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Abstract: High dimensional data arising from diverse scientific research fields and industrial development have led
to increased interest in sparse learning due to model parsimony and computational advantage. With the assumption
of sparsity, many computational problems can be handled efficiently in practice. Structured sparse learning encodes
the structural information of the variables and has been quite successful in numerous research fields. With various
types of structures discovered, sorts of structured regularizations have been proposed. These regularizations have
greatly improved the efficacy of sparse learning algorithms through the use of specific structural information. In
this article, we present a systematic review of structured sparse learning including ideas, formulations, algorithms,
and applications. We present these algorithms in the unified framework of minimizing the sum of loss and penalty
functions, summarize publicly accessible software implementations, and compare the computational complexity of
typical optimization methods to solve structured sparse learning problems. In experiments, we present applications
in unsupervised learning, for structured signal recovery and hierarchical image reconstruction, and in supervised
learning in the context of a novel graph-guided logistic regression.
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1 Introduction

Rapid improvement in sensing technologies has
created high dimensional data in research fields and
industries with many features and a huge number
of samples. The increasing data volume becomes a
great challenge for contemporary statistical learning
algorithms (John Lu, 2010) in various research areas,
including high-resolution imaging (Bruckstein et al.,
2009), target tracking (Zhang et al., 2012; 2013;
2014; 2015a; 2015b), astronomical data processing
(Borne, 2009), genomics (Kim and Xing, 2014), func-
tional and longitudinal processing (Jenatton et al.,
2012), and warehouse data analysis in business (Fan
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et al., 2011). For example, astronomical projects pro-
duce more than 109 pixels every 20 s and terabytes
of data in a single evening (Borne, 2009). Financial
data is measured with hundreds of financial instru-
ments and tracked over time with 106 trades per
second in high-frequency trading (Fan et al., 2011).

It is almost impossible to learn a consistent
model with high accuracy, model explicability, and
computational efficiency at the same time, unless one
assumes that the sample size is much larger than the
feature size (Candès and Tao, 2007). However, in
high-dimensional settings, the dimension of the fea-
ture is often the same as, or even larger than the
sample size. Therefore, traditional methods face sig-
nificant challenges, ranging from theoretical analysis,
efficient algorithm design, to model estimation and
interpretation. Note that consistent estimators may
be obtained if additional assumptions are imposed
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on the traditional models (Negahban et al., 2012).
A widely used constraint is that models should be
sparse for high-dimensional problems (Bach et al.,
2011).

1.1 Sparsity

In a sparse model, only a small number of vari-
ables are non-zero among all the variables in the
model. The sparsity assumption is typically associ-
ated with desired interesting properties such as suc-
cinct interpretation, fast evaluation of the model,
statistical robustness (sparsity is usually associated
with robust statistical performance), and computa-
tional advantages, which appeals to a great many
researchers.

Sparsity is preferred in learning problems with
high-dimensional data. In many applications,
though the raw data is high dimensional, the intrinsic
dimension is relatively low. For example, in bioinfor-
matics, different high-dimensional genes may belong
to the same functional group; in multi-task learn-
ing, several estimators are expected to share com-
mon types of covariates. In fact, it is now common
sense that sparsity is a powerful assumption for con-
temporary machine learning algorithms (Bach et al.,
2012a).

Sparsity is considered to be one of the most sig-
nificant philosophical and aesthetic principles that
have ever existed. It is also known as Occam’s
razor (Rasmussen and Ghahramani, 2001), “Enti-
ties should not be multiplied without necessity”, by
William Ockham in the 13th century. The parsimony
principle has been addressed again and again, which
has led to several beautiful results, such as minimal
description length (MDL) (John Lu, 2010). Modern
sparse learning methods were introduced by Wrinch
and Jeffreys (1921), who expressed the sparsity of
models in physics as the non-zero number of learning
variables. This concept is very close to today’s def-
inition of sparsity. Since then, numerous tools (see
Mairal et al. (2014) and multiple references therein)
have been developed in the statistics community to
build sparsity-related models, which have greatly im-
proved the explicability of the models, and dramati-
cally decreased the computational cost of the model
in the prediction procedure. With the efforts of re-
searchers and engineers, sparse learning has become
a popular tool with the development of theoretical
frameworks and various efficient algorithms. The

theoretical frameworks range from the original idea
in underdetermined linear systems (see Bruckstein
et al. (2009) and references therein), signal process-
ing (Chen and Donoho, 1994) and statistical learning
(Tibshirani, 1996), the computational complexity of
the �0-norm regularized problem, the uniqueness of
the solution for the �0-norm regularized optimization
(see Donoho and Huo (2001), Tropp et al. (2003),
Elad (2010), and references therein), the model se-
lection consistency of the convex relaxation from �0-
norm to �1-norm (Candès et al., 2006; Zhao and Yu,
2006; Candès and Tao, 2007; Candès, 2008; Can-
dès and Recht, 2009; Zhang, 2009), to the statistical
analysis of extended algorithms (Elad, 2010; Jenat-
ton, 2011). Proposed algorithms range from greedy
algorithms for �0-norm regularized methods (Tropp,
2004) to convex optimization methods after convex
approximation (see Friedman et al. (2007), Beck and
Teboulle (2009), Jenatton et al. (2011), Yang and
Yuan (2013), and references therein).

