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Abstract:    The layout design of satellite modules is considered to be NP-hard. It is not only a complex coupled system design 
problem but also a special multi-objective optimization problem. The greatest challenge in solving this problem is that the function 
to be optimized is characterized by a multitude of local minima separated by high-energy barriers. The Wang-Landau (WL) 
sampling method, which is an improved Monte Carlo method, has been successfully applied to solve many optimization problems. 
In this paper we use the WL sampling method to optimize the layout of a satellite module. To accelerate the search for a global 
optimal layout, local search (LS) based on the gradient method is executed once the Monte-Carlo sweep produces a new layout. By 
combining the WL sampling algorithm, the LS method, and heuristic layout update strategies, a hybrid method called WL-LS is 
proposed to obtain a final layout scheme. Furthermore, to improve significantly the efficiency of the algorithm, we propose an 
accurate and fast computational method for the overlapping depth between two objects (such as two rectangular objects, two 
circular objects, or a rectangular object and a circular object) embedding each other. The rectangular objects are placed orthogo-
nally. We test two instances using first 51 and then 53 objects. For both instances, the proposed WL-LS algorithm outperforms 
methods in the literature. Numerical results show that the WL-LS algorithm is an effective method for layout optimization of 
satellite modules. 
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1  Introduction 
 

The layout design of a satellite module involves 
placing a certain number of objects, including various 
instruments and devices, in a particular satellite 
module, while satisfying various constraints with 
specific objectives. Stability and service life are es-

sential requirements of a successful layout design, 
and other performances of the whole satellite module 
system should also be considered. 

Due to engineering and mathematics complexi-
ties, satellite module layout design is known as an 
NP-hard problem. It stems from the bin packing 
problem (Crainic et al., 2011; Gonçalves and Resende, 
2011; Khanafer et al., 2012), which can mainly be 
classified into two categories according to the study 
subjects: (1) 2D bin packing problem; (2) 3D bin 
packing problem. For the 2D bin packing problem, 
Gonçalves and Resende (2011) proposed a parallel 
multi-population genetic algorithm that hybridizes a 
novel placement procedure with a genetic algorithm 
based on random keys. Khanafer et al. (2012)  
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proposed a tree decomposition method based heuris-
tic strategy to decompose the original problem into 
several sub-problems. Li et al. (2012) proposed a 
heuristic particle swarm optimization approach with a 
quasi-human strategy. Zhang et al. (2005) proposed a 
hybrid heuristic algorithm based on divide-and- 
conquer and greedy strategies for the 2D rectangular 
packing problem. Liu et al. (2009) proposed an im-
proved energy landscape paving (ELP) method by 
incorporating a new configuration update mechanism 
into the ELP method to solve the circular packing 
problem. For the 3D bin packing problem, Martello  
et al. (2000) proved that the asymptotical worst-case 
performance of the continuous lower bound is 1/8, 
and presented an exact branch-and-bound algorithm. 
Moon and Nguyen (2014) presented a mixed integer 
programming model which features upper and lower 
bounds for the 3D bin packing problem. To deal with 
the 3D parallelepiped bin packing problem, Allen et 
al. (2011) proposed a hybrid placement strategy, and 
the test results showed that it outperforms other 
methods from the literature. 

In this paper, we study the layout design of a 
satellite module with performance constraints that can 
be considered a special case of the bin packing prob-
lem mentioned above. Various methods have been 
proposed to deal with the layout design of satellite 
modules. Sun and Teng (2003) proposed a two-stage 
layout method, the centripetal balancing method, for 
global layout design in the first stage, and an ant 
colony optimization algorithm for detailed layout 
design of a satellite module in the second stage. 
Zhang et al. (2008) presented a hybrid method by 
combining soft computing techniques, including the 
Hopfield neural network, genetic algorithm/particle 
swarm optimization, and quasi-principal component 
analysis. Teng et al. (2010) developed a dual-system 
framework based on the cooperative coevolutionary 
genetic algorithm with the merits of great population 
diversity and a decrease in premature convergence. 
He et al. (2013) proposed a quasi-physical algorithm 
based on coarse and fine adjustment. Tang and Teng 
(1999) presented a decimal coded adaptive genetic 
algorithm, which decreases combinatorial explosion 
and premature convergence. Wang and Teng (2009) 
proposed a knowledge fusion approach, which har-
nesses the potential of both humans and computers 
through evolutionary computation. Liu and Teng 

(2008) presented a human algorithm knowledge 
layout design (HAKD) method, which fuses human 
intelligence, computer intelligence (evolution algo-
rithm), and prior knowledge (relevant layout dia-
grams) at the gene level of the evolution algorithm. 
Huo and Teng (2009) optimized a layout design using 
four steps. First, the whole layout problem was de-
composed into several sub-layout problems. Second, 
a relaxation model was adopted to distribute all ob-
jects among subspaces. Third, a coevolutionary ge-
netic algorithm was adopted to solve sub-layout 
problems. Finally, a heuristic combination-rotation 
method was adopted to adjust the constraints to obtain 
the final layout. Lei and Qiu (2006) presented a novel 
adaptive particle swarm optimizer based on multi- 
modified strategies, which can not only escape from 
the attraction of local optima, but also maintain the 
characteristic of a fast speed search in the early con-
vergence phase. Zhou et al. (2005) presented a con-
straint handling strategy suitable for particle swarm 
optimization, and used direct search to intensify its 
local search ability. Jin and Teng (2007) proposed a 
case retrieval algorithm for reusing previously stored 
design solutions and optimizing layout design using 
prior knowledge and an evolutionary approach. Chen 
et al. (2008) presented an improved differential evo-
lution algorithm, which makes random micro- 
perturbations to the location of components to obtain 
a better layout scheme. Zhang et al. (2013) proposed a 
parallel dual-system cooperative coevolutionary dif-
ferential evolution algorithm with human-computer 
cooperation. Xu and Xiao (2008) presented an ant 
colony optimization algorithm based on a step-by- 
step positioning technique. Liu et al. (2011) proposed 
a heuristic algorithm based on tabu search, where tabu 
search was used to jump out of the local minima. Liu 
and Li (2010) proposed the basin filling algorithm by 
combining the improved energy landscape paving 
method, the gradient method, and the configuration 
update strategy. Liu et al. (2010) proposed a heuristic 
simulated annealing algorithm by incorporating the 
heuristic neighborhood search mechanism and the 
adaptive gradient method into the simulated anneal-
ing procedure.  

