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Abstract:    The multi-piped freezing method is usually applied in artificial ground freezing (AGF) projects to fulfill special 
construction requirements, such as two-, three-, or four-piped freezing. Based on potential superposition theory, this paper gives 
analytical solutions to steady-state frozen temperature for two, three, and four freezing pipes with different temperatures and 
arranged at random. Specific solutions are derived for some particular arrangements, such as three freezing pipes in a linear 
arrangement with equal or unequal spacing, right and isosceles triangle arrangements, four freezing pipes in a linear arrangement 
with equal spacing, and rhombus and rectangle arrangements. A comparison between the analytical solutions and numerical 
thermal analysis shows that the analytical solutions are sufficiently precise. As a part of the theory of AGF, the analytical solutions 
of temperature fields for multi-piped freezing with arbitrary layouts and different temperatures of freezing pipes are approached 
for the first time. 
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1  Introduction 

 
Artificial ground freezing (AGF) is a construc-

tion method that converts the water in the ground into 
ice by means of artificial refrigeration technology. 
This creates a strong, watertight frozen soil wall 
which serves as a temporary support structure during 
excavation. Due to its strong water-sealing ability and 

the mechanical strength of a frozen soil wall, and its 
superiority for safety and environmental conserva-
tion, AGF has been widely employed in many types 
of construction projects, including shield launching 
and receiving, retaining and protecting foundation 
pits, mine shaft sinking, tunnel boring machine 
(TBM) maintenance (Li et al., 2004; Itoh et al., 2005; 
Primentel et al., 2007; Schmall and Maishman, 2007; 
Viggiani and de Sanctis, 2009; Hu and Long, 2010; 
Russo et al., 2012; Viggiani and Casini, 2015; Casini 
et al., 2016), and recovery of shield tunnels (Ju et al., 
1998; Wang, 2006; Xiao et al., 2006). As the proper-
ties of a frozen soil wall, such as its mechanical 
properties and thickness, are functions of tempera-
ture, the calculation of the temperature field is a 
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pre-requisite for studying the temperature distribu-
tion, i.e., it is a significant part of the basis for design 
and construction using AGF. 

Among the main methods for calculating AGF 
temperature fields, the analytical method is more 
reliable than simulation method and numerical anal-
ysis method, and is an important part of the theory of 
AGF. In AGF engineering applications, the rate of 
heat conduction is actually very slow. Consequently, 
we can adopt steady-state rather than transient tem-
perature fields to calculate the temperature field at a 
certain point in the freezing process. This viewpoint 
has been accepted in academic and engineering cir-
cles (Trupak, 1954; Bakholdin, 1963; Frederick and 
Sanger, 1968; Tobe and Akimoto, 1979; Kato et al., 
2007).  

Based on steady-state analytical heat conduction 
theory, some solutions of steady-state temperature 
fields in AGF have been derived. Trupak (1954) 
studied the temperature field formed by single-piped 
freezing and obtained the analytical solution of a 
single-piped frozen temperature field. He also pro-
vided the analytical solution of a single-row-piped 
frozen temperature field according to the geometrical 
relationship between two adjacent frozen soil col-
umns. The results, however, differed from experi-
mental data because he had ignored the interaction 
between two adjacent pipes. Bakholdin (1963) con-
sidered that once two adjacent frozen soil columns 
were merging, the wave-shaped boundary of the fro-
zen soil wall would soon become flat. Based on the 
theory of analogy between thermal and hydraulic 
problems, he obtained the analytical solutions of  
single-row-piped and double-row-piped steady-state 
frozen temperature fields. These solutions have been 
shown to be sufficiently accurate (Hu and Zhao, 2010; 
Hu C.P. et al., 2011). Frederick and Sanger (1968) 
presented a simplified formula for a single-row-piped 
frozen temperature field. Tobe and Akimoto (1979) 
and Kato et al. (2007) derived an analytical solution of 
a temperature field by multi-piped freezing with the 
pipes arranged in a straight line with equal spacing. 

In China, there have been many studies of tem-
perature fields of AGF (Chen and Tang, 1982; Tang et 
al., 1995; Cui, 1997; Wang and Cao, 2002; Xu, 2005; 
Dong et al., 2007; Yuan et al., 2011; Zhou and Zhou, 
2011). Considering that the actual freezing tempera-
ture of soil is below 0 °C, Hu et al. (2008b) improved 

some existing analytical solutions. These analytical 
solutions have been applied in several other studies 
(Hu et al., 2008a; Hu and He, 2009; Hu, 2010a; 
2010b; Hu and Zhao, 2010; Hu C.P. et al., 2011; Hu 
and Wang, 2012; Hu et al., 2012; 2013a). 

In AGF engineering applications, a freezing 
method employing a small number of freezing pipes, 
called multi-piped freezing, is usually applied to meet 
the requirements of special construction practices, 
such as two-, three-, or four-piped freezing. Analyti-
cal solutions of multi-piped frozen temperature fields, 
such as for two freezing pipe arrangements, plus three 
and four freezing pipes arranged in a straight line with 
equal spacing, were derived by Tobe and Akimoto 
(1979) and Kato et al. (2007). However, there are no 
analytical solutions for three or four freezing pipes 
arranged in different forms. Based on potential su-
perposition theory, this paper gives analytical solu-
tions of steady-state frozen temperature for three and 
four freezing pipes arranged at random. Specific so-
lutions are derived for some particular arrangements, 
including three freezing pipes in a linear arrangement 
with equal or unequal spacing, right and isosceles 
triangle arrangements, four freezing pipes in a linear 
arrangement with equal spacing, and rhombus and 
rectangle arrangements. 