Recently, a line of work has been devoted
to the framework of empirical risk minimization
with sparsity-inducing regularizations, which is com-
monly formulated as

min
x∈X

l(x) + λ · r(x), (1)

where x ∈ R
d (d is the dimensionality of the fea-

tures), X is the feasible domain, l(·) is the em-
pirical loss function, r(·) : R

d → R is a sparsity-
regularized function, and λ is a parameter balanc-
ing these two terms. Problem (1) accommodates
quite a few classic classification and regression mod-
els including linear regression obtained by setting
l(x) = ‖ATx − b‖2/2, logistic regression obtained
by setting l(x) = log(1 + exp(−bATx)), and linear
support vector machine (SVM) obtained by letting
l(x) = max(0, 1− bATx), where A ∈ R

d×N are the
data samples and b ∈ R

N are the labels of these data
samples. For variable selection problems in linear
models, sparsity may be directly achieved by adding
a penalty function of non-zero elements (Tibshirani,
1996), specifically r(x) = ‖x‖0, which is known as
the �0-norm of variable x.

In Fig. 1, the signal is recovered through a sparse
linear regression algorithm. With the constraint that
the basis of the signal is sparse, or the number of
bases is relatively small compared to the whole basis,
the original basis is determined while the noise is
removed.
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Fig. 1 Signal recovery from observation with noise
through a sparse linear regression algorithm. There
are six Gaussian distributed bases with means of
(3, 4, 10, 30, 35, 40) and variances of (1, 3, 3, 4, 2, 4).
The observed signal is a mixture of the second, third,
and fourth bases with weights of (1, 3, 2) accordingly.
The sparse learning method determines exactly the
bases and weights of the original signal (References
to color refer to the online version of this figure)

When r(·) is a nonconvex function, it was re-
ported in the literature that nonconvex regulariza-
tion usually yields a solution with more desirable
structural properties. Let us take the �0-norm reg-
ularized least squares problem (i.e., l(·) is a least
squares function) as an example. It is well known
that such a problem is NP-hard because of its com-
binatorial nature. To this end, the �1-norm regular-
ized model was proposed to pursue computational
tractability. In spite of computational advantages
and successful applications, the �1 model has some
limits in certain scenarios (Candès et al., 2008), since
the �1-norm comes at the price of shifting the result-
ing estimator by a constant (Fan and Li, 2011) which
leads to an over-penalized problem. To circumvent
the issues pertaining to the �1-norm, researchers have
managed to impose some nonconvex regularizations
on problem (1), which have been proven to be bet-
ter approximations of the �0-norm theoretically and
computationally. Some nonconvex regularized func-
tions have been widely used in sparse learning (Gong
et al., 2013). These nonconvex regularized functions
include the �p-norm (0 < p < 1) (Chartrand and
Yin, 2008; Foucart and Lai, 2009; Xu et al., 2012; Lai
et al., 2013; Wang Y et al., 2013), smoothly clipped
absolute deviation (SCAD) (Fan and Li, 2011), log-
sum penalty (LSP) (Candès et al., 2008), minimax

concave penalty (MCP) (Zhang CH, 2010), and the
capped-�1 penalty (Zhang T, 2010; Zhang, 2013). In
Table 1, we present the details of these regularized
functions for readers’ convenience.

Table 1 Examples of nonconvex penalty r(x)

Name r(x)

LSP γ log(1 + |x|/θ) (θ > 0)

SCAD γ

∫ |x|

0
min

(
1,

[θγ − y]+

(θ − 1)γ

)
dy (θ > 2)

MCP
γ

∫ |x|

0

[
1− y

θγ

]
+

dy=

⎧⎨
⎩
γ|x| − x2

2θ
, |x| ≤ θγ,

θγ2/2, |x| > θγ,

(θ > 0)

Capped-�1 γmin (|x|, θ) (θ > 0)

1.2 Structured sparsity

Structured sparse learning is commonly used in
two situations. First, structured sparse learning is
used given the prior knowledge that the model should
be structured sparsely. Second, to make the model
more interpretable or easier to use in the following
procedures, even if the underlying problem does not
admit assumed structured sparse solutions, one looks
for the best structured sparse approximation.

The �1-norm could be used to induce model
parsimony; however, it does not encode the struc-
tural information. To encode the structured spar-
sity, various structured regularizations have been
proposed. These regularizations encode the struc-
tural information into traditional sparse learning,
and they are recognized as structured sparsity induc-
ing norms. Structured sparsity may be achieved by
adding explicitly structured regularization. Struc-
tured sparsity-inducing norms are natural extensions
of the �0-norm. We could formulate the structured
learning problems as

min
x∈X

l(x) + λ · R(x), (2)

where R(·) is the structured sparsity-inducing reg-
ularization, which can be seen as an extension of
pure sparsity-inducing penalization. Compared to
the sparse learning problem (1), the term R(·) en-
codes the structured information, which provides a
great advantage beyond the traditional sparse learn-
ing algorithms to pursue the structured model.
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1.3 Aim and scope of this paper

In this article, we will review several struc-
tured sparsity-inducing norms (Fig. 2) ranging from
grouped sparsity (Fig. 2b), fused sparsity (Fig. 2c),
hierarchical sparsity (Fig. 2d), to graphical sparsity
(Fig. 2e). This review sheds light on new directions
in research fields and engineering problems to take
structural information into account.