Although the approaches mentioned above ena-
ble effective layout design of the satellite module, 
their efficiency still needs to be improved. In fact, a 
reasonable combination of the stochastic algorithm 
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with global search ability, the local accurate search 
method, and some heuristic strategies may be an ef-
fective way to construct a high-performance algo-
rithm for layout optimization of satellite modules. 
The Wang-Landau (WL) sampling algorithm (Wang 
and Landau, 2001; Landau et al., 2004) is an im-
proved Monte Carlo algorithm. Unlike conventional 
Monte Carlo simulations that generate a probability 
distribution at a given temperature, the WL sampling 
method can estimate the density of states accurately 
via a random walk, which produces a flat histogram in 
the energy space. There have been many improve-
ments on and applications of the WL sampling algo-
rithm. For example, Zhou and Bhatt (2005) proved 
the convergence of the WL sampling algorithm, and 
found that the histogram increases uniformly with 
small fluctuations after a stage of initial accumulation. 
Seaton et al. (2010) used it to describe the thermo-
dynamic behavior of a continuous homopolymer. 
Schulz et al. (2003) proposed a simple modification 
of the WL sampling algorithm. This modification 
removes the systematic error that occurs at the 
boundary of the range of energy over which the ran-
dom walk takes place. The greatest challenge of the 
layout optimization of the satellite module is that the 
function to be optimized is characterized by a multi-
tude of local minima separated by high-energy barriers. 
The WL sampling method can visit all the accessible 
states of the system, which means that it can jump out 
of these high-energy barriers. Therefore, the WL 
sampling method is an ideal global search algorithm 
for layout optimization of satellite modules. In this  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

paper, we put forward a hybrid method called WL-LS 
by incorporating the WL sampling algorithm, the 
local search (LS) method, and the heuristic layout 
update strategies to deal with the layout optimization 
of a satellite module with performance constraints. 
Numerical results show that the proposed WL-LS 
algorithm is an effective method in designing the 
layout of satellite modules. 

 
 

2  Problem statement 
 
A simplified model of the international commer-

cial communication satellite module (INTELSAT-III) 
(Teng et al., 2010) can be described as follows. The 
satellite module consists of several parts including a 
cylindrical container, a standing column, two bearing 
plates, and N objects which need to be packed. The 
column is located at the center of the module, per-
pendicular to the base surface of the satellite module 
(Fig. 1a). The objects can be fixed on either the top or 
bottom surfaces (P1–P4) of both plates (Fig. 1b). So, 
there are four surfaces available for locating these N 
objects, Ai (i=1, 2, …, N). In this study, objects are 
considered to be homogeneous rigid bodies, and are 
simplified as cuboids and cylinders. The two circular 
bearing plates have the same thickness, mass, and 
radius R0. The objective of the layout optimization of 
the satellite module is to make the radius of the sat-
ellite module and the inertia moments of the whole 
system as small as possible. The final layout needs to 
meet the following constraints: (1) All the objects 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                                          (b)                                                                 (c) 
Fig. 1  Diagrammatic sketch of the simplified satellite layout: (a) 3D diagrammatic sketch of the layout; (b) 2D dia-
grammatic sketch of the layout; (c) layout of one object on a bearing plate 
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should be placed within the layout space and not 
overlap each other; (2) The error between the centroid 
of the whole system and the expected centroid should 
not exceed an allowable value, and be as small as 
possible; (3) The equilibrium degree error of the 
whole system should not exceed an allowable value, 
and be as small as possible. 

In this paper, to describe clearly the mathemat-
ical model of the problem, we adopt four coordinate 
systems introduced by Sun and Teng (2003): Oxyz, 
O′x′y′z′, O″x″y″z″, and O′′′x′′′y′′′z′′′ (Fig. 2). In coor-
dinate system Oxyz, the xOy plane coincides with the 
base surface of the satellite module, and the origin O 
is its geometric center. The upward direction of the z 
axis is from the satellite’s base to top. The x′O′y′ plane 
and the xOy plane are parallel, and the origin O′ of 
coordinate system O′x′y′z′ is the centroid of the whole 
satellite module. The z′ axis is parallel or coincides 
with the z axis, and they have the same direction. 
Coordinate system O″x″y″z″ is used to calculate the 
inertia moments of objects in relation to their own 
axes. The origin O″ is the centroid of the object, and 
the x″, y″, and z″ axes are the geometric symmetry 
axes of the object. The coordinate system O′′′x′′′y′′′z′′′ 
is used to calculate the inertia angles of the whole 
system. The origin O′′′ coincides with O′, and the x′′′, 
y′′′, and z′′′ axes have angles (θx′, θy′, θz′) with the x′, y′, 
and z′ axes. The counter-clockwise direction is  
positive. 

 
 
 
 
 
 
 
 
 
 
 

 
 
The mathematical model of the layout optimiza-

tion problem discussed above can be described as 
follows: 

min f1(X),                               (1) 
min f2(X)=Jx′(X)+Jy′(X)+Jz′(X)            (2) 

subject to 

1. non-overlapping constraints: 
 

1

1
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2. centroid error constraints: 

 
g2(X)=|xc–xe|≤3.0,                         (4) 
g3(X)=|yc–ye|≤3.0,                         (5) 
g4(X)=|zc–ze|≤3.0,                         (6) 

 
3. equilibrium degree error constraints: 

 
g5(X)=|θx′(X)|≤0.03,                      (7) 
g6(X)=|θy′(X)|≤0.03,                      (8) 
g7(X)=|θz′(X)|≤0.03.                      (9) 

 
Here X=(x1, y1, z1, α1, …, xi, yi, zi, αi, …, xN, yN, zN, αN); 
αi are the orientation angles for the rectangles shown 
in Fig. 1c (for the circles, αi do not exist); N is the 
number of layout objects; (xi, yi, zi) are the 3D coor-
dinates of object Ai; f1(X) is the space utilization 
function, which is measured by radius R0 of the satel-
lite module; f2(X) is the inertia moment of the whole 
system; Jx′(X), Jy′(X), and Jz′(X) are inertia moments of 
the whole system with respect to the coordinate sys-
tem O′x′y′z′; int(Ai) denotes the internal part of object 
Ai; (xe, ye, ze) is the expected centroid of the whole 
system; (xc, yc, zc) is the real centroid position of the 
whole system; θx′(X), θy′(X), and θz′(X) (Fig. 2) are the 
angles between the principal inertia axes of the mod-
ule and the coordinate system O′x′y′z′ axes. 

Jx′(X), Jy′(X), and Jz′(X) are calculated as follows: 
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where Jx″i, Jy″i, and Jz″i are inertia moments of the ith 

Fig. 2  Sketch map of coordinate systems: (a) coordinate
system O″x″y″z″; (b) coordinate systems Oxyz, O′x′y′z′,
and O′′′x′′′y′′′z′′′ 
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object with respect to coordinate system O″x″y″z″, 
and mi is the mass of the ith object. 

