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Abstract:  The multi-piped freezing method is usually applied in artificial ground freezing (AGF) projects to fulfill special
construction requirements, such as two-, three-, or four-piped freezing. Based on potential superposition theory, this paper gives
analytical solutions to steady-state frozen temperature for two, three, and four freezing pipes with different temperatures and
arranged at random. Specific solutions are derived for some particular arrangements, such as three freezing pipes in a linear
arrangement with equal or unequal spacing, right and isosceles triangle arrangements, four freezing pipes in a linear arrangement
with equal spacing, and rthombus and rectangle arrangements. A comparison between the analytical solutions and numerical
thermal analysis shows that the analytical solutions are sufficiently precise. As a part of the theory of AGF, the analytical solutions
of temperature fields for multi-piped freezing with arbitrary layouts and different temperatures of freezing pipes are approached
for the first time.
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1 Introduction

Artificial ground freezing (AGF) is a construc-
tion method that converts the water in the ground into
ice by means of artificial refrigeration technology.
This creates a strong, watertight frozen soil wall
which serves as a temporary support structure during
excavation. Due to its strong water-sealing ability and
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the mechanical strength of a frozen soil wall, and its
superiority for safety and environmental conserva-
tion, AGF has been widely employed in many types
of construction projects, including shield launching
and receiving, retaining and protecting foundation
pits, mine shaft sinking, tunnel boring machine
(TBM) maintenance (Li et al., 2004; Itoh et al., 2005;
Primentel ef al., 2007; Schmall and Maishman, 2007;
Viggiani and de Sanctis, 2009; Hu and Long, 2010;
Russo et al., 2012; Viggiani and Casini, 2015; Casini
et al., 2016), and recovery of shield tunnels (Ju et al.,
1998; Wang, 2006; Xiao et al., 2006). As the proper-
ties of a frozen soil wall, such as its mechanical
properties and thickness, are functions of tempera-
ture, the calculation of the temperature field is a
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pre-requisite for studying the temperature distribu-
tion, i.e., it is a significant part of the basis for design
and construction using AGF.

Among the main methods for calculating AGF
temperature fields, the analytical method is more
reliable than simulation method and numerical anal-
ysis method, and is an important part of the theory of
AGF. In AGF engineering applications, the rate of
heat conduction is actually very slow. Consequently,
we can adopt steady-state rather than transient tem-
perature fields to calculate the temperature field at a
certain point in the freezing process. This viewpoint
has been accepted in academic and engineering cir-
cles (Trupak, 1954; Bakholdin, 1963; Frederick and
Sanger, 1968; Tobe and Akimoto, 1979; Kato et al.,
2007).

Based on steady-state analytical heat conduction
theory, some solutions of steady-state temperature
fields in AGF have been derived. Trupak (1954)
studied the temperature field formed by single-piped
freezing and obtained the analytical solution of a
single-piped frozen temperature field. He also pro-
vided the analytical solution of a single-row-piped
frozen temperature field according to the geometrical
relationship between two adjacent frozen soil col-
umns. The results, however, differed from experi-
mental data because he had ignored the interaction
between two adjacent pipes. Bakholdin (1963) con-
sidered that once two adjacent frozen soil columns
were merging, the wave-shaped boundary of the fro-
zen soil wall would soon become flat. Based on the
theory of analogy between thermal and hydraulic
problems, he obtained the analytical solutions of
single-row-piped and double-row-piped steady-state
frozen temperature fields. These solutions have been
shown to be sufficiently accurate (Hu and Zhao, 2010;
Hu C.P. et al., 2011). Frederick and Sanger (1968)
presented a simplified formula for a single-row-piped
frozen temperature field. Tobe and Akimoto (1979)
and Kato et al. (2007) derived an analytical solution of
a temperature field by multi-piped freezing with the
pipes arranged in a straight line with equal spacing.

In China, there have been many studies of tem-
perature fields of AGF (Chen and Tang, 1982; Tang et
al., 1995; Cui, 1997; Wang and Cao, 2002; Xu, 2005;
Dong et al., 2007; Yuan et al., 2011; Zhou and Zhou,
2011). Considering that the actual freezing tempera-
ture of soil is below 0 °C, Hu et al. (2008b) improved

some existing analytical solutions. These analytical
solutions have been applied in several other studies
(Hu et al., 2008a; Hu and He, 2009; Hu, 2010a;
2010b; Hu and Zhao, 2010; Hu C.P. et al., 2011; Hu
and Wang, 2012; Hu et al., 2012; 2013a).

In AGF engineering applications, a freezing
method employing a small number of freezing pipes,
called multi-piped freezing, is usually applied to meet
the requirements of special construction practices,
such as two-, three-, or four-piped freezing. Analyti-
cal solutions of multi-piped frozen temperature fields,
such as for two freezing pipe arrangements, plus three
and four freezing pipes arranged in a straight line with
equal spacing, were derived by Tobe and Akimoto
(1979) and Kato et al. (2007). However, there are no
analytical solutions for three or four freezing pipes
arranged in different forms. Based on potential su-
perposition theory, this paper gives analytical solu-
tions of steady-state frozen temperature for three and
four freezing pipes arranged at random. Specific so-
lutions are derived for some particular arrangements,
including three freezing pipes in a linear arrangement
with equal or unequal spacing, right and isosceles
triangle arrangements, four freezing pipes in a linear
arrangement with equal spacing, and rhombus and
rectangle arrangements.

2 Heat potential and potential superposition

Heat conduction, convection, and radiation are
the three main forms of heat transfer in soils. In AGF
engineering, convection and radiation barely affect
the distribution of the temperature field and therefore
will be ignored in this paper.

According to Fourier’s law, in unit time, the heat
flux passing the infinitesimal layer whose length is dx
forms a direct ratio to the temperature rate and the
area of the infinitesimal layer, which can be written as

oT
q=-k"". ()

where £ is the thermal conductivity of the soil and T'is
the soil temperature. We introduce a parameter @,
defined as the heat potential, which is given by @=kT.
Substituting @ into Eq. (1) yields
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oD
q=—k§- 2

According to Fourier’s law and the first law of
thermodynamics, the governing equation of heat
conduction in the plane can be described by

0
%+ﬁ_Q+pCa_T=O’ (3)
ox oy ot

where ¢, and g, are the heat fluxes in unit time along
the x and y axes, respectively. Q is the heat in unit
time and unit volume exchanged between the system
and the environment. p is the soil density and ¢ the
specific heat of soil.