Structured sparsity has been widely used in
practical problems, including model-based compres-
sive sensing (Baraniuk et al., 2010; Asaei et al.,
2011a; Duarte and Eldar, 2011; Chen et al., 2014),
signal processing (Bach and Jordan, 2006; Asaei
et al., 2011; 2014a; 2014b; Najafian, 2016), com-
puter vision (Jenatton et al., 2009; Kim et al., 2013;
Chen and Huang, 2014; Karygianni and Frossard,
2014; Xiao et al., 2016), bioinformatics (Wille and
Bühlmann, 2006; Zhang SZ et al., 2011; Kim and
Xing, 2012), and recommendation systems (Koren
et al., 2009; Takacs et al., 2009; Rendle and Schmidt-
Thieme, 2010; Zhang ZK et al., 2011). This article
focuses mainly on their formulations and algorithms.
The models and the algorithms are relatively inde-
pendent (Xu et al., 2005; Zhang et al., 2006; Xu et al.,
2007; Yuan et al., 2015; Hu and Yu, 2016; Xie et al.,
2016; Xie and Tong, 2016; Zhu et al., 2016), so is in
the privacy research field (Sun et al., 2015a; 2015b;
Wu et al., 2016).

Note that there are other books and articles that
offer diverse perspectives on sparse learning meth-
ods, including Elad (2010) and Mallat (2008) from
a perspective of signal processing, and Bach et al.
(2012b) in a view of optimization. However, this ar-
ticle focuses on intuitive formulations, their variants,
and the algorithms to solve them.

1.4 Notations

Vectors are denoted by bold lower-case letters
and matrices by upper-case ones. ‖x‖0 is the num-
ber of non-zero elements in a vector x, ‖x‖1 is
the sum of absolute values of elements in a vector
x, the �q-norm of a vector x ∈ R

n is defined as
‖x‖q := (

∑n
i=1 |xi|q)1/q for q > 0, and ‖x‖∞ :=

maxi=1,2,...,n |xi|, where xi denotes the ith coordi-
nate of x. The Frobenius norm of a matrix X ∈
R

d×n is defined as ‖X‖F := (
∑n

i=1

∑p
j=1 x

2
ij)

1/2,
where xij denotes the entry of X at the ith row
and jth column. Xi denotes the ith column of X.

2 Comparisons of different structured
sparsities and computational complex-
ity of optimization methods

In this section, we summarize all these struc-
tured sparsities presented in this article and com-
pare the computational complexity of typical opti-
mization methods of these structured sparse learning
problems.

In Table 2, we list formulations of these struc-
tured sparse learning problems, their corresponding
optimization algorithms, and public available soft-
ware implementations.

We also compare the convergence rates under
convex and strongly convex conditions of typical
first-order optimization methods in Table 3. In this
article, we focus mainly on the first-order optimiza-
tion methods. First-order methods typically require
access to an objective function’s gradient or sub-
gradient. The algorithms typically take the form
xt+1 = xt − αtgt for some step sizes αt and de-
scent direction gt. As such, each iteration takes
approximately O(n) time. A comparison between

Sparse precision matrix

(a) (b) (c) (d) (e)

Fig. 2 Illustration of sparsity and its extensions: (a) standard sparsity; (b) grouped sparsity; (c) fused sparsity;
(d) hierarchical sparsity; (e) graphical sparsity (References to color refer to the online version of this figure)
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several first-order methods was provided by Qiao
et al. (2016a). Higher-order methods are excluded
in this article, because some open issues need to be
addressed to apply higher-order methods in large-
scale machine learning problems.

3 Grouped structured sparsity

In many regression problems, the variables
are predefined in groups as prior knowledge in
practical situations such as the analysis-of-variance
(ANOVA). In this setting, the typical goal is to
choose major effects and interactions among vari-
ables. For example, in supervised learning problems,
to generate the classification label, variables are or-
ganized as collections of categorical predictors, and
the selection of significant variables corresponds to
the selection of groups of variables. To handle these
problems, grouped structured sparsity has been pro-
posed, and these extended methods are often called
‘grouped Lasso’ (Yuan and Lin, 2006).

3.1 Formulations of grouped structured spar-
sity

The grouped Lasso was studied and generalized
by Yuan and Lin (2006). Assume that the number of
groups is fixed and finite, and predictors are divided
into g groups with pi as the number of predictors in
the ith group Gi, p =

∑g
i=1 pi, and Gi ∩ Gj = ∅.

The grouped Lasso is formulated as

min
β∈Rp

‖y − β0 −
g∑

i=1

XT
i βi‖2F + λ

g∑

i=1

√
pi||βi||2. (3)

The sparsity of the solution depends on the magni-
tude of the tuning parameter λ, and exploits the non-
differentiability of ||βi||2 at βi = 0. Note that the
grouped Lasso estimates and the grouped sparsity
pattern converges to the correct patterns in proba-
bility (Bach, 2008b).

