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Abstract: Interval-valued data appear as a way to represent the uncertainty affecting the observed values. Dealing
with interval-valued information systems is helpful to generalize the applications of rough set theory. Attribute
reduction is a key issue in analysis of interval-valued data. Existing attribute reduction methods for single-valued
data are unsuitable for interval-valued data. So far, there have been few studies on attribute reduction methods for
interval-valued data. In this paper, we propose a framework for attribute reduction in interval-valued data from the
viewpoint of information theory. Some information theory concepts, including entropy, conditional entropy, and joint
entropy, are given in interval-valued information systems. Based on these concepts, we provide an information theory
view for attribute reduction in interval-valued information systems. Consequently, attribute reduction algorithms
are proposed. Experiments show that the proposed framework is effective for attribute reduction in interval-valued
information systems.
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1 Introduction

Rough set theory is as an extension of set the-
ory for the study of intelligent systems characterized
by insufficient and incomplete information (Pawlak,
1991). It has attracted the attention of many re-
searchers who have studied its theories and applica-
tions in recent years (Dai and Xu, 2012; 2013; Dai
et al., 2012; 2013a; 2013c; Hu, 2015; Lin et al., 2015;
Zhang X et al., 2015; Zhang XH et al., 2016).

The classical rough set model is not appropri-
ate for handling interval-valued data. However, in
real applications, many data are interval-valued (Bil-
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lard et al., 2008; Hedjazi et al., 2011; Dai et al.,
2012; 2013b). Thus, dealing with interval-valued
information systems becomes an interesting prob-
lem in rough set theory (Leung et al., 2008; Qian
et al., 2008; Yang et al., 2009). Dai (2008) in-
vestigated the algebraic structures for interval-set-
valued rough sets generated from an approximation
space. Recently, Dai et al. (2012; 2013b) stud-
ied the uncertainty measurement issue in interval-
valued information systems. Leung et al. (2008) pre-
sented a rough set approach based on the misclas-
sification rate for interval-valued information sys-
tems. Qian et al. (2008) proposed a dominance
relation to ordered interval information systems.
Yang et al. (2009) investigated a dominance rela-
tion in incomplete interval-valued information sys-
tems. However, there have been few studies deal-
ing with the attribute reduction issue in interval-
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valued information systems. Dai et al. (2013b)
considered this issue from the viewpoint of uncer-
tainty measurement. In this study, we aim to intro-
duce a heuristic approach for attribute reduction in
interval-valued information systems based on infor-
mation theory.

2 Basic concepts

2.1 Similarity degree between interval values

Unlike classical real values, it is difficult to com-
pare two interval values using traditional methods.
Motivated by this fact, some research efforts have
been directed toward finding efficient methods to
measure or rank two interval values, mainly in the
fuzzy set community (Bustince et al., 2006; Zhang
and Fu, 2006; Galar et al., 2011). Galar et al. (2011)
defined the similarity between two intervals as an in-
terval. Zhang and Fu (2006) defined the similarity
between two intervals as a real number. In this study,
motivated by a similarity measure for interval-valued
fuzzy sets proposed by Zhang and Fu (2006), we give
a similarity measure for general interval-valued data:
Definition 1 Let U = {u1, u2, . . . , un} be the uni-
verse of the interval values, and ui = [u−

i , u
+
i ], i =

1, 2, . . . , n. Let m− = minui∈U{u−
i }, m+ =

maxui∈U{u+
i }. The relative bound difference sim-

ilarity degree between ui and uj is defined as

υij = 1− 1

2

|u−
i − u−

j |+ |u+
i − u+

j |
m+ −m− . (1)

Proposition 1 Note that the relative bound
difference similarity degree υij has the following
properties:

1. 0 ≤ υij ≤ 1;
2. υij = 1 if and only if ui equals uj ;
3. υij = υji.

Proof It can be proved easily according to Defini-
tion 1.
Example 1 Assume U = {u1, u2}, u1 = [3, 4],
u2 = [2, 5]. We have

m− = min{3, 2} = 2, m+ = max{4, 5} = 5,

|u−
1 − u−

2 | = |3− 2| = 1, |u+
1 − u+

2 | = |4− 5| = 1,

υij = 1− 1

2
× 1 + 1

5− 2
=

2

3
.