In this paper, soil is as assumed to be isotropic,
and the temperature field of frozen soil is approxi-
mated to be steady state. These assumptions have
previously been shown to be sufficiently accurate
(Trupak, 1954; Bakholdin, 1963; Frederick and
Sanger, 1968; Tobe and Akimoto, 1979; Kato et al.,
2007). Heat exchange between the system and the
environment is ignored because the calculation region
is infinite. Substituting @ and the steady-state condi-
tion into Eq. (3) yields

oo 0D
?4‘?:0. (4)

The polar form of Eq. (4) can be written as

i(rd—@j =0.
dr\ dr

Eq. (4) is Laplace’s equation, the solution of
which is the heat potential @.

For simplicity, the freezing pipe can be regarded
as a point source, i.e., a cold source or heat sink, ex-
isting at the center of the pipe. Let g. be the heat flow
absorbed in unit time at steady state by the cold
source. The heat potential at each point in the plane
would be lowered due to g..

According to the above hypothesis, g. can be
written as

q, = —2nr(11—€f, (5)

where r is the distance from the cold source. Inte-

grating Eq. (5), the heat potential @ at the circle with
radius » can be expressed as

&=-J2nric, (6)
2n

where C is the integral constant to be determined by
the boundary conditions.

According to potential superposition theory, if
multiple point sources exist in the plane, the reduction
of heat potential can be superposed. Therefore, when
multiple freezing pipes are arranged in the plane, the
heat potential at an arbitrary point in this plane equals
the superposition of the heat potentials caused by the
cold sources of each freezing pipe at this point. If
there are n freezing pipes arranged in the plane, the
heat potential at an arbitrary point can be expressed as

O=—|domny 1 L2y 1oy Loy b0 (7)
21 2n 21

Eq. (7) can be written as @ = —Z%lnri + C, where
i=1 <7

7; 1s the distance from this point to the ith cold source

and q.; is the heat flow of the ith cold source.

The potential superposition method, described
above, is viable for solving plane problems of a
steady-state temperature field frozen by any freezing
pipes in any arrangement, including the most used
engineering classes, such as multi-piped (which will
be given in this paper), straight-row-piped (Hu et al.,
2013c), and circle-piped arrangements.

The potential superposition method can also be
used for space problems (Hu et al., 2013b).

3 Temperature field of a single freezing pipe

The freezing pipe is placed at the origin of the
coordinates (Fig. 1). ry is the radius of the freezing
pipe, ¢ is the radius of the frozen soil zone, T} is the
surface temperature of the freezing pipe, T is the
freezing temperature of frozen soil, and g, is the heat
flow of the freezing pipe.

The heat potential expression at arbitrary point
M(x, y) in the temperature field is the same as in

Eq. (6). ris given by r =+/x* + )*.
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Y1 boundary of frozen soil

M(x, y)

e

Fo

J

freezing pipe
(cold source)

Fig. 1 One freezing pipe in the infinite plane

The heat potential at an arbitrary point at the
boundary of frozen soil can be expressed as

@&, =—Le g+ (8)
2n

The heat potential at an arbitrary point on the
freezing pipe surface can be expressed as

@, =—Jdeny +C. ©9)
27

Solving Egs. (8) and (9) simultaneously, the ex-
D, -,
pression of g. can be obtained as 4 T %
2n In(r, /¢)
Substituting q., ®=kT, Py=kT,, and D=kT: into
Eq. (6), we arrive at

_1 4 /S)

0 111(7;)/5) (Tf _To)-

(10)

Eq. (10) is the analytical solution of a steady-state
temperature field of one freezing pipe in an infinite
plane. Eq. (10) is Trupak’s formula (Trupak, 1954).

4 Temperature field of two freezing pipes

@y and Py, are the heat potentials of two freez-
ing pipes, respectively. The surface temperatures, 7%
and T}, of the two freezing pipes are not equal. The
radii of the two freezing pipes are equal (ry). Tp is the
freezing temperature of frozen soil. g and g, are the
heat flows of two freezing pipes, respectively. The

distance between two freezing pipes is 2d. We define
a conditional point at the boundary of the frozen soil
with the coordinates (0, &) (Fig. 2).

y

boundary of frozen soil

¢
e
(13/

Pi(—=d, 0)

Fig. 2 Two freezing pipes in the infinite plane

According to potential superposition theory, the
heat potential at an arbitrary point M(x, y) in the
temperature field is superposed by heat potentials
acquired from two freezing pipes acting alone, which
can be written as

O=-Tepny de2y,, 4,
2n 2n

(1D
where 7| and 7, are the distances of the arbitrary point
M to the freezing pipes P, and P5, respectively, which
can be expressed as

r=y(x+d)Y +y0, n=y(x-d) +)".

The heat potential @, at the conditional point
(0, ¢) at the boundary of the frozen soil can be ex-
pressed as

@, :_%-m [+ d? _%.m\/gz +d>+C. (12)

The heat potentials @5 at point (—d, rp) and Pp
at (d, ro) on the surface of each freezing pipe can be
expressed as

@, =L ny 92 a2 +C, (13)
2n 2n

@Q:_%.ln,/4d2+r02—%~1nr0+c. (14)
T T

As rg is small in comparison to the scale of
the frozen zone, it has little impact on the final
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calculation. Consequently, Egs. (13) and (14) can be
simplified as

@, =-d . ny, - 42 .1n24) +C, (15)
27 2n
_ qcl ch
@D, =—20 . In(2d) - 22 . Ins, + C. (16)
2n 2n

Using @,, @y, and Dy, to stand for ¢, and q.,,
we arrive at

@D, In i 2d
qCI B é;Z_,’_dZ B §2+d2
2 gy So gy 2y Ty 240
2d  &°+d 2d  &E°+d (17)
D lni
3 " 2d
lniln 2dr,
2d §2+d2
@, IHL i) fy
qcz 3 §2+d2 . §2+d2
2n lniln zdr‘)z 1nr—°1n %d?bz
2d &+ 2d  &°+d (18)
D, In—0
_ 2d )
lniln 2dr,
2d  E+d°

Substituting Eqgs. (12), (17), and (18) into
Eq. (11), the heat potential at an arbitrary point
M(x, y) in the temperature field can be expressed as

In fi In o
d}_ \/§2+d2 \/§2+d2
h 7 2dr,
In—>-In— 5
2d & +d
r, In 2d
\/§2 +d2 \/52 +d2
d)fl
In22 In 2dry
2d cfz +d?

d}ﬂ

In

In——"2 Jn——"0
\/62 +d2 \/52 +d2
= D,
lnr—oln 2,
2d E+d?