To obtain sparsity at both group and variables’
element-wise levels, Simon et al. (2013) proposed a
sparse grouped Lasso, which is formulated as

min ||y − β0 −
g∑

i=1

XT
i βi||2F + λ1

g∑

i=1

√
pi||βi||2

+ λ2||β||1,
(4)

where the second term controls the sparsity at the
group level, and the third term controls the sparsity

at the variables’ element-wise level. When λ1 = 0,
problem (4) degenerates to standard Lasso (Tibshi-
rani, 1996). When λ2 = 0, it generates grouped
Lasso (problem (3)). Because the grouped Lasso
may suffer from estimation inefficiency and selective
inconsistency, an adaptive grouped Lasso method
(Wang and Leng, 2008) has been proposed as a rem-
edy. Considering the potential non-uniqueness of so-
lutions and high computational costs, a generalized
linear model (GLM) (Roth and Fischer, 2008) has
been proposed with an active-set algorithm. The
number of groups is allowed to grow with the in-
crease of the number of observed data points (Mein-
shausen and Yu, 2008), and the extension with dy-
namic group division is also available in Mougeot
et al. (2013).

3.2 Algorithms for grouped structured spar-
sity

The grouped Lasso optimization problem (3)
can be solved through a coordinate gradient descent
algorithm, which is applicable to a broad class of
convex loss functions, and convergence of the algo-
rithm is established (see Hong et al. (2015) and ref-
erences therein). The blockwise coordinate descent
(BCD) algorithm was also used to solve the prob-
lem in Meier et al. (2008) and Liu H et al. (2009).
However, the BCD method may get stuck in ill condi-
tions, and in Vincent and Hansen (2014), a modified
BCD algorithm was proposed, which first computes
a descent direction at the given point, and then uses
a line search to find the next starting point. There
are also publicly accessible software implementations
that can be used to solve the problem. For example,
the SLEP package (Liu J et al., 2009) was used in
Xie and Xu (2014). More available implementations
are listed in Table 2.

The performance of these algorithms has been
comparatively studied in Rakotomamonjy (2011),
who concluded that depending on the perfor-
mance measure, greedy approaches and iterative re-
weighted algorithms are more efficient in either com-
putational complexity or sparsity recovered.

3.3 Applications of grouped structured spar-
sity

There are numerous applications to pursue
grouped sparsity. In computer vision, each group
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corresponds to different data sources or data types,
and different data sources could be referred to as
views. In speech and signal processing, similar
groups represent different frequency bands (McAuley
et al., 2005). In Vincent and Hansen (2014), grouped
Lasso was used in multinomial classification and
solved with a coordinate gradient descent method.
In document processing, Bengio et al. (2009) com-
bined grouped sparse learning with a bag-of-words
document representation.

4 Fused structured sparsity

In many real-world applications, coefficients are
organized in a specific order and have local con-
stancy. For instance, organizing variables in blocks
as prior knowledge may produce a better result. In
this setting, it is necessary to extend Lasso to exploit
the ordered structure, and the extension is called
‘fussed Lasso’ (Tibshirani et al., 2005).

4.1 Formulations of fused structured sparsity

In regression problems, variables x may have a
natural order. Specifically, variables are ordered ac-
cording to some index variable t, and they have local
constancy of the feature profile. These variables are
invoked as predictors. To exploit the local constancy
of the coefficient, Tibshirani et al. (2005) proposed
fussed Lasso, which extends the Lasso penalty to
take ordering into account. The extended method is
also called ‘generalized Lasso’. The fused Lasso can
be formulated as

min
β∈Rp

N∑

i=1

‖yi − β0 −
p∑

j=1

xijβj‖2F + λ1

p∑

j=1

||βj ||1

+λ2

p−1∑

j=1

||βj+1 − βj||1, (5)

where β ∈ R
p are the variables of the model, and

the N pairs (xi,yi) are the training data with noise.
There are three terms in the formulation: the first
term empirically minimizes the training error for a
given dataset, the second term encourages sparsity
in feature, and the third term is used to penalize the
differences of adjacent coefficients. These terms are
tuned with parameters λ1 and λ2. Note that the
fused Lasso makes the assumption that the index t

is uniformly distributed (John Lu, 2010), and the

third term should be generalized on divided differ-
ences λ2

∑p−1
j=1 (βj+1 − βj)/(tj+1 − tj).

A generalized two-dimensional fused Lasso was
proposed in Friedman et al. (2007). In this model,
parameters are laid out in a grid of pixels with a 2D
total variation (TV) norm (Rudin et al., 1992), which
is usually used in image denoising, image smoothing,
and data recovery. The general strategy for two-
dimensional fused Lasso can be directly applied in
higher-order problems, formulated as a tensor with
a higher-order TV-norm as regularization.

4.2 Algorithms to solve fused structured spar-
sity

The fused Lasso is a strictly convex problem in
β. For 1D fused Lasso, SQOPT (Gill et al., 2008)
can be used directly, in which there is a two-phase,
active-set algorithm designed for quadratic program-
ming problems with sparse linear constraints. For a
class of convex optimization problems, a coordinate
descent algorithm was presented in Friedman et al.
(2007), which is a one-at-a-time coordinate-wise de-
scent algorithm, and can be generalized to solve the
2D fused Lasso or even higher dimensional cases.