θx′(X), θy′(X), and θz′(X) are calculated as follows: 
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where Jx′y′, Jx′z′, and Jy′z′ are the products of inertia of 
the whole system with respect to coordinate system 
O′x′y′z′. Their calculations are as follows: 
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3  Framework for WL-LS 

 
In this work, all tested objects were distributed 

onto the four bearing plate surfaces in advance ac-
cording to the centripetal balancing method and  
human-computer cooperative method, as presented 
by Sun and Teng (2003) and Liu and Teng (2008). 
Therefore, in the process of layout optimization, 
every object always stays on the same surface; that is 
to say, the surface to which an object belongs is fixed. 
Suppose the layout X=(X1, X2, X3, X4)=(x11, y11, z11, 
α11, …, x1j, y1j, z1j, α1j; x21, y21, z21, α21, …, x2k, y2k, z2k, 
α2k; x31, y31, z31, α31, …, x3m, y3m, z3m, α3m; x41, y41, z41, 
α41, …, x4n, y4n, z4n, α4n), where X1, X2, X3, and X4 are 
the layouts of the four surfaces P1, P2, P3, and P4, 
respectively, and j, k, m, and n are the numbers of the 
objects distributed onto the four surfaces, respectively, 
j+k+m+n=N. Our goal is to obtain an optimal layout 

which minimizes the two objectives f1(X) and f2(X) 
and meanwhile satisfies the constraints given by  
Eqs. (3)–(9). 

Suppose that all N objects, the satellite module, 
and its fixed components are smooth elastic solids. 
Since no object transfers between any two different 
surfaces are allowed, once one object is distributed 
onto a certain surface, it will never overlap another 
object on a different surface. So, we need to calculate 
simply the overlapping depth between each object 
and the fixed vessel, and the overlapping depth be-
tween any two different objects which are distributed 
onto the same surface. Using the quasi-physical 
strategy (Liu et al., 2010; 2011), the extrusive elastic 
potential energy of the whole system is as follows: 
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                        (19) 
 

where u is a physical coefficient. We set u=1 in this 
study. f3(X1), f3(X2), f3(X3), and f3(X4) denote the ex-
trusive elastic potential energy which all objects al-
located on four surfaces P1–P4 undergo, respectively. 
The calculation of dil is described in Section 4. 

For a given radius R0 of the satellite module, we 
can convert the constrained optimization problem 
(2)–(9) into an unconstrained optimization problem 
by using the quasi-physical strategy and the penalty 
function method. The objective function is as follows: 

 

min E(X)=ω1 f2(X)+ω2 f3(X) 
+ω3[g2(X)+g3(X)+g4(X)] 
+ω4[g5(X)+g6(X)+g7(X)],              (20) 

 

where ω1, ω2, ω3, and ω4 are the penalty coefficients. 
If a layout X satisfies constraints (3)–(9), then X 

is a feasible layout of the layout optimization problem 
for a satellite module. Therefore, if we find an effec-
tive algorithm which could solve the unconstrained 
optimization problem min(E(X)), we can obtain the 
optimal layout or approximate optimal layout of the 
original problem (1)–(9) by using effective search 
strategies, such as a dichotomous search, to obtain the 
smallest radii of the four surfaces. Suppose that the 
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upper bound of the interval of the dichotomous search 

for a given surface is iR  (i{1, 2, 3, 4}), which is 

initialized to the original radius R0 of the satellite 
module, and that the lower bound of the search in-

terval is iR  (i{1, 2, 3, 4}), which is initialized to the 

radius R of the standing column. The largest of the 
four radii obtained by the dichotomous search method 
is considered to be the smallest radius of the satellite 
module. The detailed procedure of the dichotomous 
search for a given surface Pi (i{1, 2, 3, 4}) is as 
follows: 

(1) Set 0 ,iR R  .iR R  

(2) Set ( ) / 2.i iir R R  

(3) Run the WL-LS algorithm. If a feasible 

layout is obtained, set ;iiR r  otherwise, set .iiR r  

(4) If –4| |– 10 ,i iR R   go to (2); otherwise, out-

put iR  as the smallest radius for this surface and exit. 

 
 

4  Calculation of overlapping depth 
 
To calculate the overlapping depth between two 

objects embedding each other, we can transfer the 3D 
model of the problem to a 2D one. Cylinders and 
cuboids are simplified as circles and rectangles, re-
spectively. For a given bearing plate surface, a 2D 
Cartesian coordinate system Oxy is set up, which 
coincides with this surface, and its origin is located at 
the center of this surface. R0 is the radius of this sur-
face. The set of rectangles to be located is RECT= 
{Rect1, Rect2, …, Rectr}, where r is the number of 
rectangles distributed onto this surface; the set of 
circles to be located is CIR={Cir1, Cir2, …, Cirs}, 
where s is the number of circles distributed onto this 
surface. Cir indicates the fixed column. The ith rec-
tangle is denoted by Recti(pi, αi, ai, bi), where pi=(xi, yi) 
is the position of its centroid, αi[0, π] is the orienta-
tion angle between the longer edge of the ith rectangle 
and the x axis in coordinate system Oxy, ai is the 
length of its longer edge, and bi is the length of its 
shorter edge. In this study, rectangles are placed or-
thogonally, i.e., αi=0 or π/2. The jth circle is denoted 
by Cirj(pj, rj), where pj=(xj, yj) is the position of its 
centroid and rj is its radius. 

Various approaches have been proposed to 
compute the overlapping depth or the interference 
between objects, for example, the no-fit polygon 
(Bennell et al., 2001), the octree method (Wu et al., 
1997), and the projection-separation approach (Li, 
2010). In this study, we do not adhere to a single ap-
proach. Instead, according to the graphical charac-
teristics of the two objects involved, we adopt dif-
ferent approaches that are most efficient. For example, 
if the two objects are rectangles, we adopt the pro-
jection approach; if the two objects are circles, we 
compare the distance between their centroids with the 
sum of the two radii; if the two objects are a rectangle 
and a circle, we adopt an approach based on a no-fit 
polygon. In the related previous work, discussions of 
approaches are quite general. Here, we give the spe-
cific calculation of overlapping depth which is suita-
ble for orthogonally placed rectangles and circles. 

4.1  Overlapping depth between a rectangle and a 
circle 

Given a circle Cirj(pj, rj) and a rectangle Recti(pi, 
αi, ai, bi), where αi=0 or π/2, and dij is the overlapping 
depth between Recti and Cirj, for every point pt on the 
circumference of Cirj, imagine there is a rectangle 
Rectt(pt, αi, ai, bi), whose centroid is pt. Thus, there is 
a set of rectangles T={Rectt: t=1, 2, …}. Imagine 
every rectangle in T moves along the direction of 
vector V=(xt–xj, yt–yj) until it just moves out of Cirj. 
After all rectangles in T move translationally in the 
plane, the new centroids of the rectangles in T form a 
continuous closed curve C (Fig. 3). C can be used to 
detect whether Recti overlaps Cirj. If the centroid of 
Recti falls inside the region enclosed by C, then Recti 
overlaps Cirj, and vice versa.  