In 2’”1 ~In 22d - ln%
d d
__NErd e o, | —< "9 _1|g,
7 2dr, 2dr,
In—>-In——> n———
2d &7 +d E+d

(19)

Substituting CDZkT, CD():kT(), @fl :kal, and @Q:
kTy, into Eq. (19), we arrive at

5 i

In In
\/§2+d2 \/§2+d2
T= Tfl
7 2dr,
In—"In—; 5
2d & +d
L S
\/52 +d2 \/62 +d2
_ T,
To o 2dn
In—~In— 5
2d & +d
In ! In %
\/52 +d2 \/52 +d2
+ T,
To 4o 2dn
In—~In—; 5
2d & +d
2 i
\/§2+d2 \/§2+d2T_ §2+d2_1T
n 2dr, 2 2dr, o
In—1In— 5 n— >
2d & +d E+d
(20)

Eq. (20) is the analytical solution of a steady-
state temperature field of two freezing pipes with
different surface temperatures in an infinite plane.

Assuming the surface temperatures of two
freezing pipes are equal (Tp=Tp), Eq. (20) can be
simplified as

T=T,
" Ja+d) + 37 J(x—d) + )
E+d @D
E - (T, ~T,).
e

Eq. (21) is consistent with the analytical solution
derived by Tobe and Akimoto (1979) and Kato et al.
(2007), which is a particular solution of our solution
when T,=0 °C.

Another solution to the steady-state temperature



Hu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2016 17(9):702-723 707

field frozen by two freezing pipes with different
temperatures was given by Hu and Zhang (2013a). In
their study, the boundary conditions were set differ-
ently and as a result, the expressions of the solution
had different forms. Both solutions produce the same
temperature field.

Hu and Zhang (2013b) solved the problem of a
steady-state temperature field of one and two freezing
pipes near a linear adiabatic boundary, using potential
superposition method and mirror reflection of source
and sink.

5 Temperature field of three freezing pipes

5.1 Temperature field of three freezing pipes in an
arbitrary arrangement

Three-piped freezing method is usually applied
in AGF projects. To fulfill construction requirements,
three freezing pipes may be arranged in a particular
form, such as a linear, right triangle or isosceles tri-
angle arrangements. In this section, we derive the
analytical solution of a steady-state temperature field
of three-piped freezing with an arbitrary arrangement.

@y, Dp, and Py are the heat potentials of three
freezing pipes, respectively. The surface tempera-
tures, Ty, Tp, and Ti, of the three freezing pipes are
not equal. The radii of the pipes are equal (7). Tpis
the freezing temperature of frozen soil and ¢.;, gc2,
and ¢q.; are the heat flows of the three pipes, respec-
tively. The distances between two pipes are d, d», and
d;. The center coordinates of the three pipes are P;(x,,
1), Pa(x2, 12), and Ps(x3, y3), respectively (Fig. 3). To
simplify the derivation, we establish a coordinate
system with the line connecting the centers of pipes
P; and P; as the x axis, and the vertical line from the
center of pipe P, to the above connecting line as the y
axis. Therefore, the center coordinates of the three
pipes are changed to P;(x;, 0), P»(0, y»), and P3(x3, 0).
Similarly, we define a conditional point at the
boundary of the frozen soil, with the coordinates (0,
»to).

Considering x,, y;, and ys are all zero, d}, d,, and

d; in Fig. 3 can be expressed as d, =+/x] + )3,

d,=xi +y;, and d; =|x, — x,|. According to po-
tential superposition theory, the heat potential at an

arbitrary point M(x, y) in the temperature field is
superposed by heat potentials acquired from the three
freezing pipes acting alone, and can be expressed as

o=-Joy, I, Ioyn, 40 (22
2 21 2n

T

where ry, 1, and r3 are the distances of the arbitrary
point M(x, y) to pipes P;, P,, and Ps, respectively,

which can be expressed as 7 =/(x—x,)* +)°,
7 =X +(y—y2)2, and r, :\/()c—x})2 +°.

boundary of frozen soil

@/U

Fig. 3 Three freezing pipes arranged at random

The heat potential @, at the conditional point
(0, y,+¢) at the boundary of the frozen soil can be
expressed as

@, =L 1 (& 4y, - L2me
2n 21
e [ v (E+y,) +C
2n

The heat potentials @y at points (xy, 79), Pp at
(0, yot+ry) and Py at (x3, 79) on the surface of each
freezing pipe can be expressed as

@, = _Ya In7, - e Inyx} +(y, -7,
2n 2

T

(23)

(24)
—%m\/dj +7, +C,
T
@, = —ﬂln,/xl2 +(y, +1) - 9er Inz,
2n 2 (25)

- Z“ Inyx; +(y, +7,)° +C,

T
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qC qC
@, :—2—71[1n\lol32 o 2; Inr,
I 02+ (v, — 1) +C.
2n

As rg is small in comparison to the scale of the
frozen zone, it barely has any impact on the final
calculation results. Consequently, Egs. (24) to (26)
can be simplified as

(26)

&, =Lty g dsyg o, (27)
21 2n 2n

@, =g 2y, doyng yo (28
2n 2n 2n

B =—Tipng, I g, I, oo (29)
2n 2n 2n

Using @y, s, g, and Py to stand for g1, geo,
and g3, we arrive at

A B
_&:Bl(@ﬂ _¢0)+Bl(¢f2 _@0)

2n . (30)
+Bl(<DB -D,),
A B
o o (@ @)+ 2 (D, - D,)
2 D D 31)
C
+Ez(¢t3 _¢o),
q, A B
_2_3=B3(@f1 _@o)+33(¢12 _¢o)
g (32)

C3
+ (D - D),
D(“ 0)

where D=D+Dy+Ds. A1, A, A3, B1, B>, B3, Cy, Cy, C3,
Dy, D,, and Dj; are shown in Appendix A.