 
 
2  Heat potential and potential superposition  

 
Heat conduction, convection, and radiation are 

the three main forms of heat transfer in soils. In AGF 
engineering, convection and radiation barely affect 
the distribution of the temperature field and therefore 
will be ignored in this paper. 

According to Fourier’s law, in unit time, the heat 
flux passing the infinitesimal layer whose length is dx 
forms a direct ratio to the temperature rate and the 
area of the infinitesimal layer, which can be written as 

 

  ,
T

q k
x


 


                                (1) 

 

where k is the thermal conductivity of the soil and T is 
the soil temperature. We introduce a parameter Φ, 
defined as the heat potential, which is given by Φ=kT. 
Substituting Φ into Eq. (1) yields 
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                                  (2) 

 
According to Fourier’s law and the first law of 

thermodynamics, the governing equation of heat 
conduction in the plane can be described by 
 

0,yx
qq T

Q c
x y t


 

   
  

                 (3) 

 
where qx and qy are the heat fluxes in unit time along 
the x and y axes, respectively. Q is the heat in unit 
time and unit volume exchanged between the system 
and the environment. ρ is the soil density and c the 
specific heat of soil. 

In this paper, soil is as assumed to be isotropic, 
and the temperature field of frozen soil is approxi-
mated to be steady state. These assumptions have 
previously been shown to be sufficiently accurate 
(Trupak, 1954; Bakholdin, 1963; Frederick and 
Sanger, 1968; Tobe and Akimoto, 1979; Kato et al., 
2007). Heat exchange between the system and the 
environment is ignored because the calculation region 
is infinite. Substituting Φ and the steady-state condi-
tion into Eq. (3) yields 
 

2 2

2 2
0.

x y

  
 

 
                         (4) 

 
The polar form of Eq. (4) can be written as 

d d
0.

d d
r

r r

   
 

  

Eq. (4) is Laplace’s equation, the solution of 
which is the heat potential Φ.  

For simplicity, the freezing pipe can be regarded 
as a point source, i.e., a cold source or heat sink, ex-
isting at the center of the pipe. Let qc be the heat flow 
absorbed in unit time at steady state by the cold 
source. The heat potential at each point in the plane 
would be lowered due to qc.  

According to the above hypothesis, qc can be 
written as 
 

c

d
2π ,

d
q r

r


                                (5) 

 
where r is the distance from the cold source. Inte-

grating Eq. (5), the heat potential Φ at the circle with 
radius r can be expressed as  
 

c ln ,
2π

q
r C                                    (6) 

 
where C is the integral constant to be determined by 
the boundary conditions. 

According to potential superposition theory, if 
multiple point sources exist in the plane, the reduction 
of heat potential can be superposed. Therefore, when 
multiple freezing pipes are arranged in the plane, the 
heat potential at an arbitrary point in this plane equals 
the superposition of the heat potentials caused by the 
cold sources of each freezing pipe at this point. If 
there are n freezing pipes arranged in the plane, the 
heat potential at an arbitrary point can be expressed as 
 

c1 c2 c
1 2ln ln ln .

2π 2π 2π
n

n

q q q
r r r C        

 
      (7) 

 

Eq. (7) can be written as c

1

ln ,
2π

n
i

i
i

q
r C



    where 

ri is the distance from this point to the ith cold source 
and qci is the heat flow of the ith cold source. 

The potential superposition method, described 
above, is viable for solving plane problems of a 
steady-state temperature field frozen by any freezing 
pipes in any arrangement, including the most used 
engineering classes, such as multi-piped (which will 
be given in this paper), straight-row-piped (Hu et al., 
2013c), and circle-piped arrangements.  

The potential superposition method can also be 
used for space problems (Hu et al., 2013b). 
 
 
3  Temperature field of a single freezing pipe 

 
The freezing pipe is placed at the origin of the 

coordinates (Fig. 1). r0 is the radius of the freezing 
pipe, ξ is the radius of the frozen soil zone, Tf is the 
surface temperature of the freezing pipe, T0 is the 
freezing temperature of frozen soil, and qc is the heat 
flow of the freezing pipe.  

The heat potential expression at arbitrary point 
M(x, y) in the temperature field is the same as in 

Eq. (6). r is given by 2 2 .r x y   
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The heat potential at an arbitrary point at the 

boundary of frozen soil can be expressed as 
 

c
0 ln .

2π

q
C                              (8) 

 
The heat potential at an arbitrary point on the 

freezing pipe surface can be expressed as 
 

c
f 0ln .

2π

q
r C                              (9) 

 
Solving Eqs. (8) and (9) simultaneously, the ex-

pression of qc can be obtained as c f 0

0

.
2π ln ( / )

q

r

 



   

Substituting qc, Φ=kT, Φ0=kT0, and Φf=kTf into 
Eq. (6), we arrive at 

 

0 f 0
0

ln ( / )
( ).

ln ( / )

r
T T T T

r




                 (10) 

 
Eq. (10) is the analytical solution of a steady-state 
temperature field of one freezing pipe in an infinite 
plane. Eq. (10) is Trupak’s formula (Trupak, 1954). 

 
 
4  Temperature field of two freezing pipes 

 
Φf1 and Φf2 are the heat potentials of two freez-

ing pipes, respectively. The surface temperatures, Tf1 
and Tf2, of the two freezing pipes are not equal. The 
radii of the two freezing pipes are equal (r0). T0 is the 
freezing temperature of frozen soil. qc1 and qc2 are the 
heat flows of two freezing pipes, respectively. The 

distance between two freezing pipes is 2d. We define 
a conditional point at the boundary of the frozen soil 
with the coordinates (0, ξ) (Fig. 2). 
 

