. You
will spend a great deal of time thinking with your
own knowledge repository. When you are familiar
with that theorem later, however, you will probably
draw the conclusion as long as you see its assump-
tions. Although the proof steps can be reproduced
via your achieved knowledge, you are inclined to omit
such a detailed process. This example tells us that
a human’s explicit knowledge in system 2 tends to
be converted into implicit knowledge in system 1,
because it saves energy.

After the individual’s cognitive model is con-
structed, the third step of building an ACS is to
calibrate the model’s parameters before application.
Calibration and validation are essential, because
they can help elevate the quality of the model, mak-
ing the ACS approximate the real system. Many
calibration methods can be used to complete this
task. We refer readers to our previous work (Ye
et al., 2021a) for further details.

3.2 Predictive cognition: computational de-
liberation experiments

The fuzzy logic rules of procedural knowledge
representation can be converted into a causal graph,
in which nodes and directed links stand for specific
system states and causal relationships. The trans-
fer condition (or strategy) between adjacent states is
placed with the directed link. An example of a causal
graph segment is shown in Fig. 4, with three system
states as nodes and four directed links as transfer di-
rections and conditions. Here, links construct cycles
because the state transfer is bidirectional.

Heating

Water in pot

Water boiling in pot

Ice in pot

Freezing

Freezing

Heating

Fig. 4 An example of the causal graph segment

Given a collection of world states and procedu-
ral knowledge, reasoning can be modeled as a search
process. When an agent perceives the current envi-
ronment signals, the corresponding state nodes are
activated, and the conditions satisfied (or strategies
taken) will expand the causal graph by sequentially
activating adjacent nodes until the desired world
state is activated in the graph. This process will
eventually create a reasoning tree with the current
world state as its root and final achievable states as
its leaves. Every path from the root to a particular
leaf in the reasoning tree gives a strategy sequence
to achieve the leaf state, and thus one sequence is for
the desired goal leaf. Note that the reasoning path
is uncertain and dynamically changeable because it
is influenced by the agent’s historical experience.

Ideally, all reachable paths from the current
world state to the desired goal can be traversed to
obtain all possible action sequence candidates, but
this approach does not seem biologically plausible.
On one hand, people tend to consider only a few
choices rather than all possible candidates, due to the
existence of “bounded rationality” (Campitelli and
Gobet, 2010). Their decision-making greatly relies
on their individual experience and personal habits.
Thus, if they find a solution acceptable for the goals,
then they are not inclined to make a change even
if the solution is not optimal. On the other hand,
when the reasoning tree is wide, the search process
will be quite time-consuming. Unfortunately, this
dilemma can hardly be avoided, because uncertainty
is usually introduced. The uncertainty, in the form of
membership degree and rule firing strengths, makes
most action sequences possible, thus leading to a
great spread of the generated reasoning tree. Such a
spread makes traditional pruning or cut-off heuristics
almost ineffective, and leads the final computational
results to be temporally unacceptable. Therefore, a
central issue for computational deliberation exper-
iments is to select the reasoning path so that the
achieved solutions are representative and the scale of
the reasoning tree is controlled.

Reasoning path selection can be viewed as an-
other hyper-parameter search problem. Reinforce-
ment learning is typically adopted to investigate
the action sequences with the largest “confidence.”
Here, confidence refers not only to the activation
strength of an action, but also to the correlation with
the anticipated actions the individual takes. The
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correlation values are constantly learned during the
parallel behavioral prescription, which will be dis-
cussed in detail in the next subsection. The whole
computational deliberation experiments are illus-
trated in Fig. 5, where enormous deliberation paths
are investigated and a most suitable prescription
path is provided to the human user.

3.3 Prescriptive cognition: parallel behav-
ioral prescription

Parallel behavioral prescription involves the dy-
namic bidirectional interaction between a real human
cognitive system and an ACS. In the real-to-artificial
direction, the ACS dynamically learns a human indi-
vidual’s cognitive features, reasoning paths, decision
preferences, and so on, in an adaptive way, according
to one’s heterogenous actions. Based on the classic
models from psychology and cognitive neuroscience,
the learning fine-tunes them to distinct individual
differences.