2.2 Similarity classes and generalized deci-
sions in interval-valued information systems

Let IVIS = (U,A) denote an interval-valued in-
formation system, where U = {u1, u2, ..., un} is a
non-empty finite set called the universe of discourse,
and A = {a1, a2, ..., am} is a non-empty finite set of
m attributes called conditional attributes.
Definition 2 Assume that IVIS = (U,A) is an
interval-valued information system. For a given sim-
ilarity rate α ∈ [0, 1] and an attribute subset B ⊆ A,
an α-similarity class of an object ui ∈ U is denoted
as

Sα
B(ui) =

{
uj | υκ

ij > α, ∀ aκ ∈ B, uj ∈ U
}
, (2)

where υκ
ij represents the similarity degree of ui and

uj at the κth attribute.
Remark 1 Sα

B denotes the family set
{Sα

B(ui) | ui ∈ U}.
Sα
B(ui) is the maximum set of objects which are

possibly indiscernible with object ui by attribute set
B under similarity rate α. In other words, Sα

B(ui) is
an α-similarity class of ui.
Proposition 2 Given an interval-valued informa-
tion system IVIS, and assuming that the attribute
subset B ⊆ A, then Sα

B has the following properties
for any ui ∈ U :

1. Sα
B(ui) =

⋂

b∈B

Sα
{b}(ui);

2. if C ⊆ B, then Sα
B(ui) ⊆ Sα

C(ui).
Proof

1. By definition, we have Sα
B(ui) ={

uj | υb
ij > α, ∀ b ∈ B, uj ∈ U

}
=

⋂

b∈B

Sα
{b}(ui).

2. By definition, we have Sα
B(ui) ={

uj | υb
ij > α, ∀ b ∈ B, uj ∈ U

}
and Sα

C(ui) ={
uj | υb

ij > α, ∀ b ∈ C, uj ∈ U
}
. For any uj ∈

Sα
B(ui), we know υb

ij > α holds for any b ∈ B. Since
C ⊆ B, we know υb

ij > α holds for any b ∈ C. Hence,
uj ∈ Sα

C(ui).
Let IVDS = (U,A ∪ {d}) denote an interval-

valued decision system where d is the decision at-
tribute, also called the class label.
Definition 3 Assume that IVDS = (U,A ∪ {d})
is an interval-valued decision system. The decision
class of an object ui ∈ U is denoted as

D(ui) = {uj | d(ui) = d(uj), ∀uj ∈ U} . (3)

Remark 2 We use U/d = {Di | d(ux) = d(uy),

∀ux, uy ∈ Di} to denote the partition of U based on
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the decision attribute d; i.e., D(ui) represents the set
of objects which contain the same decision attribute
as ui.

Similar to the definition of generalized decision
proposed by Kryszkiewicz (1998) for incomplete de-
cision systems, α-generalized decision can be defined
as follows:
Definition 4 The α-generalized decision of an ob-
ject ui ∈ U is denoted as

∂α
B(ui) =

{
d(uj) | υκ

ij > α, ∀ aκ ∈ B, uj ∈ U
}
. (4)

Remark 3 ∂α
B denotes the family set

{∂α
B(ui) | ui ∈ U}.

Let IVDS = (U,A ∪ {d}) be an interval-valued
decision system. If Sα

A(ui) ⊆ D(ui) for any ob-
ject ui ∈ U , then the interval-valued decision sys-
tem {U,A ∪ {d}} is called a consistent (determinis-
tic, definite) interval-valued decision system. Other-
wise, it is called an inconsistent (non-deterministic,
non-definite) interval-valued decision system.
Proposition 3 Given a consistent decision system
IVDS = (U,A ∪ {d}), for an attribute set B ⊆ A,
the following conditions are equivalent for all objects
ui ∈ U :

1. Sα
B(ui) ⊆ D(ui);

2.
∣
∣∂α

B(ui)
∣
∣ = 1.

Proof Suppose Sα
B(ui) ⊆ D(ui). For any uj ∈

Sα
B(ui), we have uj ∈ D(ui). It follows that d(uj) =

d(ui). In other words, d(uj) = d(ui) holds for any
uj satisfying υb

ij > α, ∀ b ∈ B. Hence, we know∣
∣∂α

B(ui)
∣
∣ = 1 by Definition 4.

Suppose
∣∣∂α

B(ui)
∣∣ = 1. For any uj ∈ Sα

B(ui), we
have d(ui) = d(uj). It means uj ∈ D(ui). Thus, we
have Sα

B(ui) ⊆ D(ui).

3 Information entropy and conditional
entropy for interval-valued information
systems

Let us introduce an information measure for the
discernibility power of an α-similarity class denoted
as Sα

B(ui), which is equivalent to Shannon’s entropy
if Sα

B(ui) is a partition of U .
Definition 5 Given IVDS = (U,A∪{d}) and B ⊆

A, the information entropy of B is defined as follows:

HSIM(B) = −
|U|∑

i=1

p

(
Sα
B(ui)

)
log p

(
Sα
B(ui)

)

= −
|U|∑

i=1

|Sα
B(ui)|
|U | log

|Sα
B(ui)|
|U | , (5)

where | · | denotes the number of elements in the set.