 

 
 
 
 
 
 
 
 
 
According to potential superposition theory, the 

heat potential at an arbitrary point M(x, y) in the 
temperature field is superposed by heat potentials 
acquired from two freezing pipes acting alone, which 
can be written as 
 

c1 c2
1 2ln ln ,

2π 2π

q q
r r C                    (11) 

 
where r1 and r2 are the distances of the arbitrary point 
M to the freezing pipes P1 and P2, respectively, which 
can be expressed as  
 

2 2
1 ( ) ,r x d y    2 2

2 ( ) .r x d y    

 
The heat potential Φ0 at the conditional point 

(0, ξ) at the boundary of the frozen soil can be ex-
pressed as 

 

2 2 2 2c1 c2
0 ln ln .

2π 2π

q q
d d C            (12) 

 
The heat potentials Φf1 at point (−d, r0) and Φf2 

at (d, r0) on the surface of each freezing pipe can be 
expressed as 
 

2 2c1 c2
f1 0 0ln ln 4 ,

2π 2π

q q
r d r C      + +      (13) 

2 2c1 c2
f2 0 0ln 4 ln .

2π 2π

q q
d r r C      +     (14) 

 
As r0 is small in comparison to the scale of  

the frozen zone, it has little impact on the final  

Fig. 1  One freezing pipe in the infinite plane 

Fig. 2  Two freezing pipes in the infinite plane

P1(−d, 0) P2(d, 0)



Hu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2016 17(9):702-723 
 

706

calculation. Consequently, Eqs. (13) and (14) can be 
simplified as 

 

c1 c2
f1 0ln ln(2 ) ,

2π 2π

q q
r d C                  (15) 

c1 c2
f2 0ln(2 ) ln .

2π 2π

q q
d r C                   (16) 

 
Using Φ0, Φf1, and Φf2 to stand for qc1 and qc2, 

we arrive at 

 

0
f1 f22 2 2 2

c1

0 0 0 0
2 2 2 2

0
0

0 0
2 2

2
ln ln

+ +
=

2 22π ln ln ln ln
2 + 2 +

ln
2 ,
2

ln ln
2 +

r d

d dq
r dr r dr
d d d d

r
d

r dr
d d

 
 

 





 



            (17) 

0
f1 f22 2 2 2

c2

0 0 0 0
2 2 2 2

0
0

0 0
2 2

2
ln ln

+ +
=

2 22π ln ln ln ln
2 + 2 +

ln
2 .
2

ln ln
2 +

rd

d dq
r dr r dr
d d d d

r
d

r dr
d d

 
 

 




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

         (18) 

 
Substituting Eqs. (12), (17), and (18) into 

Eq. (11), the heat potential at an arbitrary point 
M(x, y) in the temperature field can be expressed as 

 

01

2 2 2 2

f1
0 0

2 2

2

2 2 2 2

f1
0 0

2 2
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2 2 2 2

f2
0 0

2 2

ln ln

2
ln ln

2

2
ln ln

2
ln ln

2

ln ln

2
ln ln

2
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d d
r dr

d d

r d

d d
r dr

d d
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d d
r dr

d d

 
 


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


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



 




 




 

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1 1 2
2 2 2 2 2 2

f2 0
0 0 0

2 2 2 2

2
ln ln ln

1 .
2 2

ln ln ln
2

r d r r
d d d

r dr dr

d d d

   

 

 
      
 
   

(19) 

 
Substituting Φ=kT, Φ0=kT0, Φf1=kTf1, and Φf2= 

kTf2 into Eq. (19), we arrive at 
 

01

2 2 2 2

f1
0 0

2 2

2

2 2 2 2

f1
0 0

2 2

02

2 2 2 2

f2
0 0

2 2

1 1 2
2 2 2 2 2 2

f2 0
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ln ln

2
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2

2
ln ln

2
ln ln

2

ln ln

2
ln ln

2

2
ln ln ln
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2 2

ln ln ln
2
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d d
T T

r dr

d d

r d

d d
T

r dr

d d

rr

d d
T

r dr

d d

r d r r
d d d

T T
r dr dr

d d d

 



 



 



  

 

 




 




 




 
      
 
   

           (20) 
 

Eq. (20) is the analytical solution of a steady- 
state temperature field of two freezing pipes with 
different surface temperatures in an infinite plane. 

Assuming the surface temperatures of two 
freezing pipes are equal (Tf1=Tf2), Eq. (20) can be 
simplified as 

 

0

2 2 2 2

2 2

f 0
0

2 2

( ) ( )
ln

( ).
2

ln

T T

x d y x d y

d
T T

dr

d







    
 



  (21) 

 

Eq. (21) is consistent with the analytical solution 
derived by Tobe and Akimoto (1979) and Kato et al. 
(2007), which is a particular solution of our solution 
when T0=0 °C. 

Another solution to the steady-state temperature 
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field frozen by two freezing pipes with different 
temperatures was given by Hu and Zhang (2013a). In 
their study, the boundary conditions were set differ-
ently and as a result, the expressions of the solution 
had different forms. Both solutions produce the same 
temperature field. 

Hu and Zhang (2013b) solved the problem of a 
steady-state temperature field of one and two freezing 
pipes near a linear adiabatic boundary, using potential 
superposition method and mirror reflection of source 
and sink. 

 
 
5  Temperature field of three freezing pipes  

5.1  Temperature field of three freezing pipes in an 
arbitrary arrangement 

Three-piped freezing method is usually applied 
in AGF projects. To fulfill construction requirements, 
three freezing pipes may be arranged in a particular 
form, such as a linear, right triangle or isosceles tri-
angle arrangements. In this section, we derive the 
analytical solution of a steady-state temperature field 
of three-piped freezing with an arbitrary arrangement. 