ACS learning of heterogeneous individual be-
haviors runs mainly in two modes. The first is to
calibrate the parameters of psychological or neuro-
logical models. Combined with reinforcement learn-
ing, mentioned in the last subsection, the calibration
adaptively adjusts the confidence of possible reason-
ing paths so that the search space in computational
deliberation experiments is reduced to a more rel-
evant area. Note that the calibration here is con-

ducted constantly rather than only once. This is be-
cause in reality, human cognition and decisions may
probably vary from time to time, as his/her knowl-
edge and experience gradually accumulate. The sec-
ond mode runs the incremental learning for the ex-
isting cognitive models, and aims to eliminate the
bias of traditional models. Limited by the tradi-
tional “experiment–induction–modeling–validation”
paradigm, cognitive models often come from a small
number of typical subjects. Some uncommon pat-
terns of thinking and decision-making in less popu-
lar groups are usually not covered by them. There-
fore, ACS adaptive learning in this mode would in-
ductively acquire new knowledge as supplements to
the original cognitive knowledge base, and establish
more accurate cognitive models for each particular
individual.

In the artificial-to-real direction, behavioral pre-
scription is implemented as the feedback control of
one’s environmental perception signals. Using a
broad search of computational deliberation experi-
ments, the ACS will find expected sequential states
(of both machines and humans) as time goes on in the
future via human-machine interaction. The optimal
interaction pattern will determine the optimal per-
ception signals to the individual to prescribe his/her
appropriate actions. Basic perception signals con-
tain visual image/video, audio instruction/warning,
olfactory stimuli, tactile sense, and so on. The

Fig. 5 Computational deliberative experiments
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bidirectional interactions between two cognitive sys-
tems are iteratively running, with the ACS and its
human counterparts co-evolving in synergy.

3.4 Adaptive deliberation learning

The objective of adaptive deliberation learning
is to acquire heterogeneous behaviors and deliber-
ative patterns of different individuals by exploiting
the breakthrough of machine learning and AI. It is
a potential solution for the limitation of traditional
psychological studies. Based on the perceptive sig-
nals for a human participant and their responsive
behaviors, machine learning can infer the cognitive
reasoning process. Adaptive learning is composed of
perception learning and reasoning learning. Percep-
tion learning aims to model the differences among
individual perception abilities. These abilities are
usually impacted by one’s physiological factors such
as age, vision, and active attention. In implementa-
tion, the results of perception are typically stored as
a tuple like <agenti, attri, valuei>, which represents
the agent ID, the ith attribute’s name, and value.
The attributes may have linguistic values with firing
strengths due to the discrete biological basis of hu-
man memory. During perception learning, each piece
of knowledge of a particular agent in the ACS is it-
eratively updated through the perception network.
Such updates take place in every human-machine in-
teraction step via an on-line mode.

Fig. 6 gives an example of perception learning.
Each attribute is encoded by a neural network seg-
ment. The input is the original perceptual signal

ini

sij

μij

si

W1

W2

Fig. 6 An example of perception learning

(represented as ini). The outputs are discrete lin-
guistic values (sij) with a membership degree (µij).
Note that the figure omits the normalization of the
membership, which is a usual operation in DNNs
via a softmax function. Perception learning can be
viewed as a fuzzification, which was implemented
in our previous work (Wang and Kim, 1995) as a
three-layered neural network with an input layer, a
hidden layer, and an output layer, but a DNN is also
applicable.

With the precepted knowledge tuples as inputs,
reasoning learning aims to adjust one’s cognitive rea-
soning according to his/her environment signals and
actions. The learning relies on the psychological de-
cisions as a priori, and establishes their equivalent
DNN (Fig. 7). The whole network can be viewed
as three parts with their names marked (Kim and
Wang, 1994). The pattern recognition network ac-
cepts the precepted knowledge and fuzzifies it into
the values of predefined linguistic variables, which
was introduced before. Memberships encoded as the
outputs of a pattern recognition network are fed into
a fuzzy reasoning DNN and converted into selection
strengths of action candidates. The action selection
network finally chooses a suitable action to conduct.
This process can also be viewed as a de-fuzzification.

Pattern recognition Fuzzy 
reasoning Action selection

Action 1

Action n

ui

μij
si

W1ini 

W2

sij

Fig. 7 Reasoning learning network

The reasoning learning network is trained using
prior psychological decisions. It can be deemed as
an approximation of the classical psychological de-
cision modes. After training, the reasoning learning
network can extract a decision rule from each record
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in a data stream scenario. The real human’s opera-
tion is used as the label, so the network can realize
incremental learning. All the learned rules with fre-
quencies are saved to a rule base for computational
deliberation experiments. As the data stream comes
one by one, the rule frequencies will be maintained
dynamically. In this way, the decision modes in the
ACS are adaptively adjusted.