Substituting Egs. (23), (30), (31), and (32) into
Eq. (22), the heat potential at arbitrary point M(x, y) in
the temperature field can be expressed as

A1 ln\/%-i—A1 lnrg2
+(E+
oo AT Er) ’

D
A, In 5

L AErErn)

D f1

T =

VX H(E+y) 5 @
D 0
Bﬂn%
e,
()
D
C‘lln%+qlnr—2
A
D 3
Gln 2 . 2
VX3 +(&+,) P
(=
D
(AI+BI+C1)]1'1¥
2 2
_ VX +(&+,)
D
n
(A2+B2+C2)1ng
+
D
7
X
+ : 2 lg

D

A In d + 4, In’2

PGy g
D 1

£

Ry,

D f1

4, In

h

B In + B, In’2

D

i

X+ (E+y,) -

D 2

B;In

x5+ (E+p,) g T,

0°

(33)

Substituting @=kT, ©=kTy, Pr=kTt, Pr=kTp,
and @i= kT into Eq. (33), we arrive at
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C In i +Clnr—2

RS B

. . :
i

Gy

D 3

C,In

h

X €+ 0

D

(4 +B +C)ln

(4, +B,+C,)In"2
N ¢

D

£

VEHEER)

D

(4,+B,+C;)In

+

(34)

Eq. (34) is the analytical solution of a steady-
state temperature field of three freezing pipes in an
arbitrary arrangement in an infinite plane.

Assuming the surface temperatures of the three
freezing pipes are equal (71=7p=T%), Eq. (34) can be
simplified as

T=T,+(T;,~T,)

1n++mln +pn—

Vx12+(y2+§)

1ndl+7711nSE +n,In

N 0, +E)

+(Vz

X + (Vz +&)°
(35)

where, assuming go=71gc1 and ge3=12gc1, 71 and 72
can be expressed as

ln%-ln%—lni-lnﬁ

T
h—p— % (36)
mé . n _jplph

Ty Ty 2 2
ln%.lnﬁ—lnﬁ‘ln;—0

7

N =
In—=-In-%—In—%-In—*

d, 2 0 N

5.2 Temperature field of three freezing pipes in a
linear arrangement with equal spacing

When three freezing pipes are arranged in a
straight line with equal spacing, the center of freezing
pipe P, becomes the origin of the coordinates, and y,
is zero. We use d to stand for d;, d», and ds because
2d1:2d2:d3 (Flg 4)

boundary of frozen soil

M,y

d

Ay A~ A\ k3
Pi (-d, 0) B.(0,0) Ps(d,0)

Fig. 4 Three freezing pipes laid in a linear arrangement
with equal spacing

With three freezing pipes arranged in this form,
the coordinates of the conditional point at the
boundary of the frozen soil are changed to (0, £), and
the coordinates of arbitrary points on the surface of
each freezing pipe are changed to (—d+ry, 0), (0, o),
and (d—ry, 0), respectively. Egs. (36) and (37) can be
Infd / (2,)]

In(d / )

can also be simplified as

simplified as 7,= and 7,=1. Eq. (36)

nrn
11'127(12 11’1*
T=T,+ 5;2 S(T.-T), (38)
7,
In———+n In%
eyt M
where 1, r,, and r; can be expressed as
BeNrd) 3, = 43R, =)+

Eq. (38) is the analytical solution of a steady-
state temperature field of three freezing pipes in a
linear arrangement with equal spacing in an infinite
plane. It is consistent with the existing analytical
solution derived by Tobe and Akimoto (1979) and
Kato et al. (2007), which is a particular solution of
our solution when 7,=0 °C.
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5.3 Temperature field of three freezing pipes in a
linear arrangement with unequal spacing

When three freezing pipes are laid in a linear ar-
rangement with unequal spacing, the center of pipe P,
is also the origin of the coordinates. We can see that
ds=d,\+d, (Fig. 5).

intersection 1  intersection 2

main
section 3
1
1
1
I
1

main main

section 1] gection 2
| 1

y

boundary of frozen soil
I

-
7

v
P. (-d., 0)]
|

Fig. 5 Three freezing pipes laid in a linear arrangement
with unequal spacing

When the three freezing pipes are arranged in
this form, the coordinates of the conditional points at
the boundary of the frozen soil and on the surface of
pipe P, are the same as in Section 5.2. The coordi-
nates of the other two points on the surface of each
pipe are changed to (—d,+ro, 0) and (ds—ro, 0). Ac-
cording to the relationships among d;, d>, and d,
Egs. (36) and (37) can be expressed as

lnd';dz-lnd];d2—ln;—°-ln;—°

— L e

gl g ditds 4

% 2 2 Ty

nhtd pd b

7 7

772: 1 0 1 0 . (40)

lnm-lnﬁ—lni-lné

2 Ty 2 o

The analytical solution to a steady-state tem-
perature field of three freezing pipes in a linear ar-
rangement with unequal spacing in an infinite plane
can be obtained from

T=T,
i
’§2+d12

L =+7,In

V& +a;

5

)
JE

In +nllanZ+nzln

o

In +1,In

(41)

where 7y, r,, and r; can be expressed as

Rt d Y 407, 1 =407, =i —d,) +yR

A visualized figure of the temperature field
drawn according to the results of the analytical solu-
tion, Eq. (41), is shown in Fig. 6. To confirm that the
numerical solution can exactly express the tempera-
ture distribution in the temperature field, the precision
of the analytical solution Eq. (41) was examined by a
steady-state numerical solution. The calculation was
under the following particular conditions: d;=0.4 m,
d>,=0.8 m, &=1.0 m, T=—70 °C (considering adopting
liquid nitrogen freezing), Tp=0 °C, r,=0.054 m. The
isothermal diagram of the steady-state numerical
solution when ¢&=1.0 m is shown in Fig. 7. Compari-
son of the analytical formula with the numerical
simulation of the main section 1 in Fig. 5 is shown in
Fig. 8. A comparison of the results of the analytical
formula and numerical simulation of intersection 1 in
Fig. 5 is shown in Fig. 9.

From Figs. 8 and 9, we find that the results cal-
culated by the two methods coincide, which shows
the analytical solution, Eq. (41), is precise enough.