Φf1, Φf2, and Φf3 are the heat potentials of three 
freezing pipes, respectively. The surface tempera-
tures, Tf1, Tf2, and Tf3, of the three freezing pipes are 
not equal. The radii of the pipes are equal (r0). T0 is 
the freezing temperature of frozen soil and qc1, qc2, 
and qc3 are the heat flows of the three pipes, respec-
tively. The distances between two pipes are d1, d2, and 
d3. The center coordinates of the three pipes are P1(x1, 
y1), P2(x2, y2), and P3(x3, y3), respectively (Fig. 3). To 
simplify the derivation, we establish a coordinate 
system with the line connecting the centers of pipes 
P1 and P3 as the x axis, and the vertical line from the 
center of pipe P2 to the above connecting line as the y 
axis. Therefore, the center coordinates of the three 
pipes are changed to P1(x1, 0), P2(0, y2), and P3(x3, 0). 
Similarly, we define a conditional point at the 
boundary of the frozen soil, with the coordinates (0, 
y2+ξ). 

Considering x2, y1, and y3 are all zero, d1, d2, and 

d3 in Fig. 3 can be expressed as 2 2
1 1 2 ,d x y   

2 2
2 3 2 ,d x y   and 3 1 3 .d x x   According to po-

tential superposition theory, the heat potential at an 

arbitrary point M(x, y) in the temperature field is  
superposed by heat potentials acquired from the three 
freezing pipes acting alone, and can be expressed as 

 

c1 c2 c3
1 2 3ln ln ln ,

2π 2π 2π

q q q
r r r C              (22) 

 
where r1, r2, and r3 are the distances of the arbitrary 
point M(x, y) to pipes P1, P2, and P3, respectively, 

which can be expressed as 2 2
1 1( ) ,r x x y    

2 2
2 2( ) ,r x y y    and 2 2

3 3( ) .r x x y    

 
 
 
 
 
 
 
 
 
 
 
 
 

 
The heat potential Φ0 at the conditional point 

(0, y2+ξ) at the boundary of the frozen soil can be 
expressed as 

 

2 2c1 c2
0 1 2

2 2c3
3 2

ln ( ) ln
2π 2π

ln ( ) .
2π

q q
x y

q
x y C

  



   

   
    (23) 

 
The heat potentials Φf1 at points (x1, r0), Φf2 at 

(0, y2+r0) and Φf3 at (x3, r0) on the surface of each 
freezing pipe can be expressed as 

 

2 2c1 c2
f1 0 1 2 0

2 2c3
3 0

ln ln ( )
2π 2π

ln ,
2π

q q
r x y r

q
d r C

     

  
     (24) 

2 2c1 c2
f 2 1 2 0 0

2 2c3
3 2 0

ln ( ) ln
2π 2π

ln ( ) ,
2π

q q
x y r r

q
x y r C

     

   
     (25) 

boundary of frozen soil
M(x, y)

(0, y2+ξ)

P1 (x1, y1)

P2 (x2, y2)

P3 (x3, y3)

d1 d2

d3

r1

r2 r3

ξ

y

x

Fig. 3  Three freezing pipes arranged at random 
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2 2c1 c3
f 3 3 0 0

2 2c2
3 2 0

ln ln
2π 2π

ln ( ) .
2π

q q
d r r

q
x y r C

    

   
              (26) 

 
As r0 is small in comparison to the scale of the 

frozen zone, it barely has any impact on the final 
calculation results. Consequently, Eqs. (24) to (26) 
can be simplified as 

 

c1 c2 c3
f1 0 1 3ln ln ln ,

2π 2π 2π

q q q
r d d C            (27) 

c1 c2 c3
f 2 1 0 2ln ln ln ,

2π 2π 2π

q q q
d r d C            (28) 

c1 c2 c3
f 3 3 2 0ln ln ln .

2π 2π 2π

q q q
d d r C            (29) 

 
Using Φ0, Φf1, Φf2, and Φf3 to stand for qc1, qc2, 

and qc3, we arrive at 
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where D=D1+D2+D3. A1, A2, A3, B1, B2, B3, C1, C2, C3, 
D1, D2, and D3 are shown in Appendix A. 

Substituting Eqs. (23), (30), (31), and (32) into 
Eq. (22), the heat potential at arbitrary point M(x, y) in 
the temperature field can be expressed as 
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(33) 

 
Substituting Φ=kT, Φ0=kT0, Φf1=kTf1, Φf2=kTf2, 

and Φf3= kTf3 into Eq. (33), we arrive at 
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    (34) 

 
Eq. (34) is the analytical solution of a steady- 

state temperature field of three freezing pipes in an 
arbitrary arrangement in an infinite plane. 

Assuming the surface temperatures of the three 
freezing pipes are equal (Tf1=Tf2=Tf3), Eq. (34) can be 
simplified as 

 

0 f 0
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           (35) 
 

where, assuming qc2=η1qc1 and qc3=η2qc1, η1 and η2 

can be expressed as 
 

3 01 2

3 2 1 0
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                (36) 
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                (37) 

5.2  Temperature field of three freezing pipes in a 
linear arrangement with equal spacing 

 
When three freezing pipes are arranged in a 

straight line with equal spacing, the center of freezing 
pipe P2 becomes the origin of the coordinates, and y2 
is zero. We use d to stand for d1, d2, and d3 because 
2d1=2d2=d3 (Fig. 4). 