At the same time, the conditional entropy of B
to d is defined as follows:

HSIM(d | B) = −
|U|∑

i=1

p

(
Sα
B(ui)

)

·
|U/d|∑

j=1

p

(
Dj |Sα

B(ui)

)
log p

(
Dj |Sα

B(ui)

)

= −
|U|∑

i=1

|U/d|∑

j=1

|Sα
B(ui) ∩Dj |

|U | log
|Sα

B(ui) ∩Dj |
|Sα

B(ui)| . (6)

The joint entropy of B and d is defined as follows:

HSIM(d ∪B)

= −
|U|∑

i=1

|U/d|∑

j=1

p

(
Dj ∩ Sα

B(ui)

)
log p

(
Dj ∩ Sα

B(ui)

)

= −
|U|∑

i=1

|U/d|∑

j=1

|Sα
B(ui) ∩Dj |

|U | log
|Sα

B(ui) ∩Dj |
|U | . (7)

Note that we define HSIM(d | B) = 0 when
|Sα

B(ui) ∩Dj| = 0.
Proposition 4 Let IVDS = (U,A ∪ {d}) be an
interval-valued decision system. For the attribute
subset B ⊆ A, we have

1. HSIM(B) ≥ 0;

2. HSIM(d ∪B) = max{HSIM(d), HSIM(B)};
3. HSIM(d |B) = 0 and HSIM(d∪B) = HSIM(B)

if and only if Sα
B(ui) ⊆ D(ui), ∀ui ∈ U ;

4. HSIM(d ∪B) = HSIM(d | B) +HSIM(B).

Proof
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HSIM(d | B) +HSIM(B)

=−
|U|∑

i=1

|U/d|∑

j=1

|Sα
B(ui) ∩Dj|

|U | log
|Sα

B(ui) ∩Dj |
|Sα

B(ui)|

−
|U|∑

i=1

|Sα
B(ui)|
|U | log

|Sα
B(ui)|
|U |

=−
|U|∑

i=1

|U/d|∑

j=1

|Sα
B(ui) ∩Dj|

|U |
(
log

|Sα
B(ui) ∩Dj|

|U |

− log
|Sα

B(ui)|
|U |

)

−
|U|∑

i=1

|Sα
B(ui)|
|U | log

|Sα
B(ui)|
|U |

=−
|U|∑

i=1

|U/d|∑

j=1

|Sα
B(ui) ∩Dj|

|U | log
|Sα

B(ui) ∩Dj |
|U |

+

|U|∑

i=1

( |U/d|∑

j=1

|Sα
B(ui) ∩Dj|

|U | − |Sα
B(ui)|
|U |

)

· log |Sα
B(ui)|
|U |

=−
|U|∑

i=1

|U/d|∑

j=1

|Sα
B(ui) ∩Dj|

|U | log
|Sα

B(ui) ∩Dj |
|U |

+

|U|∑

i=1

( |Sα
B(ui)|
|U | − |Sα

B(ui)|
|U |

)
log

|Sα
B(ui)|
|U |

=HSIM(d ∪B).

Note that
HSIM(d ∪B) 	= HSIM(B | d) +HSIM(d).

4 Attribute reduction framework for
interval-valued information systems
and interval-valued decision systems
based on information entropies

One significant problem in rough set theory is
searching for particular subsets of attributes which
provide the same information for classification. It is
also called attribute reduction.

4.1 Information theory view for attribute
reduction of interval-valued information
systems

Definition 6 Assume that IVIS = (U,A) is an
interval-valued information system. If an attribute
subset B ⊆ A and α ∈ [0, 1], attribute subset B is a

reduct of IVIS if and only if
1. Sα

B = Sα
A;

2. ∀ b ∈ B, Sα
B−{b} 	= Sα

A.

Definition 7 Let IVDS = (U,A ∪ {d}) be an
interval-valued decision system. If attribute subset
B ⊆ A and α ∈ [0, 1], attribute set B is a relative
reduct of IVDS if and only if

1. ∂α
B = ∂α

A;

2. ∀ b ∈ B, ∂α
B−{b} 	= ∂α

A.