To handle large-scale fused Lasso problems, Ye
and Xie (2011) proposed an iterative algorithm based
on the split Bregman method to solve a class of large-
scale fused Lasso problems. Wang LC et al. (2013)
presented an augmented Lagrangian method (ALM)
for general convex loss. Li et al. (2014) proposed a
fast linearized alternating direction method to solve
the general Lasso model, and Qiao et al. (2016b;
2016c) improved the method to solve the structed
nonconvex problems.

Experiment results in Hoefling (2010) showed
that Tibshirani’s and Friedman’s algorithms are
clear and fast, and are state-of-the-art methods. The
linearized method in Li et al. (2014) can be used to
handle larger-scale problems.

4.3 Applications of fused structured sparsity

Fused Lasso is validated in protein mass spec-
troscopy (MS), gene expression, and image smooth-
ing problems. The protein MS, which holds great
promise for biomarker identification and proteomics
profiling, was also used as a motivating example to
demonstrate the efficacy of fused Lasso in Tibshi-
rani et al. (2005) and Tibshirani and Wang (2008).
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As demonstrated in Huang et al. (2005), another
important application of fused Lasso is the recon-
struction of copy numbers from comparative genomic
hybridization (CGH) data arrays. For images with
smoothness among pixels, fused Lasso can achieve a
rather good performance (Friedman et al., 2007).

5 Hierarchically structured sparsity

In hierarchical sparsity, the variables are orga-
nized hierarchically (Xu et al., 2011) or integrated
into a tree, and form a union of potentially overlap-
ping groups that were defined previously. The hi-
erarchical sparsity may be achieved through various
extended sparsity-inducing norms, and the extension
is often called ‘hierarchical Lasso’ (Zhao et al., 2009).

5.1 Formulations of hierarchically structured
sparsity

Hierarchical Lasso assumes that the p variables
are assigned to the nodes of a tree T , or a forest.
In this setting, if a feature is selected then it implies
that all its ancestors in T have already been selected,
and if a node is not selected, then its descendants are
not selected.

The hierarchical Lasso was first presented in
Zhao et al. (2009). The authors proposed the struc-
tured penalty, which is called the composite absolute
penalty (CAP). By allowing the groups to overlap,
CAP can be used to represent a hierarchy structure
among the predictors. In a given group or hierarchi-
cal structure, the CAP penalty must be specialized
for grouped and hierarchical selection. Assume the
grouping is denoted as G = (G1, G2, . . . , GK), and
the norm is denoted as γ = (γ0, γ1, . . . , γK) ∈ R

K+1
+ .

The CAP penalty with grouping G could be formu-
lated as follows:

TG,γ(β) =
∑

k

||βGk
||γ0
γk
,

where βGk
= {βj|j ∈ Gk}, and the corresponding

CAP estimation for the tuning parameter λ is

β̂G,γ(λ) = argmin
β

(L(Z,β) + λTG,γ(β)), (6)

where L(Z,β) is the loss function. Specified over-
lapping patterns corresponding to the given struc-
ture can be used for hierarchical variable selection.
For piecewise quadratic loss functions, CAP with �1-

norm or �∞-norms has advantages that their reg-
ularization paths are piecewise linear. If γi ≥ 1

(i = 0, 1, . . . ,K), then T (β) is convex. If the loss
function L(·) is convex in β, then the objective func-
tion of CAP estimation is convex.

In compressive sensing, Baraniuk et al. (2010)
presented tree sparsity in the context of sparse
wavelet decompositions. The consistency of the
sparse estimator of potentially overlapping groups
was given in Jacob et al. (2009). In sparse coding,
Jenatton et al. (2010) proposed an extension that
the atoms are further assumed to be embedded in a
tree, which was achieved using tree-structured sparse
regularization norms.

5.2 Algorithms of hierarchically structured
sparsity

The BLasso algorithm (Zhao and Yu, 2007),
which was derived from a coordinate descent method
with a fixed step size applied to the general Lasso
loss function, can be used to solve the minimization
problem. Zhao et al. (2009) extended BLasso and
proposed the hiCAP algorithm for hierarchical vari-
ables selection, which was valid for the �2-loss when
γ0 = 1, γk = ∞, or a tree-structured hierarchy in
graph representation. Considering the formulation’s
nonseparability and non-smoothness, Chen et al.
(2012) proposed the smoothing proximal gradient
(SPG) method, which combines a smoothing tech-
nique with an effective proximal gradient method to
solve structured sparse regression problems with a
smooth convex loss.

Proximal methods (Parikh and Boyd, 2014),
which extend the projection operator to a convex
set, have recently been shown effective in solving
variational problems. To accelerate the convergence,
Mosci et al. (2010) added a strictly convex function
to the objective function and the experiment results
showed that it reduces the number of substantial
optimization iterations. After introducing auxiliary
variables, Micchelli et al. (2013) used an alternating
minimization algorithm with a projection procedure
to solve the problem and established the theorem of
convergence. Combined with an active set strategy,
Villa et al. (2014) accelerated the proximal method
by using a new active set strategy to compute the
proximal operator. When the objective function is
strongly convex, Xiao and Zhang (2014) proposed a
proximal stochastic gradient method iterated in an
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incremental way, which provides an efficient way to
solve large-scale problems.