. 'y

1 v 2

0
»(m) i 0

i =1 x(m)

Fig. 6 Temperature field calculated by analytical for-
mula for three freezing pipes in a linear arrangement
with unequal spacing



Hu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2016 17(9):702-723 71

g
*(m)

Fig. 7 Isothermal diagram calculated by numerical
simulation for three freezing pipes in a linear arrange-
ment with unequal spacing

analytical solution of main section 1 B
-+ numerical simulation of main section 1

10 -
0.4 0.8 1.2

42 08 04 00
y{(m)
Fig. 8 Comparison of results from applying the analyt-

ical formula and numerical simulation in the main sec-
tion 1 in Fig. 5

analytical solution of intersection 1 B 4
A numerical simulation of intersection 1

1.2 -0.8 -0.4 0.0 0.4 0.8 1.2
y(m)

10

Fig. 9 Comparison of results from applying the analyt-
ical formula and numerical simulation in intersection 1
in Fig. 5

Results from the two methods in relation to other
main sections and intersections in Fig. 5 also coincide
(these are not discussed further here due to space
limitations).

5.4 Temperature field of three freezing pipes in a
right triangle arrangement

When three freezing pipes are in a right triangle
arrangement, the relationship among d;, d,, and d; can
be expressed as di’=d;*+d>>. According to the geo-
metrical properties of right triangles, the center co-
ordinates of the three pipes are changed to P;(—d,*/ds,
0), Py0, didyd;), and P3(d22/d3, 0), respectively
(Fig. 10).

intersection 1 intersection 2
main

main )
section 3

n main
section 1 | section 2
1

y

<
I
L1 d
boundary off frozen soil | ds
&
Pi (x:1, 0) P (xf0) X

Fig. 10 Three freezing pipes laid in a right triangle
arrangement

When the three freezing pipes are arranged in
this form, the coordinates of the conditional point at
the boundary of the frozen soil are changed to (0,
d\d»/d5+<&), and the coordinates of arbitrary points on
the surface of each pipe are changed to (—dlz/d3+ro,
0), (0, dids/ds—ry), and (do/ds—ro, 0), respectively.
The expressions of #; and #, can be still written as
Egs. (36) and (37). Then, we arrive at

1ni+7711nr—2+7721nL
T=T,+ — = (=T, (42)
In—*+7In-2+7In"2
11 é 11

where 411, Bi1, 11, 12, and r; can be expressed as
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2 4

4, = (é:"'dl dzj +d_|2,
d; d;
d-d,\ d

B, = [‘f"'%j +d_22’
3 3

I =\/(x+d12/d3)2+y2,
g :\/xz +(y—d, 'dz/ds)z,
n =\/(x_dzz/d3)2+y2-

Eq. (42) is the analytical solution to a
steady-state temperature field of three freezing pipes
laid in a right triangle arrangement in an infinite
plane.

A visualized figure of the temperature field
drawn according to the results of the analytical solu-
tion Eq. (42) is shown in Fig. 11. The steady-state
numerical calculation method was again applied to
verify the analytical solution in this section, under the
following particular conditions: d;=0.6 m, d,=0.8 m,
d;=1.0 m. The other parameters were the same as in
Section 5.3. An isothermal diagram of the steady-
state numerical solution when &=1.0 m is shown in
Fig. 12. A comparison of the results from the analyt-
ical formula and numerical simulation of the main
section 2 in Fig. 10 is shown in Fig. 13. A comparison
of the results from the analytical formula and nu-
merical simulation of intersection 2 in Fig. 10 is
shown in Fig. 14.

From Figs. 13 and 14, we find again that the
results calculated by the two methods coincide, which
shows the analytical solution Eq. (42) is precise
enough. Due to space limitations, comparisons of the
two methods in relation to the other main sections and
intersections in Fig. 10 are not covered here.

5.5 Temperature field of three freezing pipes in an
isosceles triangle arrangement

When three freezing pipes are laid in an isosceles
triangle arrangement, we can see d;=d, (Fig. 15).
According to the geometrical properties of isosceles
triangles, using d to stand for d; and d>, the center
coordinates of the three pipes are changed to P,(—d5/2,

0), P»(0, Jd* - a’32 /4), and P5(d3/2, 0), respectively.

When the three freezing pipes are arranged in
this form, the coordinates of the conditional point at

s !
x (m)
Fig. 11 Temperature field calculated by the analytical
formula for three freezing pipes in a right triangle
arrangement

Fig. 12 Isothermal diagram calculated by numerical
simulation for three freezing pipes in a right triangle
arrangement

T(°C)

analytical solution of main section 2
0 + numerical simulation of main section 2 A

L L L 1

-1.2 -08 -(IJ.4 0.0 0.4 0.8 1.2 1.4

Fig. 13 Comparison of results from applying the analyt-
ical formula and numerical simulation to the main section
2 in Fig. 10
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& analytical solution of intersection 2 P
A numerical simulation of intersection 2

0 a

10

-16 -1.2 08 -04 00 04 08 12 16
y(m)

Fig. 14 Comparison of results from applying the analyt-
ical formula and numerical simulation to intersection 2 in
Fig. 10

P20, y2)

r

boundary of frozen soil

=~ X
P ()ﬁ, 0)

P (x;, 0)

Fig. 15 Three freezing pipes laid in an isosceles triangle
arrangement

the boundary of the frozen soil are changed to (0,

Jd’ —d; /4+&), and the coordinates of arbitrary
points on the surface of each pipe are changed to
(—d5/2+7, 0), (0, \Jd* —d; /4 —1,) and (d3/2+70, 0),
respectively. Egs. (36) and (37) can be simplified as
m=Wn(@,d, / d*)/In(r, / d) and 73,=1. Then, we can

arrive at

lnm+77I lnrg2
T=T,+ 2 . (T; - T,), (43)

In—=—+nIn-"2

A22 g

where Ay, 71, 12, and 73 can be expressed as

2
Ay =(+Jd* = 14) +d3 14,
Rt dy 127 47, 1=\ 4 (=l —dE T 4Y

7 =\/(x—d22 /a@)2 +y2.

Eq. (43) is the analytical solution to a steady-
state temperature field of three freezing pipes laid in
an isosceles triangle arrangement in an infinite plane.

The steady-state numerical calculation method
was again applied to verify the analytical solution.
The results of the verification were the same as in
Sections 5.3 and 5.4, which shows that the analytical
solution, Eq. (42), is precise enough. Due to space
limitations, comparison charts of the two methods are
not included here.