 
 
 

 
 
 
 
 
 
 
 
 
 
With three freezing pipes arranged in this form, 

the coordinates of the conditional point at the 
boundary of the frozen soil are changed to (0, ξ), and 
the coordinates of arbitrary points on the surface of 
each freezing pipe are changed to (−d+r0, 0), (0, r0), 
and (d−r0, 0), respectively. Eqs. (36) and (37) can be 

simplified as 0
1

0

ln[ / (2 )]
=

ln( / )

d r

d r
  and 

2 =1.  Eq. (36) 

can also be simplified as 
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     (38) 

 

where r1, r2, and r3 can be expressed as 
 

2 2
1 ( ) ,r x d y    2 2

2 ,r x y   2 2
3 ( ) .r x d y    

 
Eq. (38) is the analytical solution of a steady- 

state temperature field of three freezing pipes in a 
linear arrangement with equal spacing in an infinite 
plane. It is consistent with the existing analytical 
solution derived by Tobe and Akimoto (1979) and 
Kato et al. (2007), which is a particular solution of 
our solution when T0=0 °C. 

boundary of frozen soil

M(x, y)

P1 (-d, 0) P3 (d, 0)P2 (0, 0)

d d

r1

r2
r3

y

x

ξ

Fig. 4  Three freezing pipes laid in a linear arrangement 
with equal spacing  
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5.3  Temperature field of three freezing pipes in a 
linear arrangement with unequal spacing 
 

When three freezing pipes are laid in a linear ar-
rangement with unequal spacing, the center of pipe P2 
is also the origin of the coordinates. We can see that 
d3=d1+d2 (Fig. 5). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the three freezing pipes are arranged in 

this form, the coordinates of the conditional points at 
the boundary of the frozen soil and on the surface of 
pipe P2 are the same as in Section 5.2. The coordi-
nates of the other two points on the surface of each 
pipe are changed to (−d1+r0, 0) and (d3−r0, 0). Ac-
cording to the relationships among d1, d2, and d3, 
Eqs. (36) and (37) can be expressed as 
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          (40) 

 
The analytical solution to a steady-state tem-

perature field of three freezing pipes in a linear ar-
rangement with unequal spacing in an infinite plane 
can be obtained from 

0

31 2
1 22 2 2 2

1 2
f 0

01 2
1 22 2 2 2

1 2

ln ln ln

( ),
ln ln ln

T T

rr r

d d
T T

rd d

d d

 
 

 
 



 
 

 
 

 

 

(41) 
 

where r1, r2, and r3 can be expressed as 
 

2 2
1 1( ) ,r x d y    2 2

2 ,r x y   2 2
3 2( ) .r x d y    

 
A visualized figure of the temperature field 

drawn according to the results of the analytical solu-
tion, Eq. (41), is shown in Fig. 6. To confirm that the 
numerical solution can exactly express the tempera-
ture distribution in the temperature field, the precision 
of the analytical solution Eq. (41) was examined by a 
steady-state numerical solution. The calculation was 
under the following particular conditions: d1=0.4 m, 
d2=0.8 m, ξ=1.0 m, Tf=−70 °C (considering adopting 
liquid nitrogen freezing), T0=0 °C, r0=0.054 m. The 
isothermal diagram of the steady-state numerical 
solution when ξ=1.0 m is shown in Fig. 7. Compari-
son of the analytical formula with the numerical 
simulation of the main section 1 in Fig. 5 is shown in 
Fig. 8. A comparison of the results of the analytical 
formula and numerical simulation of intersection 1 in 
Fig. 5 is shown in Fig. 9.  

From Figs. 8 and 9, we find that the results cal-
culated by the two methods coincide, which shows 
the analytical solution, Eq. (41), is precise enough. 
 

 
 
 

 

 
 
 
 
 
 
 
 
 

 

P1 (-d1, 0) P2 (0, 0) P3 (d2, 0)

d1 d2

r1

r2
r3

y

x

ξ

boundary of frozen soil

main 
section 2

main 
section 1

main 
section 3

intersection 1 intersection 2

M(x, y)

Fig. 5  Three freezing pipes laid in a linear arrangement 
with unequal spacing  

Fig. 6  Temperature field calculated by analytical for-
mula for three freezing pipes in a linear arrangement 
with unequal spacing 
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Results from the two methods in relation to other 
main sections and intersections in Fig. 5 also coincide 
(these are not discussed further here due to space 
limitations). 

5.4  Temperature field of three freezing pipes in a 
right triangle arrangement 

When three freezing pipes are in a right triangle 
arrangement, the relationship among d1, d2, and d3 can 
be expressed as d3

2=d1
2+d2

2. According to the geo-
metrical properties of right triangles, the center co-
ordinates of the three pipes are changed to P1(−d1

2/d3, 
0), P2(0, d1d2/d3), and P3(d2

2/d3, 0), respectively 
(Fig. 10). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the three freezing pipes are arranged in 

this form, the coordinates of the conditional point at 
the boundary of the frozen soil are changed to (0, 
d1d2/d3+ξ), and the coordinates of arbitrary points on 
the surface of each pipe are changed to (−d1

2/d3+r0, 
0), (0, d1d2/d3−r0), and (d2

2/d3−r0, 0), respectively. 
The expressions of η1 and η2 can be still written as 
Eqs. (36) and (37). Then, we arrive at 
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11 11
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( ),
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rd d
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 


 


 
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 
     (42) 

 
where A11, B11, r1, r2, and r3 can be expressed as 

Fig. 9  Comparison of results from applying the analyt-
ical formula and numerical simulation in intersection 1 
in Fig. 5 

boundary of frozen soil

main

intersection 1

section 1
main
section 2

main
section 3

intersection 2

M(x,  y)

P1 (x1 , 0) P3 (x3 , 0)

P2 (0, y2)

d1 d2

d3

r1

r2

r3

ξ

y

x

Fig. 10  Three freezing pipes laid in a right triangle
arrangement 

Fig. 7  Isothermal diagram calculated by numerical 
simulation for three freezing pipes in a linear arrange-
ment with unequal spacing 

Fig. 8  Comparison of results from applying the analyt-
ical formula and numerical simulation in the main sec-
tion 1 in Fig. 5 
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22
2 1 2 3( ) ,r x y d d d     

2 2 2
3 2 3( ) .r x d d y    

 
Eq. (42) is the analytical solution to a 

steady-state temperature field of three freezing pipes 
laid in a right triangle arrangement in an infinite 
plane. 