4 Case studies

As mentioned before, parallel cognition is ap-
plicable for two main sorts of CPSS—the manage-
ment of social group decisions and the promotion of
a human-in-the-loop system in complex engineering.
This section will give two typical case studies from
these two fields.

4.1 Urban travel behavioral prescription

A representative scenario of social group deci-
sions is urban transportation, in which the traffic
situation is the aggregation of each traveler’s behav-
ior. To test the validity of travel behavioral pre-
scription using parallel cognition, we established an
experimental scenario in the central area of Qing-
dao in China, which includes about 263 traffic zones,
50 main roads, 20 variable message signs (VMSs),
and so on. According to the census data, we syn-
thesized 405 758 virtual travelers at the community
level. Each agent chooses its travel schedule based on
a classic disaggregate selection method by consider-
ing travel distance, congestion level, and familiarity.
By default, the travel path is determined by

pel =
exp( ceLl

+ de · Fel +
fe
Gl

)
∑

t exp(
ce
Lt

+ de · Fet +
fe
Gt

)
,

where pel stands for the probability that agent e se-
lects the lth path. Ll is the length of the path. Fel is
a fuzzy variable ranging from 0 to 10, and represents
the agent’s familiarity with the lth path. Gt is also a
fuzzy variable ranging from 0 to 10, and represents
the overall congestion level of the lth path. ce, de,
and fe are coefficients. The corresponding learning
DNN is shown in Fig. 8, where all the input signals
are fuzzified with activation strengths. Here, OD
stands for the travel origin and destination nodes in
the road network. The output encodes all the path
candidates and gives a selection strength for each
one. After computational deliberation experiments,

the expected optimal path is recommended to the
travelers via official traffic websites, VMS, and ap-
plications in users’ cell phones.
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Fig. 8 Deep neural network for adaptive travel be-
havioral learning

Our preliminary test was conducted on May 11,
2020, and Fig. 9 demonstrates the comparison of
queue length before and after the travel behavioral
prescription. Note that May 11 and May 18 had
similar traffic demand for the same weekday. In the
east direction, the queue lengths decreased by 44.7%,
16.8%, and 8.7% during the whole day. The two
other directions, south and north, also had reduced
queue lengths, ranging from 21% to 33%. However,
due to the low traffic volume, the queue length in the
west direction increased slightly after our behavioral
prescription. However, this did not impact the im-
provement of the overall performance. In addition,
customized recommendations were served to over
85 000 drivers, indicating that our travel behavioral
prescription is effective and valid.

4.2 Cognitive visual reasoning

A second test scenario comes from cognitive vi-
sual reasoning. In complex human-machine inter-
active systems, operators typically execute specific
actions to ensure the successful completion of the
task. Their decisions rely on the state information
as inputs from machines via visual, audio, olfactory,
and other perception channels. Among the channels,
visual perception is the most important source of ex-
ternal information acquisition. The cognitive visual
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reasoning task can effectively simulate the human
decision process based on visual signal inputs.

Our experiment scenario was generated on the
RAVEN dataset, which provides synthetic tasks for
relational and analogical visual reasoning (Zhang C
et al., 2019). The original dataset consists of 70 000
reasoning problems, with 60%, 20%, and 20% used
for training, validation, and testing, respectively. As
illustrated in Fig. 10, each problem contains eight
images as inputs. Users need to select a suitable one
from eight candidate images to complete the prob-
lem, so that the implicit decision rules are satisfied.
The decision rule involves seven attributes as listed
in Table 1, where the last four attributes correspond
to the entities.

The part of our DNN was similar to Fig. 8 except
that the raw image was processed by some convolu-
tional and pooling layers (Fig. 11). The DNN was
pre-trained with a given dataset, and during exper-
iments, we dynamically selected the type of prob-
lem according to the user’s learning preference. Our
aim is to increase the subject’s accuracy by learning

what he/she is good at and what he/she is weak in.
Fig. 12 shows the recognition errors of human par-
ticipants, with each subfigure providing a particular
attribute error. As can be seen, all the errors de-
creased with test iterations. In the early stage of ex-
periments, visual reasoning problems were randomly
given to the subjects. Thus, errors were relatively
large. As human-machine interactions progressed,
our ACS gradually learned the user’s preference and
chose the problems that he/she was good at accord-
ing to computational deliberation experiments. This