6 Temperature field of four freezing pipes

6.1 Temperature field of four freezing pipes in an
arbitrary arrangement

A four-piped freezing method is usually applied
in AGF projects to meet particular construction re-
quirements. Four freezing pipes may be arranged in
particular forms, such as a linear arrangement,
rhombus arrangement or rectangle arrangement. In
this section, we derive the analytical solution of a
steady-state temperature field of four freezing pipes
with an arbitrary arrangement.

Dy, D, D3, and Py are the heat potentials of
four freezing pipes, respectively. The surface tem-
peratures of the four pipes are not equal. Ty, Th, 5,
and Ty are the surface temperatures of the four pipes,
respectively. The radii (ro) of the four freezing pipes
are equal. 7 is the freezing temperature of frozen soil.
qe1s 92, 4c3, and gcq are the heat flows of the four
pipes, respectively. The distances between two pipes
are d, d,, ds, ds, ds, and dg. The center coordinates of
the four pipes are P(xy, y1), P2(x2, y2), P3(x3, y3), and
Py(x4, y4) (Fig. 16). The definition of the coordinate
system is the same as in Section 5.1. The coordinates
of a conditional point defined at the boundary of the
frozen soil is also (0, y,+&).

Considering that x,, y;, and y; are all zero, d,, d>,
ds, dy, ds, and dg in Fig. 16 can be expressed as

d, =\/x12+y§’ d, :\/x32+y22’
d3=\/(x3—x4)2+yf, d4=\,(x1—x4)2+yf,

d, :|X3 —X1|’ dg :\/(x4 _xz)z +(, _yz)z'
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According to potential superposition theory, the
heat potential of an arbitrary point M(x, y) in the
temperature field is superposed by heat potentials
acquired from four freezing pipes acting alone. Its
expression can be written as

@=—g“ lnrl—gC2 Inr,

T T (44)
—hlnr3 — Inr, +C,
2n

where 71, 72, 13, and r4 are the distances of the arbitrary
point M(x, y) to pipes Pi, P, P3, and P4, respectively,
which can be expressed as

n= \/(x_x1)2 + y27 rn= sz +(y_y2)27
=y x)? 07, =) -

y
0.+ |

Pi(xi, y4)

Fig. 16 Four freezing pipes arranged at random

The heat potential at the conditional point
(0, y,+¢&) at the boundary of the frozen soil can be
expressed as

D, :—&lnal o2 g
2n 2n (45)

Dei 1y a,+C,
T

Ao png -
2n

where a1, a,, and a; can be expressed as

a, = \lez +(§+y2)29 a, :\/x32 +(§+J/2)23
a; =fo +0u =, -&).

Similar to three-piped freezing, because ry is
much smaller than the scale of the frozen zone, it has
little impact on the final calculation. Consequently,
the heat potentials at arbitrary points (x;, 7o),
(0, yotrg), (x3, 79), and (x4, y4tro) on the surface of
each pipe can be expressed simply as

D,

fl

= _dayy, Ty — 92 Ind, — 9o Ind; - Ies Ind, +C,
2n 2n 2n 2n

(46)

@, =L g —I2yny o png, I g 4 C,
2n 2n 2n 2n

(47)

=—Liind, L2 ind, -T2 iy L, +C,
21 2n

D, =
3 21 21

(48)

@, =-Tng, d2 g o0 g g, 4
2n 2n 2n 2n

(49)

Using @y, @, Pp, Pr3, and Py to stand for g,
qc2> e3> and ges, We arrive at

qc A! BV
_2_;[ =Fl(@f1 - @o) +Fl(¢t2 - Qo)

, , (50)
Cl Dl
+F(¢B —@0)4'?(@4 - D)),
_qi:ﬁ(qj ) )+i(¢ -@,)
f1 0 f2 0
2  F F
C D! 5D
+?2(®t3 _¢0)+F2(d)f4 _@0),
_&:é(@ _(p)+§((p -@,)
f1 0 f2 0
2 F F
C. D! (52)
+73((DB —(D0)+?3(@f4 -D,),
_&:ﬁ(@ _@)+&(@ -@,)
2 F fl 0 F 2 0
g (53)

C! D!
+74(@B —d>0)+F“(@f4 -D,),

where
A=A+ A+ A", Bi'=B1/'+B1 B3,
C/'=Ci/'+C'+C13', Dy'=Dy'+D1y'+D13',
Ao'=Ax1"+ A+ 423", By'=By'+ By +B3/,
CY'=Co'+Con'+Cy3', Dy'=Dai"+Doy'+Ds3',
A3'=A31"+ A3+ 433", By'=B31'+B3'+Bs3/,
C3'=C3"+C3y'+C33', D3'=Ds3y"+D3y'+Dsy,



Hu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2016 17(9):702-723

Ay =Ay'TAp' T Ass', By'=B4y'+Byp'+Bs3,
Cy'=Cs)"+Cs'+Cy43', Dy'=Dus'+Dsy'+Ds3’,
F=F\+F+F5+F,, F\=F+F+F3,
Fy=Fo1tFoptFys, F3=F31tF5tFss,
Fi=F s +FptFa;.

A’y A, Ars', Bu', Bro', Bis', Cil', Crof, Ci3,
Dy, Did', D3’y Aoty A, Aas's Bat's By, Bay', Caf,
Cy', Co', Doty D', Da3', A3’y A3, A3y, Bsi', B3y,
B3y, Gy, G, Gs3', Dy, D3y, D3y, Aat'y Asy', A,
Bat', By, B!, Cat', Cap', Ca3', Day', Dap', D', Fy, Fia,
Fi3, Fy1, Fao, Fas, F31, F3, F33, Fu1, Fyp, and Fy3 are
shown in Appendix B.