A visualized figure of the temperature field 
drawn according to the results of the analytical solu-
tion Eq. (42) is shown in Fig. 11. The steady-state 
numerical calculation method was again applied to 
verify the analytical solution in this section, under the 
following particular conditions: d1=0.6 m, d2=0.8 m, 
d3=1.0 m. The other parameters were the same as in 
Section 5.3. An isothermal diagram of the steady- 
state numerical solution when ξ=1.0 m is shown in 
Fig. 12. A comparison of the results from the analyt-
ical formula and numerical simulation of the main 
section 2 in Fig. 10 is shown in Fig. 13. A comparison 
of the results from the analytical formula and nu-
merical simulation of intersection 2 in Fig. 10 is 
shown in Fig. 14. 

From Figs. 13 and 14, we find again that the 
results calculated by the two methods coincide, which 
shows the analytical solution Eq. (42) is precise 
enough. Due to space limitations, comparisons of the 
two methods in relation to the other main sections and 
intersections in Fig. 10 are not covered here. 

5.5  Temperature field of three freezing pipes in an 
isosceles triangle arrangement 

When three freezing pipes are laid in an isosceles 
triangle arrangement, we can see d1=d2 (Fig. 15). 
According to the geometrical properties of isosceles 
triangles, using d to stand for d1 and d2, the center 
coordinates of the three pipes are changed to P1(−d3/2, 

0), P2(0, 2 2
3 / 4d d ), and P3(d3/2, 0), respectively. 

When the three freezing pipes are arranged in 
this form, the coordinates of the conditional point at 

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 13  Comparison of results from applying the analyt-
ical formula and numerical simulation to the main section
2 in Fig. 10 

Fig. 11  Temperature field calculated by the analytical 
formula for three freezing pipes in a right triangle 
arrangement  

Fig. 12  Isothermal diagram calculated by numerical 
simulation for three freezing pipes in a right triangle 
arrangement 
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the boundary of the frozen soil are changed to (0, 

2 3
3 / 4+d d  ), and the coordinates of arbitrary 

points on the surface of each pipe are changed to 

(−d3/2+r0, 0), (0, 2 2
3 0/ 4d rd  ) and (d3/2+r0, 0), 

respectively. Eqs. (36) and (37) can be simplified as 
2

1 0 3 0= ln ( / ) ln( / )r d d r d  and 2=1. Then, we can 

arrive at 
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rd
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
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
     (43) 

where A22, r1, r2, and r3 can be expressed as 
 

 2
2 2 2

22 3 3/ 4 / 4,A d d d     

2 2
1 3( / 2) ,r x d y    2 2 2 2

2 3( / 4) ,r x y d d     

2 2 2
3 2 3( / ) .r x d d y    

 
Eq. (43) is the analytical solution to a steady- 

state temperature field of three freezing pipes laid in 
an isosceles triangle arrangement in an infinite plane. 

The steady-state numerical calculation method 
was again applied to verify the analytical solution. 
The results of the verification were the same as in 
Sections 5.3 and 5.4, which shows that the analytical 
solution, Eq. (42), is precise enough. Due to space 
limitations, comparison charts of the two methods are 
not included here. 

 
 
6  Temperature field of four freezing pipes  

6.1  Temperature field of four freezing pipes in an 
arbitrary arrangement 

A four-piped freezing method is usually applied 
in AGF projects to meet particular construction re-
quirements. Four freezing pipes may be arranged in 
particular forms, such as a linear arrangement, 
rhombus arrangement or rectangle arrangement. In 
this section, we derive the analytical solution of a 
steady-state temperature field of four freezing pipes 
with an arbitrary arrangement. 

Φf1, Φf2, Φf3, and Φf4 are the heat potentials of 
four freezing pipes, respectively. The surface tem-
peratures of the four pipes are not equal. Tf1, Tf2, Tf3, 
and Tf4 are the surface temperatures of the four pipes, 
respectively. The radii (r0) of the four freezing pipes 
are equal. T0 is the freezing temperature of frozen soil. 
qc1, qc2, qc3, and qc4 are the heat flows of the four 
pipes, respectively. The distances between two pipes 
are d1, d2, d3, d4, d5, and d6. The center coordinates of 
the four pipes are P1(x1, y1), P2(x2, y2), P3(x3, y3), and 
P4(x4, y4) (Fig. 16). The definition of the coordinate 
system is the same as in Section 5.1. The coordinates 
of a conditional point defined at the boundary of the 
frozen soil is also (0, y2+ξ). 