Table 1 Attributes of cognitive visual reasoning

Attribute Values Value number

Structure Singleton, ..., Out-In 4
Component Grid, Left, ..., In 7

Layout Cen.-Sin., ..., Dow.-Cen.-Sin. 10
Type Cons., Prog., Arit., Dis.-3 4
Size Cons., Prog., Arit., Dis.-3 4
Color Cons., Prog., Arit., Dis.-3 4
Angle Cons., Prog., Arit., Dis.-3 4

Cen.-Sin.: Center-Single; Dow.-Cen.-Sin.: Down-Center-
Single; Cons.: Constant; Prog.: Progression; Arit.: Arith-
metic; Dis.: Distribute
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Fig. 9 Comparison of queue length before and after the travel behavioral prescription in the east (a), south
(b), west (c), and north (d) directions (References to color refer to the online version of this figure)
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Fig. 10 An example of cognitive visual reasoning for a given problem (a) and candidates (b)

customization effectively led to a decrease in the
average errors and finally reached a stable trend.
Such a phenomenon could prove the effectiveness of
our ACS and preliminarily validate the parallel cog-
nition approach. A second phenomenon was that the
overall image structure, component, and layout er-
rors were smaller than those of other attributes. It
is because these three attributes are global features,
which can be more easily identified (the accuracies
approached 100%). By contrast, type, size, color,
and angle are local properties of each entity. Their
values are usually confused by users, especially when
an image includes several entities, bringing a heavy
cognitive load to limited perception channels of the
subject.

...

... ...

...

...

Angle

...

Rule type 1

...

Rule type n

...

Rule 
type k

...

Conv.layer
Conv.layer

Structure

uiSi

Fig. 11 Deep neural network for cognitive visual
reasoning

Because conflict in real human-machine CPSSs
usually results from a “wrong” action that the system
“expects” the human operator to do, our ACS learns
one’s reasoning ability and selects suitable problems
for the subject, so that his/her “correct” decisions can

be increased as much as possible. This simulates the
customized environment provided for the operator to
reduce the risk of human-machine conflict. In this
sense, this case study can test and validate our ACS.

Urban travel behavioral prescription and cogni-
tive visual reasoning are two representative use cases
for parallel cognition. Some other typical CPSSs are
applicable as well. For instance, in complex social
systems, this approach could be used to analyze re-
gional economics (Gallegati et al., 2017), urban land
use (Hosseinali et al., 2015), military strategies (Yun
et al., 2015), public health (like COVID-19) (Nianogo
and Arah, 2015), and the latest Metaverse. In the
human-in-loop scenarios, driver assistant systems or
autonomous vehicles are promising areas for paral-
lel cognition techniques (Cunningham and Regan,
2015).

5 Conclusions and discussions

In this paper, we propose a new parallel cog-
nition research paradigm with a hybrid learning
method for individual cognitive knowledge. The ob-
jective of such an approach is to reduce the human-
machine conflicts in CPSSs and harmonize their
cooperation in human-centered interaction. The
method was preliminarily tested and validated in
urban travel behavioral prescription, a scenario of
social group decision management, and cognitive vi-
sual reasoning, a scenario of individual operation
prescription. Experiment results indicated that our
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Fig. 12 Recognition errors of human participants: (a) structure; (b) component; (c) layout; (d) type; (e) size;
(f) color; (g) angle

parallel cognition learning is effective and is probably
feasible in representative applications.

The experiments in this paper are elementary.
Our future improvements may address the following
aspects: (1) Improve the accuracy of the learning
method. Because the cognitive knowledge is simple
in this paper, how to acquire more complicated cog-
nitive knowledge in a data-driven mode is a focus

of our next step. (2) Design distributed delibera-
tion reasoning algorithms. When the ACS includes
a large amount of cognitive knowledge, computa-
tional deliberation experiments will involve numer-
ous reasoning paths. To ensure its time validity, we
plan to introduce cloud computing for acceleration.
Thus, designing distributed reasoning algorithms is
an essential work for such a goal. (3) Validate the



1778 Ye et al. / Front Inform Technol Electron Eng 2022 23(12):1765-1779

approach in more application scenarios. The test
experiment of cognitive visual reasoning in this pa-
per addresses only simple polygons. To make the
related methods more practical, complex recognition
and reasoning in more open scenarios by jointly con-
sidering visual and textual information has already
begun (Zheng et al., 2020, 2021). Such a hybrid
use of image and text processing is another future
direction.
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