To construct our information theory based at-
tribute reduction methods, we provide an informa-
tion theory view for attribute reduction in interval-
valued information systems.
Theorem 1 Assume that IVIS = (U,A) is an
interval-valued information system. Then Sα

B = Sα
A

and HSIM(B) = HSIM(A) are equivalent.
Proof

HSIM(B)

= −
|U|∑

i=1

|Sα
B(ui)|
|U | log

|Sα
B(ui)|
|U |

= −
|U|∑

i=1

|Sα
A(ui)|
|U | log

|Sα
A(ui)|
|U | = HSIM(A).

Theorem 2 Let IVIS = (U,A) be an interval-
valued information system. If C ⊆ A is redundant,
then HSIM(A) −HSIM(A− C) = 0.
Proof If C is redundant in IVIS, then we know
Sα
{A−C} = Sα

A by Definition 6. It is easy to obtain
HSIM(A− C) = HSIM(A) by Theorem 1.
Theorem 3 Let IVIS = (U,A) be an interval-
valued information system. Then C ⊆ A is indis-
pensable if and only if HSIM(A)−HSIM(A−C) > 0.
Proof Suppose the attribute subset C is in-
dispensable. Then we have Sα

{A−C} 	= Sα
A. By

Theorem 1, we have HSIM(A − C) 	= HSIM(A).
Since HSIM(A − C) ≤ HSIM(A), it follows that
HSIM(A)−HSIM(A− C) > 0.
Definition 8 Assume that IVIS = (U,A) is an
interval-valued information system. The significance
of an attribute ai 	∈ B relative to B is as follows:

Sig(ai, B) = HSIM(B)−HSIM(B − {ai}). (8)

Definition 9 If IVDS = (U,A ∪ {d}) is an
interval-valued decision system, the significance of
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attribute ai relative to B is defined as

Sig(ai, B, d) = HSIM(d | B − {ai})−HSIM(d | B).

(9)
From the above theorems, we obtain the in-

formation theory view for attribute reduction in
interval-valued information systems.
Theorem 4 Assume that IVIS = (U,A) is an
interval-valued information system. The attribute
subset B ⊆ A is a reduct of A if and only if

1. HSIM(B) = HSIM(A);

2. ∀ b ∈ B, Sig(b, A) > 0.
Theorem 5 Given IVDS = (U,A ∪ {d}) and B ⊆
A, if IVDS is consistent, then ∂α

B = ∂α
A and HSIM(d |

B) = HSIM(d | A) are equivalent.
Proof Assume ∂α

B = ∂α
A. Since IVDS =

{U,A ∪ {d}} is consistent, we have
∣
∣∂α

A(ui)
∣
∣ = 1

and Sα
A(ui) ⊆ D(ui) for all objects ui ∈ U . Hence,∣

∣∂α
B(ui)

∣
∣ = 1 and Sα

B(ui) ⊆ D(ui) for all objects
ui ∈ U . By Proposition 4, we have H(d | B) = 0.
Since H(d | A) = 0, we have H(d | B) = H(d | A).

Suppose H(d | B) = H(d | A). Since IVDS is
consistent, we have H(d | B) = 0. Hence, Sα

B(ui) ⊆
D(ui) for all objects ui ∈ U . Since Sα

A(ui) ⊆ D(ui),
we have ∂α

B = ∂α
A. This completes the proof.

Theorem 6 Let IVDS = (U,A ∪ {d}) be a consis-
tent interval-valued decision system. Then C ⊆ A is
dispensable if and only if HSIM(d | A− C) = 0.
Proof Suppose that IVDS = (U,A ∪ {d}) is a
consistent interval-valued decision system and that
C is a dispensable attribute subset. Then we have
∂α
A−C = ∂α

A by Definition 7. According to Theo-
rem 5, we obtain HSIM(d | A − C) = HSIM(d | A).
Since IVDS is consistent, we have HSIM(d | A) = 0.
Therefore, it follows that HSIM(d | A− C) = 0.
Theorem 7 Let IVDS = (U,A ∪ {d}) be a consis-
tent interval-valued decision system. Then C ⊆ A is
indispensable if and only if HSIM(d | A− C) > 0.
Proof Assume that IVDS = (U,A ∪ {d}) is a
consistent interval-valued decision system and that
the attribute subset C is indispensable. Then we
have ∂α

A−C 	= ∂α
A. It is not difficult to obtain

HSIM(d | A − C) 	= HSIM(d | A). Then we have
HSIM(d | A − C) ≥ HSIM(d | A) and HSIM(d | A) =
0, according to Proposition 4. Consequently, we have
HSIM(d | A− C) > 0.

From the above theorems, we obtain the infor-
mation theory view for attribute reduction in consis-
tent interval-valued decision systems.