Considering that x2, y1, and y3 are all zero, d1, d2, 
d3, d4, d5, and d6 in Fig. 16 can be expressed as 

 
2 2

1 1 2 ,d x y   2 2
2 3 2 ,d x y    

2 2
3 3 4 4( ) ,d x x y    2 2

4 1 4 4( ) ,d x x y    

5 3 1 ,d x x   2 2
6 4 2 4 2( ) ( ) .d x x y y     

Fig. 14  Comparison of results from applying the analyt-
ical formula and numerical simulation to intersection 2 in
Fig. 10 

Fig. 15  Three freezing pipes laid in an isosceles triangle 
arrangement 
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According to potential superposition theory, the 
heat potential of an arbitrary point M(x, y) in the 
temperature field is superposed by heat potentials 
acquired from four freezing pipes acting alone. Its 
expression can be written as 
 

c1 c2
1 2

c3 c4
3 4

ln ln
2π 2π

ln ln ,
2π 2π

q q
r r

q q
r r C

   

  
               (44) 

 
where r1, r2, r3, and r4 are the distances of the arbitrary 
point M(x, y) to pipes P1, P2, P3, and P4, respectively, 
which can be expressed as  
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The heat potential at the conditional point 
(0, y2+ξ) at the boundary of the frozen soil can be 
expressed as 
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where a1, a2, and a3 can be expressed as 
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1 1 2( ) ,a x y    2 2
2 3 2( ) ,a x y    
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Similar to three-piped freezing, because r0 is 
much smaller than the scale of the frozen zone, it has 
little impact on the final calculation. Consequently, 
the heat potentials at arbitrary points (x1, r0), 
(0, y2+r0), (x3, r0), and (x4, y4+r0) on the surface of 
each pipe can be expressed simply as 
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                (46) 
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                 (49) 
 

Using Φ0, Φf1, Φf2, Φf3, and Φf4 to stand for qc1, 
qc2, qc3, and qc4, we arrive at 
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c2 2 2
f1 0 f2 0

2 2
f3 0 f4 0

( ) ( )
2π

( ) ( ),

q A B

F F
C D

F F

   

   

 
    

 
   

     (51) 

c3 3 3
f1 0 f2 0

3 3
f3 0 f4 0

( ) ( )
2π

( ) ( ),

q A B

F F
C D

F F

   

   

 
    

 
   

     (52) 

c4 4 4
f1 0 f2 0

4 4
f3 0 f4 0

( ) ( )
2π

( ) ( ),

q A B

F F
C D

F F

   

   

 
    

 
   

     (53) 

where 
A1′=A11′+A12′+A13′,

  B1′=B11′+B12′+B13′,
 

C1′=C11′+C12′+C13′,  D1′=D11′+D12′+D13′, 
A2′=A21′+A22′+A23′,

  B2′=B21′+B22′+B23′,
 

C2′=C21′+C22′+C23′,  D2′=D21′+D22′+D23′, 
A3′=A31′+A32′+A33′,  B3′=B31′+B32′+B33′, 
C3′=C31′+C32′+C33′,  D3′=D31′+D32′+D33′, 

boundary of frozen soil

(0, y2+ξ )

M(x, y)

P1 (x1, y1)

P2 (x2, y2)

P3 (x3, y3)

P4 (x4, y4)

r1

r2

r3
r4

d1 d2

d3d4

d5

d6

ξ

y

x

Fig. 16  Four freezing pipes arranged at random 
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A4′=A41′+A42′+A43′,  B4′=B41′+B42′+B43′, 
C4′=C41′+C42′+C43′,  D4′=D41′+D42′+D43′, 
F=F1+F2+F3+F4,  F1=F11+F12+F13, 
F2=F21+F22+F23,  F3=F31+F32+F33, 
F4=F41+F42+F43. 
A11′, A12′, A13′, B11′, B12′, B13′, C11′, C12′, C13′, 

D11′, D12′, D13′, A21′, A22′, A23′, B21′, B22′, B23′, C21′, 
C22′, C23′, D21′, D22′, D23′, A31′, A32′, A33′, B31′, B32′, 
B33′, C31′, C32′, C33′, D31′, D32′, D33′, A41′, A42′, A43′, 
B41′, B42′, B43′, C41′, C42′, C43′, D41′, D42′, D43′, F11, F12, 
F13, F21, F22, F23, F31, F32, F33, F41, F42, and F43 are 
shown in Appendix B. 

Substituting Eqs. (45) and (50)–(53) into 
Eq. (44), the heat potential at arbitrary point M(x, y) in 
the temperature field can be expressed as 

 

3 41 2
3 41 2

2 31
f1 f1

3 41 2
3 41 2

2 31
f2 f2

3 41 2
3 41 2

2 31
f3 f3

3 41 2
3 41 2

2 31
f4 f4

ln lnln ln
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r rr r
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r rr r
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                  (54) 

 
Substituting Φ=kT, Φ0=kT0, Φf1=kTf1, Φf2=kTf2, 

Φf3=kTf3, and Φf4=kTf4 into Eq. (54), we arrive at 
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                                                                              (55) 
 

Eq. (55) is the analytical solution of a 
steady-state temperature field of four freezing pipes 
in an arbitrary arrangement in an infinite plane. 

Assuming the surface temperatures of the four 
pipes are equal (Tf1=Tf2=Tf3=Tf4), Eq. (55) can be 
simplified as 

 

0 f 0

31 2 4
1 2 3

1 2 3

0 61 2
1 2 3

1 2 3

( )

ln ln ln ln

,
ln ln ln ln

T T T T

rr r r

a a a
r dd d

a a a

  


  


  

  


  

   (56) 

 

where, assuming qc2=λ1qc1, qc3=λ2qc1, and qc4=λ3qc1, 
λ1, λ2, and λ3 can be written as  
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1 2 3
1

1 2 3

= ,
b b b

f f f


 
 

                             (57) 
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f f f
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                              (58) 
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3
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6.2  Temperature field of four freezing pipes in a 
linear arrangement with equal spacing 

When four freezing pipes are laid in a linear ar-
rangement with equal spacing, the centers of pipes P2 
and P4 are moved to the x axis. Therefore, y2 and y4 
are zero. We use d to stand for d1, d2, d3, d4, d5, and d6 
due to d1=d2=d3=d4/4=d5/2=d6/2 (Fig. 17).  
 