5.3 Applications of hierarchically structured
sparsity

In wavelet decompositions, it is natural to or-
ganize them in a tree because of their multi-scale
structure, and it benefits image compression and de-
noising (Baraniuk et al., 2010; Huang et al., 2011).
In dictionary learning, Jenatton (2011) used hierar-
chical dictionary learning in image restoration and
performed multi-scale mining of fMRI data for the
prediction of simple cognitive tasks (Jenatton et al.,
2012). In genetics, Kim and Xing (2010) used it
to exploit the tree structure of gene networks for
multi-task regression. In topic models, Blei et al.
(2010) proposed a hierarchical model of latent vari-
ables based on Bayesian non-parametric methods to
model hierarchies of topics.

6 Graphically structured sparsity

The graph is a powerful data structure in model
construction for a lot of machine learning algorithms,
such as the graphical model (Wainwright and Jor-
dan, 2008) and high-dimensional model selection
(Meinshausen and Bühlmann, 2006). Sparse graphs
have a relatively small number of edges, and are eco-
nomical to use with good interpretability. The prob-
lem of estimating sparse graphs may be resolved by
‘graphical Lasso’ (Banerjee et al., 2008), which is an
extension of Lasso on the inverse covariance matrix.

6.1 Formulations of graphically structured
sparsity

A graph G consists of a set of vertices N , and an
edge setE. In undirected graphical models, each ver-
tex represents a random variable, and each edge rep-
resents the dependent relationship between the two
vertices. The absence of an edge between two ver-
tices has a special meaning: the corresponding ran-
dom variables are conditionally independent, given
that the rest of the variables are known.

Wermuth (1976) showed that if graphG is Gaus-
sian distributed, then it has the property that condi-
tional independence of vertices corresponds to non-
zero entries in the precision matrix. Model selection
for undirected Gaussian graphical models is equiva-

lent to selecting non-zero elements in the precision
matrix. Dempster (1972) named the problem ‘co-
variance selection’. Considering that the values of
the precision matrix are part of continuous variables,
it is natural to extend variable selection to edge se-
lection on the graph (see Banerjee et al. (2008) and
references therein).

Assume that there are N multi-variate normal
variables xi (i = 1, 2, . . . , N) with population mean
μ and covariance Σ. The empirical covariance ma-
trix is S =

∑N
i=1(xi− x̄)(xi− x̄)T/N , where x̄ is the

mean of the samples. Without considering the con-
stants, the log-likelihood of the data can be written
as �(Θ) = log detΘ − trace(SΘ), where the quan-
tity �(Θ) is a convex function of Θ and the maximum
likelihood estimate of Σ is S. Considering Wishart
log-likelihood, there is Θ = Σ−1. Then Lagrange
constants for all missing edges are formulated as

�c(Θ) = log detΘ − trace(SΘ)− λ||Θ||1, (7)

where ||Θ||1 is the element-wise �1-norm of Θ, and
term λ||Θ||1 is used as a sparsity-inducing norm on
the inverse covariance matrix.

6.2 Algorithms of graphically structured
sparsity

The optimization problem (7) is more conve-
nient to solve than the original model selection prob-
lem. Banerjee et al. (2008) showed that problem (7)
is convex and the problem can be solved by optimiz-
ing over each row and the corresponding column of
W in a block coordinate descent fashion. Concretely,
W and S could be partitioned as

W =

(
W11 w12

wT
12 w22

)

,S =

(
S11 s12
sT12 s22

)

,

and the gradient equation for maximizing problem
(7) is Θ−1 −S− λ · sign(Θ) = 0. Then, the solution
for w12 would be given by solving

w12 = argmin
y

{yTW−1
11 y : ||y − s12||∞ ≤ ρ}.

Following Banerjee’s work, Friedman et al.
(2008) proposed an algorithm named ‘graphical
Lasso’ using a coordinate descent method. Moti-
vated by the success of convex relaxation for the
rank-minimization problem, Chandrasekaran et al.
(2012) introduced a regularized maximum normal



Qiao et al. / Front Inform Technol Electron Eng 2017 18(4):445-463 455

likelihood decomposition framework with a trace
norm penalty term, and Ma et al. (2013) devel-
oped a proximal gradient based alternating direction
method of multipliers to solve these problems.

In practice, tuning the parameter is essential
for the results. Yuan and Lin (2007) proposed a
Bayesian information criterion (BIC) type criterion
for the selection of the tuning parameter.

6.3 Applications of graphically structured
sparsity

Graphical Lasso has been applied to various re-
search fields, including gene network discovery and
social-network data analysis.

Jones and West (2005) applied graphical Lasso
to the analysis of gene expression data, which con-
sists of 8408 variables and has roughly a multivariate
Gaussian distribution. Friedman et al. (2008) used
it to analyze a flow cytometry dataset of 11 proteins
and 7466 cells, and produced a directed acyclic graph
in cell signal data.