Theorem 8 Assume that IVDS = (U,A ∪ {d}) is
a consistent interval-valued decision system. The
attribute subset B ⊆ A is a reduct of IVDS if and
only if

1. HSIM(d | B) = HSIM(d | A);
2. ∀ b ∈ B, Sig(b, B, d) > 0.

4.2 Attribute reduction algorithms for IVIS
and IVDS

The attribute reduction algorithms for IVIS and
IVDS are given in Algorithms 1 and 2, respectively.

Algorithm 1 Attribute reduction algorithm for an
IVIS
1: Initialize the set of attribute reduct to the empty set,

i.e., B = ∅.
2: while HSIM(B) �= HSIM(A) do
3: âi = max

ai∈A−B
HSIM(B + {ai})

4: B = B ∪ {âi}
5: end while

Algorithm 2 Attribute reduction algorithm for a
consistent IVDS
1: Initialize the set of attribute reduct to the empty set,

i.e., B = ∅.
2: while H(d | B) �= 0 do
3: âi = min

ai∈A−B
H(d | B + {ai})

4: B = B ∪ {âi}
5: end while

Now we provide an example to illustrate the
proposed method. Assume that an IVDS is as listed
in Table 1.

Table 1 An example with interval values for attribute
reduction

U a b c d

u1 [2.17, 2.86] [2.45, 2.96] [5.32, 7.230] 1
u2 [3.37, 4.75] [3.43, 4.85] [7.24, 10.47] 2
u3 [1.83, 2.70] [1.78, 2.98] [7.23, 10.27] 3
u4 [1.35, 2.12] [1.42, 2.09] [2.59, 3.930] 4
u5 [3.46, 5.35] [3.37, 5.11] [6.37, 10.28] 2
u6 [2.22, 3.07] [2.43, 3.32] [4.37, 7.050] 1
u7 [2.51, 4.04] [2.52, 4.12] [7.12, 11.26] 2
u8 [1.00, 1.72] [1.10, 1.82] [3.58, 5.650] 4

Example 2 Suppose the similarity rate α = 0.8

and A = {a, b, c}. We confirm that the IVDS shown
in Table 1 is consistent when α = 0.8. Let us



924 Dai et al. / Front Inform Technol Electron Eng 2016 17(9):919-928

compute S0.8
A (u1) in detail. By Definition 1, we have

va(u1, u1) = 1.0000, va(u1, u2) = 0.6448,

va(u1, u3) = 0.9425, va(u1, u4) = 0.8207,

va(u1, u5) = 0.5655, va(u1, u6) = 0.9701,

va(u1, u7) = 0.8253, va(u1, u8) = 0.7345.

Then, we have

S0.8
a (u1) = {u1, u3, u4, u6, u7}.

Similarly, we have

S0.8
b (u1) = {u1, u3, u6, u7},

S0.8
c (u1) = {u1, u6, u8}.

Thus, we obtain

S0.8
A (u1)

= S0.8
a (u1) ∩ S0.8

b (u1) ∩ S0.8
c (u1)

= {u1, u3, u4, u6, u7} ∩ {u1, u3, u6, u7} ∩ {u1, u6, u8}
= {u1, u6}.

In the same way, we can compute S0.8
A (ui) for all

objects ui ∈ U :

S0.8
A (u1) = {u1, u6}, S0.8

A (u5) = {u2, u5},
S0.8
A (u2) = {u2, u5}, S0.8

A (u6) = {u1, u6},
S0.8
A (u3) = {u3, u6}, S0.8

A (u7) = {u7},
S0.8
A (u4) = {u4, u8}, S0.8

A (u8) = {u4, u8}.

By decision attribute d, we have the partition

U/d =

{
{u1, u6}, {u3}, {u2, u5, u7}, {u4, u8}

}
.

The decision classes based on the decision attribute
are also listed as follows:

D1 = {u1, u6}, D3 = {u3},
D2 = {u2, u5, u7}, D4 = {u4, u8}.

First, an empty set is assigned to the original at-
tribute reduction set B, i.e., B = ∅, and the condi-
tional entropy for each single attribute a, b, or c can
be computed.