Substituting Eqs. (45) and (50)-(53) into
Eq. (44), the heat potential at arbitrary point M(x, ) in
the temperature field can be expressed as

@D =
Al 4 m”2 4m§+4m%
lF @fl + 2 F 2 @fl
B +B I  BWhE+Bn*
+ ' 7 @, + e % @,
Chll+cm2  OmiEicm’®
a
+ L D, + 2 N0
F B F °
Dl’ln£+D£lnr—2 D3’lni+DA;1nr—4
a
+ IF ¢f4 I ? F 2 ¢f4
(A'+B/+C +D)ln'L
al
F
! ! ! ! r
(4, +B,+C; + D2)1nE2
' F
!/ ’ !/ ! v
(4 +B;+C;+D;)In—>
+ >
F
(A +B,+C,+D))ln"%
+ %o D,.
F (54)
Substituting @=kT, ®=kTy, ©r=kTr, Pr=kTn,

715

Dr=kTg, and @y=kTy into Eq. (54), we arrive at

At

r-—24%

7

+ANm2  AmBiam®

a a
T 2 3
F fl

T

f1

Bl’ln£+B2' In’2

4 1
F

r, 7,
Bl +Bm"
T, + % e
2

T,

2

Chnll+Cin2
+ 1

C3'1nr—3+C;1nr—4

a, a
7 T, +

T.

3

Dl'lni+Délnr—2 D;lni+Dilnr—4

T, + % %

+ l F 4 F Tf4
(A'+B+C'+D)lnt
a
F
(A +B,+C,+D,)ln’2
' F
(Al +B,+C,+D})ln">
+ %
F
(A +B,+C,+D))ln’x
+ — S,
(55)
Eq. (55) is the analytical solution of a

steady-state temperature field of four freezing pipes
in an arbitrary arrangement in an infinite plane.

Assuming the surface temperatures of the four
pipes are equal (T1=Tp=Tr=Tw), Eq. (55) can be
simplified as

T=T,+; -T,)

Int+ 2 In2+4,In 244
al a2 a3

Ny g2y g m %

g a, a;

(56)

X

1ni+ A In
al

where, assuming gco=419c1, gc3=4A2gc1, and gea=A3qgci,
A1, A2, and A3 can be written as
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b +b,+b

e AN (57)
L+t 1
¢ +e+c
PR - § (58)
St/
e+e +e
A= (39)
K+t
where
b=tn i D 9 g gy Gy By st
rO 2 35 d6 rO 374
b,=In dl d3lndd clzlnilndl d,d;
h 3% dy 1, d ”0
¢, =i G dede s Do Dl
nodyo dp’ noono dd,
e = nilnﬁln iy , €= nﬁl 4 d
Ty 3 245 o d dd
e, =inBeyn Ly hds gy 4y Gy dads
rO rO 2r0 rO rO 3’6
5 =lni(ln£lnﬂ—lnﬂln£}
6 2 3 6
£ :lnﬂ[lnﬂlnﬁ—lnﬂlnﬁj.
2 6 3 rO dZ

6.2 Temperature field of four freezing pipes in a
linear arrangement with equal spacing

When four freezing pipes are laid in a linear ar-
rangement with equal spacing, the centers of pipes P,
and P4 are moved to the x axis. Therefore, y, and y,
are zero. We use d to stand for d,, d,, ds, d4, ds, and dg
due to d1:d2:d3:d4/4:d5/2:d6/2 (Flg 17)

boundary of frozen soil y

é r
d /dﬂ/ X
S— o A RSN
A\ o A4 A4
Pi(\3d/2,0)  P.(-d/2,0) | P:(d/2,0)  P:(3d/2,0)

Fig. 17 Four freezing pipes laid in a linear arrangement
with equal spacing

When four freezing pipes are arranged in this
form, the coordinates of the conditional point at the
boundary of the frozen soil are changed to (0, &), and
the coordinates of arbitrary points on the surface of
each pipe are changed to (—3d/2+r, 0), (—d/2+ry, 0),
(d/2—ry, 0), and (3d/2—ry, 0), respectively. Egs. (57)-
In[37, / (2d)] and

In[r, / (2d)]

As=1. Eq. (56) can also be simplified as

(59) can be simplified as 4 =4, =

nry
2
s 9d

In 3r°d +4In 2

In

T=T,+ 4.1 -1),

(60)

d?
2

[ +7
4 é: 4

where 1, ,, 73, and 74 can be expressed as

n=J(c+3d 127 430, = +d /27 + 7,
=(x—=d /2y +y, r,=(x=3d/2) +)".

Eq. (60) is the analytical solution to a steady-
state temperature field of four freezing pipes in a
linear arrangement with equal spacing in an infinite
plane. It is also consistent with the existing analytical
solution derived by Tobe and Akimoto (1979) and
Kato et al. (2007), which is a particular solution of
ours when 7,=0 °C.

6.3 Temperature field of four freezing pipes in a
rhombus arrangement

When four freezing pipes are laid in a rhombus
arrangement, we see that d,=d,=d;=d, (Fig. 18), and
we use d to stand for dy, d,, d3,and d4. According to
the geometrical properties of a rhombus, ds and dg are
satisfied by the expression 4d°=ds*+d,".

With four freezing pipes arranged in this form,
the coordinates of the conditional point at the
boundary of the frozen soil are changed to (0, dg/2+¢),
and the coordinates of arbitrary points on the surface
of each pipe are changed to (—ds/2+ry, 0), (0, de/2—71y),
(ds/2—1y, 0), and (0, —dg/2-+ry), respectively. Egs. (49)
Infd’ /()]

—(51) can be simplified as 4, =4,=
Gh P A4 ln[dz/(d()ro)]

A,=1. We arrive at
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Fig. 18 Four freezing pipes laid in a rhombus arrange-
ment

T=T,
In il + 4 In—2%
. (£+d /2’ +d] /4 §E+d) g g
d d? e
In o +4n
(E+d /12 +d> /4 E(E+d)
(61)

where 7, 15, 13, and r4 can be expressed as

n=Nx+d, 12 + )0, =X+ (y—d, 1 2),
BN =dg 127+, =X +(y+d, /2).

Eq. (61) is the analytical solution to a steady-
state temperature field of four freezing pipes in a
rhombus arrangement in an infinite plane.

A visualized figure of the temperature field
drawn according to the results of the analytical solu-
tion, Eq. (61), is shown in Fig. 19. The steady-state
numerical calculation method was again applied to
verify the analytical solution, under the following
particular conditions: ds=1.0 m, d¢=0.8 m. The other
parameters were the same as in Sections 5.3 to 5.5.
According to the relationship of heat flow among four
freezing pipes, the temperature fields of main sections
1 and 3, and of intersections 1 and 2 in Fig. 18 are the
same. An isothermal diagram of the steady-state nu-
merical solution when &1.0 m is shown in Fig. 20. A
comparison of results from the analytical formula and
numerical simulation of the main section 1 is shown
in Fig. 21. A comparison of results from the analytical
formula and numerical simulation of intersection 1 is
shown in Fig. 22.