In network discovery, Leng and Tang (2012)
used it to analyze the U.S. agricultural export data
and presented the network and the regions of the US
Department of Agriculture export data from 1970 to
2009. Considering that the structure may vary from
time to time, Kolar and Xing (2011) proposed that
the structure of the undirected graphical model can
be consistently estimated in the high-dimensional
setting, when the dimensionality of the model is al-
lowed to diverge with the sample size.

7 Experiments

In this section, four numerical experiments are
performed to evaluate three of these structured
sparse learning methods mentioned in previous sec-
tions. The results obtained from these numerical
studies are detailed in this section. The first two ex-
periments demonstrate that the structured sparsity-
inducing method can recover the signal while the
standard sparse learning cannot. The third experi-
ment demonstrates that model parsimony can be ob-
tained through a structured method beyond the stan-
dard sparse learning method in wavelet coefficients
selection. The fourth experiment demonstrates that
the accuracy could be increased with the graphical
structure used in logistical regression.

Several publicly accessible software packages are

used, including SparseLab (Donoho et al., 2007),
SLEP (Liu J et al., 2009), SPAMS (Mairal et al.,
2011), YALL1 (Zhang Y et al., 2011), and SPGL1
(van den Berg and Friedlander, 2007). In this arti-
cle, we use mainly SPAMS and YALL1 to solve the
optimization problem. All numerical experiments
are conducted with Matlab 7.12.0 on a laptop with
an Intel Core I7-4710-MQ, 2.5 GHz CPU, and 4 GB
of RAM.

7.1 Measurements

Accuracy, model explainability, and computa-
tional complexity are the three most important as-
pects to consider in machine learning algorithms.
The latter two are dominated mainly by model par-
simony. Thus, we use prediction accuracy on a test
dataset and model parsimony to evaluate the struc-
tured sparse learning methods in this study.

The prediction accuracy on the test dataset is
formulated as

Acctest =
TP+ TN

P +N
, (8)

where TP is true positive with hit, and TN is true
negative with correct rejection. We propose a par-
simony ratio to measure model parsimony, which is
formulated as

PR =
Number of variables in the model

Number of variables in the orginal model
.

(9)

7.2 Signal recovery with fused structured
sparsity

To show the capability of the fused structure
for solving fused structured problems, we conduct
the following tests. First, we generate the regression
coefficient x̂ ∈ R

n for n = 1000 as

x̂ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

r1, j = 1, 2, · · · , 100,
r2, j = 201, 202, · · · , 300,
r3, j = 401, 402, · · · , 500,
r4, j = 601, 602, · · · , 700,
0, else,

where scalers r1, r2, r3, and r4 are randomly gener-
ated and uniformly distributed on (0, 1). The plot
of x̂ is shown in Fig. 3a. The entries of matrix A ∈
R

m×n with m = 500 and n = 1000 are drawn from
standard distribution N (0, 1). Observations b ∈ R

m
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Fig. 3 Coefficients recovered with fused structure reg-
ularization: (a) original coefficients; (b) coefficients
recovered with the fused sparse model (problem (5));
(c) coefficients recovered with sparse learning (with-
out the fused structure regularized term)

are then created as the signs of Ax̂+e, where e ∈ R
m

is a random vector with distribution N (0, 0.05). Pa-
rameters in the fused model, specifically problem (5),
are setted as λ1 = 5× 10−4, λ2 = 5× 10−2, while in
the sparse model (problem (1)), λ1 = 5× 10−2.

Fig. 3b shows that the fused model can pre-
serve the natural ordering rather well. Fig. 3c shows
that the sparse model presents a sparse solution, but
cannot preserve the natural ordering. This example
demonstrates that fused structured sparse learning
surpasses sparse learning when the original data has
a fused structure.

7.3 Signal recovery improved by grouped
structured sparsity

To show the capability of the grouped structure
for solving grouped structured problems, we conduct

the following tests. We consider solving problem (3)
with weighted groups. First, we create a random
m× n encoding matrix, and perform scaling by nor-
malizing the rows of the encoding matrix. Then, we
generate groups with the desired number of unique
groups, and a weight is determined for each group.
Next, the observations are generated through the en-
coding matrix and grouped sparse vector, followed by
a Gaussian noise added to the observation.

The original signal is presented in Fig. 4a.
Fig. 4b shows that the grouped model can recover
the signal rather well. Fig. 4c shows that the
sparse model without the grouped regularization
term presents a sparse solution. A sparse method
without the grouped regularized term could not re-
cover the original signal, although the data fitting
loss is relatively low. This example demonstrates
that grouped structured sparse learning surpasses
sparse learning when the original data has a grouped
structure.

7.4 Model parsimony gained by hierarchically
structured sparsity

To show the capability of the hierarchical struc-
ture, we conduct the following tests. First, an image
with five rectangles is randomly generated. Then, we
apply ordinary linear sampling to measure the 4096
wavelet coefficients directly. Compared to the linear
structure, we also perform a hierarchical structure
that has 1152 wavelet coefficients.

Fig. 5b shows that the linear model can re-
construct images well with ‖xlin − x0‖2F/‖x0‖2F =

0.3567. Fig. 5c shows that the hierarchical model can
greatly reduce the number of coefficients, specifically
from 4096 to 1152, with a model parsimony rate of
1152/4095=28.1%, while the relative error is compa-
rable, ‖xhie − x0‖2F/‖x0‖2F = 0.3568. This example
demonstrates that hierarchically structured sparse
learning can greatly improve model parsimony be-
yond sparse learning when the original data is struc-
tured hierarchically.