For simplicity, we assume pj=(0, 0), and αi=0. 
The equation for TL (top line in Fig. 3) is given by 

 
/ 2,   [ / 2, / 2].j i i iy r b x a a               (21) 

 

The equation for TRA (top-right arc in Fig. 3) is given 
by 

 

( / 2) ,   ( / 2, / 2).j i j i j iy r x a r x a r a       (22) 

 
The equation for RL (right line in Fig. 3) is given by 

 

/ 2,    [ / 2, / 2].j i i ix r a y b b             (23) 
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Since C is symmetrical about the x and y axes, 
the equations for the other parts of C can be deduced 
easily. To calculate dij, the region enclosed by C is 
divided into nine sub-regions (Fig. 4). If pi falls into 
S2, S4, S6, or S8, dij equals the distance from pi to TL, 
LL, RL, or BL, respectively. For example, in Fig. 4, if 
pi falls into S6, the overlapping depth dij equals the 
distance from pi to RL. If pi falls into S1, S3, S7, or S9, 
dij equals rj minus the distance between pi and point a, 
b, c, or d, respectively. For example, in Fig. 4, if pi 

falls into S9, ,
iij j dpd r d   where 

idpd  is the distance 

between d and pi. If pi falls into S5, dij is the shortest 
distance between pi and TL, LL, RL, and BL. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  
 
 
 

4.2  Overlapping depth between two rectangles 

Given two rectangles Recti(pi, αi, ai, bi) and 
Rectj(pj, αj, aj, bj), dij denotes the overlapping depth 
between Recti and Rectj. lix and liy are the lengths of 
the edges of Recti parallel with the x axis and the y 
axis, respectively, and ljx and ljy are the lengths of the 
edges of Rectj parallel with the x axis and y axis, re-
spectively (Fig. 5). To examine whether two rectan-
gles overlap, a straightforward method is to project 
rectangles Recti and Rectj onto the x and y axes, and 
then to check whether the projecting lines overlap. 
The detection formulae are shown as follows: 

 

| | ( ) / 2 0,i j ix jxx x l l                   (24)

| | ( ) / 2 0.i j iy jyy y l l                   (25) 

 
If any two formulae hold, the two rectangles do not 
overlap, i.e., dij=0. If neither of them holds, they 
overlap and the calculation of the overlapping depth is 
given by 




2

1/22

[( ) / 2 | |]

       +[( )/2 | | ] .

ij ix jx i j

iy jy i j

d l l x x

l l y y

   

  
         (26) 

 
 
 
 
 
 
 
 
 
 
 

4.3  Overlapping depth between two circles 

Given two circles Ciri(pi, ri) and Cirj(pj, rj), dij is 
their overlapping depth (Fig. 6). The detection for-
mula is given by 

 
2 2( ) ( ) 0.i j i j i jr r x x y y             (27) 

 
If expression (27) is true, circles Ciri and Cirj overlap, 
and the overlapping depth is calculated by 
 

2 2( ) ( ) .ij i j i j i jd r r x x y y             (28) 

Recti

Rectj

lix  

liy  ljy  

ljx  

dij

Fig. 5  Two overlapping rectangles 
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Fig. 4  Sub-regions divided for calculating the overlapping 
depth between a circle and a rectangle  
TL (top line), LL (left line), RL (right line), and BL (bottom
line) are lines parallel with the x or y axis. TLA (top-left arc), 
TRA (top-right arc), BLA (bottom-left arc), and BRA 
(bottom-right arc) are quadrants of a complete circle Cirj. a, b, 
c, and d are the four vertices on the boundary of sub-region S5

Fig. 3  A curve C for examining whether a rectangle over-
laps a circle 
TL (top line), LL (left line), RL (right line), and BL (bottom
line) are lines parallel with the x or y axis. TLA (top-left arc), 
TRA (top-right arc), BLA (bottom-left arc), and BRA 
(bottom-right arc) are quadrants of a complete circle Cirj 
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4.4  Overlapping depth between a circle and a 
container  

Given a circle Ciri(pi, ri), if Ciri embeds into the 
standing column Cir, which is considered as a fixed 
circle, the calculation of the overlapping depth be-
tween Ciri and Cir is the same as in Section 4.3. 

If circle Ciri(pi, ri) overlaps the shell of the sat-

ellite module Cir0 (Fig. 7), i.e., 2 2
0 ,i i ix y r R    

the calculation of overlapping depth doi between Ciri 
and Cir0 is given by 

 

2 2
0.oi i i id x y r R                   (29) 

 
 
 
 
 
 
 
 
 
 
 
 
 

4.5  Overlapping depth between a rectangle and a 
container 

Given a rectangle Rectj(pj, αj, aj, bj), if Rectj 
embeds into the standing column Cir, which is con-
sidered as a fixed circle, the calculation of the over-
lapping depth between Rectj and Cir is the same as in 
Section 4.1.  

Suppose αj=0. If rectangle Rectj(pj, αj, aj, bj) 
overlaps the shell of satellite module Cir0 (Fig. 8), i.e., 

if 2 2
0(| | / 2) (| | / 2) ,j j j jx a y b R     the calcula-

tion of the overlapping depth doj between Rectj and 
Cir0 is given by 

 
2 2

0(| | / 2) (| | / 2) .oj j j j jd x a y b R        (30) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
5  Wang-Landau sampling method based on 
local search 

5.1  Wang-Landau sampling method 

The Wang-Landau (WL) sampling method is a 
novel Monte Carlo (MC) method introduced by Wang 
and Landau (2001). The energy levels of the models 
treated in the WL sampling method are discrete; 
however, the idea is very general and can be applied 
to any parameter. For a layout optimization problem 
where the energy is continuous, we must first bin the 
energy. Considering the value of energy in the range 
as a positive real number, we divide all possible en-
ergies in the energy landscape into finite intervals. 
For example, we divide [0, 5000] into 5000 individual 
intervals [0, 1), [1, 2), …, [4999, 5000), and numbers 
which are larger than 5000 are divided into a single 
energy interval [5000, 5000+). Thus, we obtain 5001 
energy intervals. For simplicity, the energy interval 
[E(X), E(X)) is denoted by [E(X)], where E(X) 
rounds E(X) down to its nearest integer, and E(X) 
rounds E(X) up to its nearest integer. For example, 
E(X)=4.523 falls into energy interval [4, 5), which is 
denoted by [4.523]. Unlike conventional MC methods 
that directly generate a canonical distribution at a 
given temperature, this method is to estimate accu-
rately the density of states g(E(X)) for the range of 
possible energies via a random walk which produces a 
flat histogram in the energy landscape, where E(X) is 
the energy of the whole system. The WL sampling 
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Cir0 