From Figs. 21 and 22, we find that the results
calculated by the two methods coincide, which shows
the analytical solution, Eq. (61), is precise enough.
Comparisons of the two methods applied to the other
main sections and intersections in Fig. 18 are not
covered here.

28 ! x(m)
Fig. 19 Temperature field calculated by the analytical
formula for four freezing pipes in a rhombus arrangement

273K
20083 K
Haerza &
Hasao1 K
Hasr
Ha3s23 K
Hasnas K
22267 K
Ha146 &
207,05 K
20315 X
2 a5 1 95 0 685 1 15 2 25 3 35 4 45 waais X
rim)

Fig. 20 Isothermal diagram calculated by numerical sim-
ulation for four freezing pipes in a rhombus arrangement

T(°C)

analytical solution of main section 1
+  numerical simulation of main section 1

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

y (m)
Fig. 21 Comparison of results from applying the analyti-
cal formula and numerical simulation to the main section
1in Fig. 18
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Fig. 22 Comparison of results from applying the analyti-
cal formula and numerical simulation to intersection 1 in
Fig. 18

6.4 Temperature field of four freezing pipes in a
rectangle arrangement

When four freezing pipes are laid in a rectangle
arrangement, for convenience of derivation, we put
one pipe into each of the four quadrants (Fig. 23).
According to the geometrical properties of rectangles,
we see that d=ds, d>=d,, and ds=dg, and d,, d», and ds
are satisfied by the expression ds’=d,*+d>*. In addi-
tion, we use d; to stand for ds, d, to stand for ds4, and ds
to stand for ds.

With four freezing pipes arranged in this form,
the coordinates of the conditional point at the
boundary of the frozen soil are changed to (0, d»/2+¢),
and the coordinates of arbitrary points on the surface
of each pipe are changed to (—d\/2+ry, d2/2), (d1/2—7y,
d>/2), (d\/2—ry, —d>/2), and (—d}/2+ry, —d,/2), respec-
tively. Egs. (49)—(51) can be simplified as 4,=4;
=J;=1. We arrive at

T=T,
n-n-n-rn
(E+d) +d} 14 |-(E+d] 4
d -d,-\d>+d’ r,

n
[(E+d)) +d} 14]-(& +d} | 4)

In

@, -1,), 2

+

where 71, 7, 73, and 74 can be expressed as

n=\J(x+d, /27 +(y—d, | 2),
r=y(x—d, /2" +(y—d, /2),

r=(x—d, 127 +(y+d, 1 2),

r=G+d, /27 +(y+d, [ 2).

Eq. (62) is the analytical solution of a steady-
state temperature field of four freezing pipes in a
rectangle arrangement in an infinite plane.

A visualized figure of the temperature field drawn
according to the results from the analytical solution,
Eq. (62), is shown in Fig. 24. The steady-state numer-
ical calculation method was again applied to verify the
analytical solution, under the following particular
conditions: d1=0.6 m, d,=0.8 m. The other parameters
were the same as in Sections 5.3-5.5 and Section 6.3.
According to the relationship of heat flow among four
freezing pipes, the temperature fields of main sections
1 and 2 in Fig. 23 are the same. An isothermal diagram
of the steady-state numerical solution when ¢=1.0 m is
shown in Fig. 25. A comparison of results from the
analytical formula and numerical simulation of the
main section 1 is shown in Fig. 26. A comparison of
results from the analytical formula and numerical
simulation of the intersection is shown in Fig. 27.

intersection
main section 2

main section 1

Fig. 23 Four freezing pipes laid in a rectangle arrangement

. x (m)

2 s
Fig. 24 Temperature field calculated by the analytical
formula for four freezing pipes laid in a rectangle ar-
rangement
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From Figs. 26 and 27, we find that the results
calculated by the two methods coincide, which shows
the analytical solution, Eq. (62), is precise enough.

yim)

x(m)

Fig. 25 Isothermal diagram calculated by numerical sim-
ulation for four freezing pipes laid in a rectangle
arrangement

-70 T T T
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e
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analytical solution of main section 1
or +  numerical simulation of main section 1

45 40 05 0.0 05 10 15

y(m)
Fig. 26 Comparison of results from applying the analyti-
cal formula and numerical simulation to the main section
1 in Fig. 23
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I 0.0 0.5 1.0 1.5
y(m)

Fig. 27 Comparison of results from applying the analyt-

ical formula and numerical simulation to the intersection

in Fig. 23

7 Conclusions

A method for deriving an analytical solution to
the steady-state temperature field frozen by multiple
freezing pipes has been found. The method is based
on potential superposition theory. Using this method,
solutions to the steady-state temperature field pro-
duced by one-, two-, three-, and four-piped freezing
are presented. The results calculated by the analytical
solutions are precise enough in comparison with those
obtained by numerical simulation. Concerning the
method, some conclusions can be drawn as follows:

1. The freezing pipe can be simplified to a point
source, 1.e., a cold source or heat sink, located at the
center of the pipe. The potential field formed by the
point source is governed by the Laplace equation,
whose solution is the potential function.

2. In the case of multiple-pipe freezing, potential
superposition theory can be applied to derive an an-
alytical solution to the steady-state temperature field.
The essence of the method is that the heat potential at
an arbitrary point is equal to superposition of the heat
potentials which are caused by the cold sources of
each freezing pipe separately at this point. The heat
flux to each pipe depends on the arrangement of all
the pipes and the final solution is determined ac-
cording the boundary conditions.

3. Simplifying a freezing pipe to a point source
leads to certain errors in the solutions. However, the
errors occur only within tiny areas around the pipes
and are small enough to meet engineering accuracy
requirements.

Using the method developed in this paper, we
obtained analytical solutions to steady-state temper-
ature fields of frequently used layouts of freezing
pipes, such as two, three or four pipes arranged at
random. In particular, solutions were derived for
some specific arrangements of freezing pipes that are
more commonly applied in AGF projects, such as
three pipes in a linear arrangement with equal or un-
equal spacing, right and isosceles triangle arrange-
ments, four pipes in a linear arrangement with equal
spacing, and rhombus and rectangle arrangements.
Theoretically, this method can serve as a universal
method to solve the steady-state temperature field for
any complicated layouts of freezing pipes.
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