7.5 Prediction accuracy improved by graphi-
cally structured sparsity

To show the ability of the graphical structure
to solve graphically structured problems, we con-
duct the following tests. The experiment is con-
ducted on the binary classification datasets: ‘20
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Newsgroups ’ (www.cs.nyu.edu/~roweis/data.html).
The 20 Newsgroups dataset is a collection of approx-
imately 20 000 newsgroup documents, partitioned
(nearly) evenly across 20 different newsgroups. The
20 Newsgroups collection has become a popular
dataset for experiments in text applications of ma-
chine learning techniques, such as text classification
and text clustering. Here, the first 100 words are se-
lected and we use 80% of the samples for training and
20% for testing. To reduce statistical variability, ex-
perimental results are averaged over 10 repetitions.
First, we use graphical Lasso to generate the graph-
ical relationship. Then, we propose a novel graph-
guided method to do classification, and compare the
average predication accuracy of the standard classi-
fier without a graphical structure penalty.
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Fig. 4 Coefficients recovered with grouped struc-
ture regularization: (a) original coefficients; (b) co-
efficients recovered with the grouped sparse model
(problem (5)); (c) coefficients recovered with sparse
learning (without the grouped structure regularized
term)

(a)

(c)

(b)

Fig. 5 Images reconstructed with hierarchically struc-
tured sparsity: (a) original image; (b) linear recon-
struction from 4096 samples (‖xlin − x0‖2

F/‖x0‖2
F =

0.3567); (c) hierarchically structured reconstruction
from 1152 samples (‖xhie−x0‖2

F/‖x0‖2
F = 0.3568 and

the model parsimony rate is 1152/4096=28.1%)

In the second step, we propose a novel graph-
guided logistic regression approach, which is formu-
lated as

min
x

l(x) +
γ

2
‖x‖22 + λ‖Fx‖1, (10)

where l(x) =
∑N

i=1 l(x, ξi)/N , l(x, ξi) is the logistic
loss on data sample ξi, and λ > 0 is a regulariza-
tion parameter. Furthermore, F is the penalty ma-
trix promoting the desired graphical structure of x.
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Specifically, F in problem (10) is generated by sparse
inverse covariance selection (Scheinberg et al., 2010).
We observe that problem (10) can be solved by the
stochastic primal dual hybrid gradient method pro-
posed in our prior work (Qiao et al., 2016a).

Fig. 6a shows that the graphical model can gen-
erate the graphical relationship among words very
well. In Fig. 6b, we see that graphical logistic re-
gression could greatly improve the prediction accu-
racy beyond standard logistic regression. This ex-
ample shows that a graphically structured model can
greatly improve prediction accuracy.
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Fig. 6 Classification with graphically structured spar-
sity: (a) graphical relationship among words; (b) av-
erage predication accuracy of graph-guided logistic
regression and standard logistic regression

8 Conclusions and discussion

Structured sparse learning methods incorporate
specific structure information with sparse learning
methods, and have been used in various fields. In
this article, we reviewed the development of the the-

ory, formulations, algorithms, and applications of the
latest structured sparse learning methods, including
grouped structured sparsity, fused structured spar-
sity, hierarchically structured sparsity, and graphi-
cally structured sparsity. For each type of structured
sparsity, we presented the original formulation and
its variations and the mathematical motivation of
these methods, addressed the algorithms for solving
these problems, and discussed the fact that applica-
tions with prior knowledge lead to improved expli-
cability of the sparse estimations and/or increased
prediction performance in related research fields.

Experiments have been conducted to demon-
strate the advantage of structured sparse learning al-
gorithms beyond standard sparse learning methods.
These experiments demonstrated that the structured
sparsity-inducing method could achieve better per-
formance than the standard sparse learning method.
We also proposed a novel graph-guided logistic re-
gression method to demonstrate the efficacy of the
graphical structure. However, the experiment results
on super computers (Yang et al., 2010; 2011) are
expected and power efficient algorithms (Lai et al.,
2015; 2016) and algorithms for new infrastructures
(Chen et al., 2016) are still required.

Though structured sparse learning methods
have shown great success from scientific research
fields to industrial engineering, there are still many
issues to be addressed:

1. Online learning algorithms for structured
sparsity problems. Most current structured sparsity
is optimized in a batch way. In real-world applica-
tions, the training data volume may be huge or be
given in a sequential way. Online learning is a better
choice to address these problems.

2. Efficient algorithms for non-convex models.
Today, most structured models are solved through
a convex approximation of the original formulation.
However, in statistics, it was reported in the liter-
ature that non-convex regularization usually yields
a solution with more desirable structural properties,
for example, the �0-norm regularized least squares
problem (i.e., l(·) is a least squares function). Ef-
ficient non-convex algorithms are needed for these
strict models.

3. Specific structure inducing regularization.
Many structure-inducing regularizations have been
proposed, and many of them have been applied in
a wide range of fields. For specifically structured
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problems, we still need new regularization to induce
the specific structure.
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