Rectj

aj

R0

doj bj

Fig. 8  A rectangle overlapping the satellite module shell

O (0, 0)

Cir0 

Ciriri

R0

doi 

Fig. 7  A circle embedding into the shell of the satellite 
module 
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Fig. 6  The overlapping depth of two circles 
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method is based on the observation that if we perform 
a random walk in the energy landscape with a proba-
bility proportional to the reciprocal of the density of 
states 1/g(E(X)), then a ‘flat’ histogram is generated 
for the energy distribution. By using a carefully con-
trolled modification factor, the estimate for g(E(X)) is 
improved at each step of the random walk, which 
makes g(E(X)) converge to the correct value very 
quickly. 

At the beginning of the WL sampling algorithm, 
all possible energies and the density of states function 
g(E(X)) are unknown. The density of states is set to be 
self-adaptive. If the random walk finds a new energy 
each time, we mark it as visited and set its density of 
states and the corresponding histogram to 1. In the 
simulations of the layout optimization for the satellite 
module, we begin the random walk in the energy 
landscape by heuristic layout update strategies (see 
Section 5.2), but the energy associated with each 
layout is accepted only with a probability propor-
tional to the reciprocal of the density of states. 
Therefore, the acceptance probability from layout X1 
to X2 is as follows: P(X1→X2)=min{exp(g(E(X1))– 
g(E(X2))), 1}. If X2 is accepted, then g(E(X2)) will be 
multiplied by a modification factor λi, and its histo-
gram H([E(X2)]) will be increased by one; that is to 
say, g(E(X2))=λi*g(E(X2)), H([E(X2)])=H([E(X2)])+1 
(i is initialized to 0). If X2 is not accepted, then 
g(E(X1))=λi*g(E(X1)), H([E(X1)])=H([E(X1)])+1. If λ0 
is too small, it will take a long time to find all the 
possible energies. On the contrary, if λ0 is too large, 
there will be statistical errors. In this study, we set 
λ0=1. The convergence of the WL sampling method is 
controlled by the flatness of the histogram. However, 
it is very difficult to obtain an absolutely flat histo-
gram in practice. The so-called ‘flat histogram’ in the 
Wang-Landau sampling method means that all the 
entries of H([E(X)]) are not less than the histogram’s 
average <H([E(X)])> multiplied by k (0<k<1), where 
k is decided by the complexity of the system and the 
expected precision of g(E(X)). In this study, we set 
k=0.8, and check whether the histogram is flat every 
103 MC sweep. When the histogram is flat, all the 
possible energies have been roughly visited an equal 
number of times, and the density of states converges 
to the true value with accuracy proportional to the 
modification factor ln λi. Then we reduce the modi-
fication factor λi to a finer one using a monotone de-
creasing function such as λi+1=0.5λi, reset H([E(X)]) to 
0 for all visited energy intervals [E(X)], and begin the 

next random walk. In this study, the modification 
factor and the corresponding decreasing function are 
selected by both experience and trial-and-error. From 
previous experience we set up candidate factors and 
their decreasing functions that might be suitable for 
the packing problem. Then from these candidates we 
select the best factor and its decreasing function 
through trial-and-error. When the modification factor 
λi is less than a threshold λfinal, the algorithm is ter-
minated, and g(E(X)) converges to its real value with 
precision. λfinal is the control parameter of g(E(X)) and 
determines the number of MC iterations in the whole 
simulation process. If λfinal is too small, the simulation 
will take a long time. On the contrary, if λfinal is too 
large, g(E(X)) will not converge to its real value. In 
this study, we set λfinal=0.00001. 

Our goal is to find the layout with the lowest 
energy, so in the simulations we also keep the lowest 
energy Emin and the corresponding layout Xmin each 
time we find a new lower-energy layout. 

5.2  Heuristic layout update strategies 

An efficient layout update strategy is also im-
pactful in the WL sampling simulations. According to 
the characteristics of the layout optimization of the 
satellite module, we propose the following heuristic 
layout update strategies: 
Strategy 1    In each surface of current layout X, we 
pick out an object Aj that has the largest relative ex-
trusive elastic potential energy Ej/Sj to relocate, where 

2

0,

N

ljl l jjE d
 

  is the extrusive elastic potential en-

ergy of the jth object exerted by other objects, and Sj 
is the area of the jth object. 
Strategy 2    Randomly generate 100 vacant points in 
each surface, where vacant points are the points that 
are inside this surface but not inside any object. The 
procedures are as follows: 

(1) Generate a random point inside the surface 
but outside the central column. 

(2) Judge whether this point falls into a certain 
object through computing the distance between this 
point and the centroid of the object. If this point does 
not fall into any object, save it as a vacant point and 
go to (3); otherwise, go to (1). 

(3) If 100 vacant points have been saved, exit; 
otherwise, go to (1). 

Temporarily place the centroid of the chosen 
object at every vacant point. Here, if the chosen object 
is a rectangle, it is placed in two ways: one is with its 
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long edge parallel with the x axis, and the other is with 
its long edge perpendicular to the x axis. Then, 
compute the extrusive elastic potential energy Ej that 
associates to every vacant point and placing pattern. 
Finally, formally place the centroid of the chosen 
object Aj at the vacant point, where the extrusive 
elastic potential energy of Aj is the lowest. With the 
positions of other objects unchanged, we gain a new 
layout X′. 

5.3  Local search 

When a new layout X′ is obtained by heuristic 
layout update strategies, it may be very close to the 
global optimal layout, so any random layout update in 
the WL sampling algorithm may make search far 
from (and even farther and farther from) this global 
optimal layout. To avoid this, we adopt the local 
search (LS) method based on the gradient method 
(GM), which is a quasi-physical algorithm (Huang 
and Kang, 2004; He et al., 2013), to search for an 
optimal layout near X′.  

GM is also known as the steepest descent 
method. The search direction is the negative gradient 
direction. We adopt an adaptive step size in this study. 
If the energy increases after one iteration, which in-
dicates that the step size for this step is too large, we 
decrease h to 0.8h. If the energy decreases, we keep h. 
The procedures of the GM with an adaptive step size 
are described as follows: 

(1) Set h=1, hmin=10–4, ε=10–20. 
(2) Under the current layout X′, compute the 

gradient vector (E(X′)) of E(X′) for each object Ai 
(i=1, 2, …, N) in the x and y directions, and let X2=X′− 
h*(F(X′)). 