By definition, we have

HSIM(d | a)

=−
|U|∑

i=1

p

(
Sα
a (ui)

)

·
|U/d|∑

j=1

p

(
Dj |Sα

a (ui)

)
log p

(
Dj |Sα

a (ui)

)

=−
|U|∑

i=1

|U/d|∑

j=1

|Sα
a (ui) ∩Dj|

|U | log
|Sα

a (ui) ∩Dj |
|Sα

a (ui)|

=−
|U|∑

i=1

[ |S0.8
a (ui) ∩D1|

|U | log
|S0.8

a (ui) ∩D1|
|S0.8

a (ui)|

+
|S0.8

a (ui) ∩D2|
|U | log

|S0.8
a (ui) ∩D2|
|S0.8

a (ui)|
+

|S0.8
a (ui) ∩D3|

|U | log
|S0.8

a (ui) ∩D3|
|S0.8

a (ui)|
+

|S0.8
a (ui) ∩D4|

|U | log
|S0.8

a (ui) ∩D4|
|S0.8

a (ui)|
]

=3.9512.

Hence, we obtain

HSIM(d | a) = 3.9512,

HSIM(d | b) = 2.9387,

HSIM(d | c) = 2.8113.

Then, we find HSIM(d | c) is the minimum, and at-
tribute c is added to attribute reduction set B, i.e.,
B = {c}. The next step is to compute the condi-
tional entropies of c ∪ a and c ∪ b:

HSIM(d | a ∪ c) = 0, HSIM(d | b ∪ c) = 0.

Since HSIM(d | a∪c) = HSIM(d | b∪c), we choose the
one explored first, i.e., attribute a. The algorithm
terminates since the conditional entropy is equal to
zero. Hence, we obtain the reduct B = {a, c}.

5 Experiments

To test the effectiveness of the proposed algo-
rithm, experiments on three real-world datasets are
performed. All values of conditional attributes in the
datasets are interval values.

5.1 Fish dataset (or ecotoxicology dataset)

The Fish dataset has been introduced to test
the effectiveness of attribute reduction for symbolic
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interval data (Hedjazi et al., 2011). This dataset is
composed of observations for abnormal levels of mer-
cury contamination in some Amerindian areas, taken
from several studies in French Guyana by researchers
from the LEESA Laboratory.

There are 13 interval conditional attributes,
which are length, weight, muscle, intestine, stomach,
gills, liver, kidneys, liver/muscle, kidneys/muscle,
gills/muscle, intestine/muscle, and stomach/muscle.
Similarly, they are labeled as a1–a13. What is more,
a reference classification with respect to the fish diet
is taken as the decision attribute, including carnivo-
rous, detritivorous, omnivorous, and herbivorous.

The conditional entropy for each conditional at-
tribute is illustrated in Fig. 1. We can find that
the conditional entropy of attribute a9, which rep-
resents the liver/muscle, is the minimum. This
means liver/muscle is more significant than the other
attributes.

Single conditional attribute
a1 a2 a3

C
on

di
tio

na
l e

nt
ro

py
 fo

r e
ac

h 
at

tri
bu

te

0

5

10

15

20

25
23 23

21.8
23 23 23 23 23

21.5
23 23 23 23

a4 a5 a6 a7 a8 a9 a10 a11 a12 a13

Fig. 1 Conditional entropy for the single attribute of
the Fish dataset

5.2 Face Recognition dataset

The Face Recognition dataset focuses on face
recognition. Each interval value represents the mea-
surement of each local feature in a face image. For
each face image, the localization of the salient fea-
tures such as nose, mouth, and eyes is obtained by
using morphological operators. A distance is mea-
sured between specific points delimiting each bound-
ary and several distances are described as interval
values.

The dataset contains 9 men with 3 sequences
for each, giving a total of 27 observations (Dai et al.,
2013b). The decision attribute identifies which per-

son it is. There are 6 conditional attributes, includ-
ing the length spanned by the eyes, the length be-
tween the eyes, the length from the outer right eye to
the upper middle lip at the point between the nose
and mouth, and so on. We can represent the six
conditional attributes as a1–a6.

By using our reduction algorithm, first the set
of attribute reductions, B, is initialized to the empty
set, and we can compute the conditional entropy for
each single conditional attribute shown in Fig. 2.
Then, we can find that the conditional entropy of
attribute a3 (which represents the length from the
outer right eye to the upper middle lip at the point
between the nose and the mouth) is the minimum.
This means the length from the outer right eye to
the upper middle lip at the point between the nose
and the mouth is more significant than the other
attributes.
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Fig. 2 Conditional entropy for the single attribute of
the Face Recognition dataset

5.3 Car dataset

The Car dataset contains 33 car models de-
scribed by 7 interval variables, 2 categorical multi-
valued variables, and 1 nominal variable. This
dataset has been used in research on clustering for in-
terval values (Hedjazi et al., 2011; Dai et al., 2013b).