(3) If E(X2)>E(X′), set h=h*0.8. 
(4) Let X′=X2, X2=X′−h*(E(X′)). 
(5) If f3(X

2)<ε or h<hmin, return X2; otherwise, go 
to (3). 

5.4  Description of WL-LS 

By combining the WL sampling method with 
heuristic layout update strategies and the LS proce-
dure, we propose a hybrid WL-LS algorithm for the 
layout optimization of the satellite module. The cal-
culation procedure of the WL-LS algorithm is out-
lined as follows: 

(1) Randomly produce an initial layout X1 based 
on four bearing plate surfaces. Set Xmin=X1, Emin= 
E(X1). Let the set of intervals containing visited  

energies be S={[E(X1)]}. Set the density of states 
function as g(E(X1))=1, and the histogram function as 
H([E(X1)])=1. Set i=0, l=0, λ0=1, k=0.8. 

(2) In each surface Pi (i=1, 2, 3, 4) of the current 
layout X1, pick object Aj (j=1, 2, 3, 4) with the largest 
Ej/Sj, where Ej is the extrusive elastic potential energy 
of the jth object. Copy the current layout X1. 

(3) Relocate each picked object Aj by using 
heuristic layout update strategy 2 in surface Pi (i=1, 2, 
3, 4), and gain a new layout X′. 

(4) Call the GM procedure. The outcome layout of 
GM is denoted by X2. Compute E(X2). Set g(E(X2))=1, 
H([E(X2)])=1, l=l+1. 

(5) If [E(X2)]S, let S=S{[E(X2)]}. 
(6) If random(0, 1)<min{exp[g(E(X1))–g(E(X2))], 

1}, then accept X2 (i.e., let X1=X2, E(X1)=E(X2)); 
otherwise, do not accept X2. 

(7) Update the density of states g(E(X)) and the 
histogram H([E(X)]). That is, if X2 is accepted,  
let g(E(X2))=g(E(X2))*λi, H([E(X2)])=H([E(X2)])+1, 
and go to (8); otherwise, let g(E(X1))=g(E(X1))*λi, 
H([E(X1)])=H([E(X1)])+1, and go to (9). 

(8) If E(X2)<Emin, let Xmin=X2, and Emin=E(X2). 
(9) If l%1000=0, go to (10); otherwise, go to (2). 
(10) If H([E(X)])≥k<H([E(X)])> for all visited 

energy intervals [E(X)]S, then go to (11); otherwise, 
go to (2). 

(11) Set λi+1=λi*0.5, i=i+1. 
(12) If λi<0.00001, then output Emin and Xmin, and 

terminate the iteration; otherwise, reset H([E(X)])=0 
and keep g(E(X)) for all visited energies E(X), and go 
to (2). 

 
 

6  Experimental results and discussion 
 
To test the computational performance of the 

WL-LS algorithm, we applied it in two instances. 
Both instances are based on the international com-
mercial communication satellite module INTELSAT- 
III with different technological parameters, one with 
51 objects and the other with 53 objects. We imple-
mented the WL-LS algorithm in the Java program-
ming language and ran it on a PC with 1.5 GHz CPU 
and 2.0 GB RAM. For each instance, the WL-LS 
algorithm was run 50 times independently to optimize 
the layout of objects on the four bearing plate surfaces. 
According to these 50 results, we can gain a pareto 
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optimal set for each instance. In this study, we specify 
the solution with the smallest enveloping radius as the 
optimal solution for preference. 

For the first instance, we suppose that 51 objects 
have been allocated on the four bearing surfaces in the 
satellite module. The objects’ dimensions and masses 
have been given by Liu and Teng (2008). The first 31 
objects are cylinders, and the remaining 20 objects are 
cuboids. The parameters of the satellite module are as 
follows: the radius of the bearing plate is R0=500 mm; 
the radius of the column is R=100 mm; the heights 
from the base of the satellite to the bottoms of the 
lower plate and the upper plate are H1=500 mm and 
H2=1050 mm, respectively; the height of the column 
is H3=1400 mm; the thickness of each plate is Ht= 
20 mm; the mass of the satellite module (including  
the shell, two bearing plates, and the column) is 
349.557 kg, and its centroid is (0, 0, 859) mm in the 
coordinate system Oxyz, with an inertia matrix 
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The technological requirements for the final 
layout of the whole system are given by Eqs. (3)–(9), 
with parameters xe=0, ye=0, ze=780 mm. The penalty 
coefficients are set as follows: ω1=10–1, ω2=106, 
ω3=104, and ω4=104. 

For this instance, the pareto optimal set by 
WL-LS is P(Q, M)={(460.61, 690.22), (459.28, 
691.70), (458.95, 692.65), (457.76, 693.07)}, where 
Q denotes the enveloping radius and M the inertia 
moment of the system. We choose the solution with 
Q=457.76, M=693.07 as the optimal solution for 
preference. The best and average computational re-
sults by WL-LS for instance 1 are shown in Tables 1 
and 2, respectively, in comparison with those by the 
HAKD method (Liu and Teng, 2008). From Tables 1 
and 2, we can see that the proposed WL-LS algorithm 
outperforms the HAKD method in every aspect. 
Compared with the best results by the HAKD method, 
the inertia moment of the best layout obtained by 
WL-LS decreases by (711.55−693.07)/711.55×100% 
=2.60%; the enveloping radius decreases by 0.35%; 
the centroid position error decreases by 29.12%; the 
inertia angle error reduces by 76.5%. Table 3 shows 
the data of the optimal layout obtained by WL-LS.  
Fig. 9 shows the diagram of the optimal layout ob-
tained by WL-LS. 

To further understand the effects of each com-
ponent in WL-LS, we ran WL alone, WL with local  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Comparison of the average results by HAKD, WL, WL+GM, WL+HS, and WL-LS for instance 1 

Algorithm 
Overlapping 
area (mm2) 

Norm of centroid position 

error 2 2 2
c c cδ δ δx y z 

 
(mm) 

Norm of inertia angle 

error 2 2 2
x y z     

(rad) 

Norm of inertia moment 
2 2 2( ) ( ) ( )x y zJ X J X J X   

 
(kg·mm2) 

Enveloping 
radius 
(mm) 

HAKD 0 0.255 1.65e-2 423.18 467.16 

WL 306.13 2.47 6.98e-1 424.67 471.86 

WL+GM 20.80 0.20 7.19e-3 418.84 463.17 

WL+HS 8.10 2.45 7.05e-1 421.35 469.67 

WL-LS 0 0.187 6.44e-3 417.35 461.48 

 

Table 1  Comparison of the best results by HAKD, WL, WL+GM, WL+HS, and WL-LS for instance 1 

Algorithm 
Overlapping 
area (mm2) 

Centroid position error
(mm) 

Inertia angle error
(rad) 

Inertia moment 
(kg·mm2) 

Enveloping radius
(mm) 

HAKD 0 5.94e-2 2.00e-2 711.55 459.37 

WL 0 1.03e-0 1.20e-1 710.96 465.05 

WL+GM 0 6.09e-2 5.41e-3 695.34 459.17 

WL+HS 0 9.77e-1 1.21e-1 708.31 462.48 

WL-LS 0 4.21e-2 4.70e-3 693.07 457.76 

Centroid position error is the sum of centroid errors in the x and y axes, i.e., |xc−xe|+|yc−ye|. Inertia angle error is the sum of inertia angles in 
the x′, y′, and z′ axes, i.e., |θx′(X)|+|θy′(X)|+|θz′(X)|. Inertia moment is the sum of inertia moments in the x′, y′, and z′ axes, i.e., 
Jx′(X)+Jy′(X)+Jz′(X) 
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search GM and without heuristic layout update 
strategies (denoted as WL+GM), and WL with heu-
ristic layout update strategies (HS) and without local 
search GM (denoted as WL+HS) 50 times. The best 
and average results for 50 independent runs by WL, 
WL+GM, and WL+HS are listed in Tables 1 and 2, 
respectively, for comparison. The pareto optimal set 
by WL is P(Q, M)={(468.58, 696.78), (467.24, 
697.40), (466.06, 699.08), (465.05, 710.96)}, and we 
choose the solution with Q=465.05, M=710.96 as the 
optimal solution for preference. The pareto optimal 
set by WL+GM is P(Q, M)={(462.51, 693.88), 
(462.03, 694.79), (460.63, 695.16), (459.17, 695.34)}, 
and we choose the solution with Q=459.17, M= 
695.34 as the optimal solution for preference. The 
pareto optimal set by WL+HS is P(Q, M)={(465.09, 
705.86), (464.00, 706.16), (463.01, 707.47), (462.48, 
708.31)}, and we choose the solution with Q=462.48, 
M=708.31 as the optimal solution for preference. 
Note that in each run of WL and WL+GM, we  

Table 3  Data for optimal layout by WL-LS for instance 1 

No. x (mm) y (mm) α (rad)* Surface No. x (mm) y (mm) α (rad)* Surface

1 –217.84 –0.42 – 1 27 350.28 –46.72 – 4 

2 147.91 161.17 – 4 28 277.92 28.06 – 3 

3 194.26 –51.03 – 3 29 145.07 185.07 – 2 

4 205.98 –31.61 – 4 30 146.73 178.25 – 1 

5 –108.97 168.58 – 1 31 –245.06 187.89 – 3 

6 44.78 351.66 – 4 32 –85.81 –178.42 0 1 

7 279.44 143.57 – 3 33 –186.38 –185.01 0 2 

8 –97.17 –325.27 – 3 34 143.89 –207.56 0 4 

9 141.47 –182.72 – 1 35 –46.66 230.91 π/2 3 

10 –182.75 –298.32 – 4 36 –225.69 –1.42 0 4 

11 –286.61 –177.14 – 4 37 103.78 227.56 π/2 3 

12 5.61 328.83 – 2 38 –200.14 –4.87 π/2 2 

13 230.61 –3.46 – 1 39 39.40 –200.39 0 2 

14 84.30 –239.61 – 3 40 –203.61 174.31 0 4 

15 258.43 –257.10 – 3 41 –127.32 171.04 π/2 2 

16 343.95 –166.80 – 4 42 180.83 9.15 π/2 2 

17 –315.39 –181.75 – 3 43 –27.95 176.56 π/2 4 

18 338.21 162.85 – 4 44 330.91 87.74 0 2 

19 –350.70 –74.49 – 2 45 –110.69 –143.71 0 4 

20 68.45 –351.64 – 2 46 210.83 323.66 π/2 4 

21 –373.91 63.65 – 3 47 309.81 –12.33 0 2 

22 –336.78 –29.37 – 3 48 239.80 –158.79 0 2 

23 –1.93 150.47 – 2 49 –192.63 –12.29 π/2 3 

24 315.31 –140.44 – 3 50 148.78 –333.69 0 4 

25 15.10 270.25 – 1 51 –115.17 –174.10 0 3 

26 –291.25 226.75 – 2      
* The orientation angle is defined only for the cuboids, and it does not exist for the cylinders 

 

Fig. 9  The 2D diagram of the optimal layout obtained by
WL-LS for instance 1: (a) surface 1; (b) surface 2; 
(c) surface 3; (d) surface 4 

(a) (b) 

(c) (d) 
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randomly update the layout. In WL-LS, the WL 
method is used mainly to execute a global search. The 
heuristic layout update strategies are used to generate 
new layouts, and the local search procedure based on 
the gradient method is used to search for lower- 
energy layouts near newly generated layouts. 
Through the comparison of computational results, 
one can see that WL+GM and WL+HS improve the 
performance of WL alone in different aspects. How-
ever, by combining the merits of GM and HS, WL-LS 
significantly outperforms the other three algorithms 
WL, WL+GM, and WL+HS in both the best and 
average results. 

For the second instance, we suppose that 53 ob-
jects have also been allocated on the four bearing 
surfaces in the satellite module. The objects’ dimen-
sions and masses have been given by Sun and Teng 
(2003). The first 24 objects are cuboids, and the re-
maining 29 objects are cylinders. The parameters of 
the satellite module are as follows: the radius of the 
bearing plate is R0=500 mm; the radius of the column 
is R=100 mm; the heights from the base of the satel-
lite to the bottoms of the lower plate and the upper 
plate are H1=300 mm and H2=830 mm, respectively; 
the height of the column is H3=1150 mm; the thick-
ness of both plates is Ht=20 mm; the mass of the sat-
ellite module (including the shell, two bearing plates, 
and the column) is 776.53 kg, and its centroid is (0, 0, 
553.56) mm in coordinate system Oxyz, with an iner-
tia matrix 

0

2

452.25 0 0

0 452.25 0  kg m .

0 0 146.82

x xy xz

yx y yz

zx zy z

J J J

J J J
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 
 
   
 
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J

     

(32) 

 
 
 
 
 
 
 
 
 
 

The technological requirements for the final 
layout of the whole system are given by Eqs. (3)–(9) 
with parameters xe=0, ye=0, ze=523.26 mm. The pen-
alty coefficients are set as follows: ω1=10–1, ω2=106, 
ω3=104, and ω4=104. 