In this study, we take only the 7 interval condi-
tional attributes into consideration, which are price,
engine capacity, top speed, step, length, width, and
height, denoted as a1–a7. The nominal variable ‘car
category’ represents the decision attribute, which has
been used as a priori classification.

In Fig. 3, we list the conditional entropy of each
attribute a1–a7 to decision attribute d. It is easy
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to find that HSIM(d | a1) is the minimum, and we
can conclude that the attribute price provides more
information for classification.
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Fig. 3 Conditional entropy for the single attribute of
the Car dataset

5.4 Comparison of performance

To verify the effectiveness of the proposed ap-
proach, attribute selection experiments based on the
proposed uncertainty measurements are conducted
on the above datasets.

Besides the similarity measure constructed in
Definition 1, we consider two other similarity mea-
sures for comparison. One is constructed by Dai
et al. (2012; 2013b) based on possible degree. The
similarity is called possible degree similarity. Let
A = [a−, a+] and B = [b−, b+] be two interval val-
ues. The possible degree similarity between the two
interval values is defined as

SAB = 1−
∣
∣
∣P(A≥B) − P(B≥A)

∣
∣
∣, (10)

where

P(A≥B)

= min

{
1,max

{
a+ − b−

(a+ − a−) + (b+ − b−)
, 0

}}
.

(11)

P(A≥B) and P(B≥A) are the possible degree of A rel-
ative to B and the possible degree of B relative to
A, respectively.

The other similarity measure can be adapted
from that used by Dai and Tian (2013) to handle
set-valued data. For interval values A = [a−, a+]
and B = [b−, b+], the intersection-union similarity is

defined as

S(A,B) =
|A ∩B|
|A ∪B| =

∣
∣[a−, a+] ∩ [b−, b+]

∣
∣

∣
∣[a−, a+] ∪ [b−, b+]

∣
∣ . (12)

It is easy to prove that the similarity has the three
properties in Proposition 1.

Very few classifiers can be used to address in-
terval data; therefore, to compare the performance
of classification based on the selected attributes, Dai
et al. (2013b) extended the classical k -nearest neigh-
bor (KNN) classifier and probabilistic neural net-
work (PNN) classifier to handle interval-valued data
by redefining the distance between two objects:
Definition 10 (Dai et al., 2013b) Suppose that X
and Y are two objects in interval-valued information
systems and that uκ

i and uκ
j are two interval values

at the κth attribute. The distance between X and Y

is defined as follows:

Dis(X,Y ) =

√√
√
√

m∑

κ=1

(
P(uκ

i ≥uκ
j )

− P(uκ
j ≥uκ

i )

)2

, (13)

where m is the number of conditional attributes and
P(uκ

i ≥uκ
j )

is the possible degree between two interval
values.

Due to the limited number of objects in the
dataset, we use a leave-one-out cross-validation ap-
proach to evaluate the classification performances.

In the experiments, the relative bound dif-
ference similarity, possible degree similarity, and
intersection-union similarity are used in the pro-
posed attribute reduction framework, denoted as
RBD, PD, and IU, respectively. We also com-
pare these three methods with the attribute selec-
tion method based on uncertainty measurement for
interval-valued information systems constructed by
Dai et al. (2013b), called uncertainty measurement
attribute reduction (UMAR).

The results are shown in Tables 2–4. The pa-
rameter α represents the similarity threshold (Sec-
tion 2.2), used to construct similarity relations
and similarity classes. Tables 2–4 show the ac-
curacy rates on the Fish, Face Recognition, and
Car datasets, respectively, obtained by the extended
KNN classifier and the extended PNN classifier.
From the results, we find that RBD obviously out-
performs the existing method UMAR. Moreover, PD
is a little better than UMAR. IU performs as well as
UMAR. The results indicate that the proposed at-
tribute reduction method is feasible and effective.
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Table 2 Performance on the Fish dataset by KNN and PNN

Threshold RBD IU PD UMAR

α KNN PNN KNN PNN KNN PNN KNN PNN

Full attributes 0.5833 0.6667 0.5833 0.6667 0.5833 0.6667 0.5833 0.6667
0.10 0.5833 0.6667 0.5000 0.5000 0.5000 0.5000 0.5833 0.5833
0.15 0.5833 0.6667 0.5000 0.5000 0.5000 0.5000 0.5833 0.5833
0.20 0.5833 0.6667 0.6667 0.6667 0.5000 0.5000 0.5833 0.5833
0.25 0.5833 0.6667 0.6667 0.6667 0.6667 0.6667 0.5000 0.5000
0.30 0.5833 0.6667 0.5000 0.5833 0.6667 0.6667 0.5000 0.5000
0.35 0.5833 0.6667 0.5000 0.5833 0.6667 0.6667 0.5000 0.5000
0.40 0.3333 0.5833 0.5000 0.5000 0.6667 0.6667 0.5000 0.5000
0.45 0.5833 0.7500 0.5000 0.5000 0.6667 0.6667 0.5000 0.5000
0.50 0.5833 0.8333 0.3333 0.4167 0.5000 0.5833 0.5000 0.5000
0.55 0.5833 0.5833 0.3333 0.4167 0.5000 0.5833 0.5000 0.5000
0.60 0.5000 0.5000 0.3333 0.4167 0.5000 0.5000 0.3333 0.4167
0.65 0.5833 0.5833 0.1667 0.3333 0.3333 0.4167 0.3333 0.4167
0.70 0.5000 0.5833 0.1667 0.3333 0.3333 0.4167 0.3333 0.4167
0.75 0.5000 0.5000 0.3333 0.4167 0.3333 0.4167 0.3333 0.4167

Table 3 Performance on the Face Recognition dataset by KNN and PNN

Threshold RBD IU PD UMAR

α KNN PNN KNN PNN KNN PNN KNN PNN

Full attributes 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.10 0.4074 0.7407 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.15 0.9629 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.35 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9259 1.0000
0.40 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9259 1.0000
0.45 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9259 1.0000
0.50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9259 1.0000
0.55 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9259 1.0000
0.60 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.65 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.70 1.0000 1.0000 0.7407 0.9259 1.0000 1.0000 1.0000 1.0000
0.75 1.0000 1.0000 0.7407 0.9259 1.0000 1.0000 0.9259 1.0000

Table 4 Performance on the Car dataset by KNN and PNN

Threshold RBD IU PD UMAR

α KNN PNN KNN PNN KNN PNN KNN PNN

Full attributes 0.6364 0.6970 0.6364 0.6970 0.6364 0.6970 0.6364 0.6970
0.10 0.8182 0.8182 0.6061 0.6364 0.6364 0.6364 0.6970 0.7273
0.15 0.7576 0.7576 0.6061 0.6364 0.6364 0.6364 0.6970 0.7273
0.20 0.7576 0.7576 0.7273 0.6970 0.6364 0.6364 0.6970 0.7273
0.25 0.8182 0.8182 0.7273 0.6970 0.6364 0.6364 0.6970 0.7273
0.30 0.8182 0.8182 0.6061 0.6364 0.6364 0.6364 0.6970 0.7273
0.35 0.6364 0.6970 0.7273 0.6970 0.6364 0.6364 0.6970 0.7273
0.40 0.6364 0.6970 0.7273 0.6970 0.6364 0.6364 0.6970 0.7273
0.45 0.7576 0.6970 0.7273 0.6970 0.6364 0.6364 0.6970 0.7273
0.50 0.7576 0.6970 0.6061 0.6667 0.6364 0.6364 0.6970 0.7273
0.55 0.7576 0.6970 0.6061 0.6667 0.6364 0.6364 0.6970 0.7273
0.60 0.7576 0.6970 0.5455 0.6061 0.6364 0.6364 0.5758 0.5455
0.65 0.6364 0.6970 0.6364 0.6364 0.6364 0.6364 0.4848 0.6061
0.70 0.6667 0.7879 0.6364 0.6364 0.6364 0.6364 0.4848 0.6061
0.75 0.6364 0.6970 0.6364 0.6364 0.6364 0.6364 0.4848 0.6061
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Applying different similarity measures to the pro-
posed algorithm leads to different results. Among
RBD, IU, and PD, RBD outperforms IU and PD. In
most cases, RBD obtains the best results. PD per-
forms a little better than IU. The reason may lie in
the differences of the abilities of describing the simi-
larity between two interval values among these three
measures.

6 Conclusions

The classical rough set model is not appropriate
for handling interval-valued data. In this paper, we
present a new framework for attribute reduction in
interval-valued information systems from the view-
point of information theory. Some information the-
ory concepts, including entropy, conditional entropy,
and joint entropy, are defined in interval-valued in-
formation systems. Based on these concepts, we pro-
vide an information theory view for attribute reduc-
tion in interval-valued information systems. Con-
sequently, attribute reduction algorithms are pro-
posed. To test the proposed algorithms, experiments
on three datasets are conducted. Experiments show
that the proposed framework is effective for attribute
reduction in interval-valued information systems.

In the future, we plan to investigate other sim-
ilarity measures and introduce them into our infor-
mation theory framework of attribute reduction for
interval-valued information systems.
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