For this instance, the pareto optimal set by 
WL-LS is P(Q, M)={(479.31, 791.67), (478.14, 
792.64), (476.07, 794.33), (475.11, 795.59)}, where 
Q denotes the enveloping radius and M the inertia 
moment of the system. We choose the solution with 
Q=475.11, M=795.59 as the optimal solution for 
preference. The best computational results by WL-LS 
for instance 2 are shown in Table 4, in comparison 
with those by the hybrid knowledge fusion (HKF) 
method (Wang and Teng, 2009). From Table 4, we can 
see that the proposed WL-LS algorithm outperforms 
the HKF method in every aspect. Compared with the 
best results by the HKF method, the inertia moment of 
the best layout obtained by WL-LS decreases by 
(796.15−795.59)/796.15×100%=0.07%; the centroid 
position error decreases by 99.70%; the inertia angle 
error decreases by 67.81%; the enveloping radius 
decreases by 4.98%. A diagram of the optimal layout 
obtained by WL-LS is shown in Fig. 10. Table 5 
shows the data for the optimal layout obtained by 
WL-LS. 

We also compare the best and average results for 
50 independent runs by WL, WL+GM, and WL+HS 
in Tables 4 and 6, respectively. The pareto optimal set 
by WL is P(Q, M)={(491.40, 799.71), (489.43, 
800.77), (488.30, 801.34), (487.05, 802.13)}, and we 
choose the solution with Q=487.05, M=802.13 as the 
optimal solution for preference. The pareto optimal 
set by WL+GM is P(Q, M)={(480.74, 795.27), 
(479.69, 796.67), (479.05, 796.96), (478.50, 797.01)}, 
and we choose the solution with Q=478.50, M= 
797.01 as the optimal solution for preference. The  
 

 
 
 
 
 
 
 
 
 

Table 4  Comparison of the best results by HKF, WL, WL+GM, WL+HS, and WL-LS for instance 2 

Algorithm 
Overlapping 
area (mm2) 

Centroid position error 
(mm) 

Inertia angle error
(rad) 

Inertia moment 
(kg·mm2) 

Enveloping radius
(mm) 

HKF 0 1.139e-0 1.46e-2 796.15 500.00 

WL 0 3.60e-1 5.58e-1 802.13 487.05 

WL+GM 0 3.59e-3 5.45e-3 797.01 478.50 

WL+HS 0 3.60e-1 5.55e-1 800.69 483.49 

WL-LS 0 3.40e-3 4.70e-3 795.59 475.11 

Centroid position error is the sum of centroid errors in the x and y axes, i.e., |xc–xe|+|yc–ye|. Inertia angle error is the sum of inertia angles in 
the x′, y′, and z′ axes, i.e., |θx′(X)|+|θy′(X)|+|θz′(X)|. Inertia moment is the sum of inertia moments in the x′, y′, and z′ axes, i.e., 
Jx′(X)+Jy′(X)+Jz′(X) 
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pareto optimal set by WL+HS is P(Q, M)={(486.41, 
797.21), (485.58, 798.54), (484.32, 799.79), (483.49, 
800.69)}, and we choose the solution with Q=483.49,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

M=800.69 as the optimal solution for preference. 
Through the comparison of computational results, we 
can draw the same conclusion as that for instance 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5  Data for optimal layout by WL-LS for instance 2 

No. x (mm) y (mm) α (rad)* Surface No. x (mm) y (mm) α (rad)* Surface

1 –79.05 319.48 π/2 2 28 100.17 –173.28 – 2 

2 78.05 225.00 π/2 2 29 –254.14 200.41 – 2 

3 260.45 185.65 π/2 3 30 295.20 –140.60 – 4 

4 95.75 –255.70 π/2 4 31 255.16 203.91 – 4 

5 181.14 –65.03 π/2 3 32 61.88 –369.81 – 2 

6 –139.51 302.44 0 3 33 –95.35 176.46 – 4 

7 254.23 200.50 0 2 34 –195.06 –279.58 – 3 

8 –226.27 –0.46 0 2 35 –219.13 –80.85 – 3 

9 –110.75 –200.75 π/2 2 36 –271.08 –146.97 – 4 

10 78.43 175.44 π/2 3 37 173.10 –290.27 – 3 

11 175.30 24.83 π/2 4 38 86.55 351.24 – 3 

12 79.88 175.50 0 4 39 –1.02 328.75 – 4 

13 407.59 –22.17 π/2 2 40 –265.75 216.82 – 4 

14 –151.76 0.84 π/2 4 41 338.10 –16.37 – 3 

15 –369.61 –137.32 0 3 42 –359.36 94.89 – 3 

16 342.41 –142.06 0 3 43 73.70 132.14 – 1 

17 –303.53 46.47 0 4 44 –47.16 142.71 – 2 

18 –77.43 –221.91 π/2 4 45 –74.85 130.06 – 1 

19 –14.58 –399.76 0 3 46 328.34 72.74 – 4 

20 261.60 –236.80 π/2 2 47 –48.19 –372.69 – 4 

21 –0.38 232.51 0 1 48 –376.89 –39.99 – 2 

22 –201.84 –25.59 0 1 49 15.61 –182.85 – 1 

23 –176.88 104.78 π/2 1 50 –93.44 –131.03 – 1 

24 202.03 –31.08 0 1 51 101.89 –122.07 – 1 

25 –7.95 –204.16 – 3 52 141.24 64.32 – 1 

26 202.73 0.15 – 2 53 –311.05 –209.25 – 2 

27 –167.13 112.41 – 3      
 * The orientation angle is defined only for the cuboids, and it does not exist for the cylinders 

Fig. 10  Optimal layout obtained by WL-LS for instance 2: (a) surface 1; (b) surface 2; (c) surface 3; (d) surface 4

(a) (b) (c) (d) 
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7  Conclusions and future work  
 
When optimizing the layout design of a satellite 

module, it is easy for an algorithm to get trapped in 
local minima separated by high-energy barriers. To 
address this problem, we use a hybrid WL-LS method, 
which incorporates the LS procedure based on gra-
dient descent and heuristic layout update strategies 
into the Wang-Landau sampling method. To improve 
the efficiency of WL-LS, we adopt an accurate and 
fast method for computing the overlapping depth 
between two objects (such as two rectangular objects, 
two circular objects, or a rectangular object and a 
circular object) embedding each other. Numerical 
results show that WL-LS outperforms methods in the 
literature. There are also several problems that need to 
be solved in the future: (1) In this study, the rectangles 
are placed orthogonally, which restricts the flexibility 
of the layout design. We need to find the methods for 
computing the overlapping depth with respect to ar-
bitrarily placed rectangles. (2) The distribution of 
objects onto different surfaces is not discussed in this 
paper, and we simply adopt the allocation scheme 
proposed in the literature. In the future, we will focus 
research on these aspects. 
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