 
 

 
 
 
 
 
 
 
 
 
 

When four freezing pipes are arranged in this 
form, the coordinates of the conditional point at the 
boundary of the frozen soil are changed to (0, ξ), and 
the coordinates of arbitrary points on the surface of 
each pipe are changed to (−3d/2+r0, 0), (−d/2+r0, 0), 
(d/2−r0, 0), and (3d/2−r0, 0), respectively. Eqs. (57)– 

(59) can be simplified as 0
1 2

0

ln[3 / (2 )]

ln[ / (2 )]

r d

r d
   and 

λ3=1. Eq. (56) can also be simplified as 
 

2 31 4
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2 2

0 f 02
0

12 2
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3 2

ln ln
9

4 4

r rr r

d d

T T T T
r d d

d d


 


 


 

  


 

    (60) 

 
where r1, r2, r3, and r4 can be expressed as 
 

2 2
1 ( 3 / 2) ,r x d y    2 2

2 ( / 2) ,r x d y    

2 2
3 ( / 2) ,r x d y    2 2

4 ( 3 / 2) .r x d y    

 

Eq. (60) is the analytical solution to a steady- 
state temperature field of four freezing pipes in a 
linear arrangement with equal spacing in an infinite 
plane. It is also consistent with the existing analytical 
solution derived by Tobe and Akimoto (1979) and 
Kato et al. (2007), which is a particular solution of 
ours when T0=0 °C. 

6.3  Temperature field of four freezing pipes in a 
rhombus arrangement 

When four freezing pipes are laid in a rhombus 
arrangement, we see that d1=d2=d3=d4 (Fig. 18), and 
we use d to stand for d1, d2, d3, and d4. According to 
the geometrical properties of a rhombus, d5 and d6 are 
satisfied by the expression 4d2=d5

2+d6
2. 

With four freezing pipes arranged in this form, 
the coordinates of the conditional point at the 
boundary of the frozen soil are changed to (0, d6/2+ξ), 
and the coordinates of arbitrary points on the surface 
of each pipe are changed to (−d5/2+r0, 0), (0, d6/2−r0), 
(d5/2−r0, 0), and (0, −d6/2+r0), respectively. Eqs. (49) 

–(51) can be simplified as 
2

5 0
1 3 2

6 0

ln[ / ( )]
= =

ln[ / ( )]

d d r

d d r
   and 

2 =1.  We arrive at 
Fig. 17  Four freezing pipes laid in a linear arrangement 
with equal spacing  
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r3 r4

y
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    (61) 
where r1, r2, r3, and r4 can be expressed as 

2 2
1 5( / 2) ,r x d y    2 2

2 6( / 2) ,r x y d    

2 2
3 5( / 2) ,r x d y    2 2

4 6( / 2) .r x y d    

 
Eq. (61) is the analytical solution to a steady- 

state temperature field of four freezing pipes in a 
rhombus arrangement in an infinite plane. 

A visualized figure of the temperature field 
drawn according to the results of the analytical solu-
tion, Eq. (61), is shown in Fig. 19. The steady-state 
numerical calculation method was again applied to 
verify the analytical solution, under the following 
particular conditions: d5=1.0 m, d6=0.8 m. The other 
parameters were the same as in Sections 5.3 to 5.5. 
According to the relationship of heat flow among four 
freezing pipes, the temperature fields of main sections 
1 and 3, and of intersections 1 and 2 in Fig. 18 are the 
same. An isothermal diagram of the steady-state nu-
merical solution when ξ=1.0 m is shown in Fig. 20. A 
comparison of results from the analytical formula and 
numerical simulation of the main section 1 is shown 
in Fig. 21. A comparison of results from the analytical 
formula and numerical simulation of intersection 1 is 
shown in Fig. 22. 

From Figs. 21 and 22, we find that the results 
calculated by the two methods coincide, which shows 
the analytical solution, Eq. (61), is precise enough. 
Comparisons of the two methods applied to the other 
main sections and intersections in Fig. 18 are not 
covered here. 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 19  Temperature field calculated by the analytical
formula for four freezing pipes in a rhombus arrangement

Fig. 18  Four freezing pipes laid in a rhombus arrange-
ment 

r1 r3r4

ξ

d5

d6

d

y

x

section 1
main

section 2
main

section 3

intersection 1 intersection 2

boundary of frozen soil

main

M(x,  y)

P1 (-d5/2,  0) P3 (d5/2,  0)

P2 (0, d6/2)

P4 (0, -d6/2)

r2

Fig. 21  Comparison of results from applying the analyti-
cal formula and numerical simulation to the main section
1 in Fig. 18 

Fig. 20  Isothermal diagram calculated by numerical sim-
ulation for four freezing pipes in a rhombus arrangement
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6.4  Temperature field of four freezing pipes in a 
rectangle arrangement 

When four freezing pipes are laid in a rectangle 
arrangement, for convenience of derivation, we put 
one pipe into each of the four quadrants (Fig. 23). 
According to the geometrical properties of rectangles, 
we see that d1=d3, d2=d4, and d5=d6, and d1, d2, and d5 

are satisfied by the expression d5
2=d1

2+d2
2. In addi-

tion, we use d1 to stand for d3, d2 to stand for d4, and d5 
to stand for d6. 

With four freezing pipes arranged in this form, 
the coordinates of the conditional point at the 
boundary of the frozen soil are changed to (0, d2/2+ξ), 
and the coordinates of arbitrary points on the surface 
of each pipe are changed to (−d1/2+r0, d2/2), (d1/2−r0, 
d2/2), (d1/2−r0, −d2/2), and (−d1/2+r0, −d2/2), respec-
tively. Eqs. (49)–(51) can be simplified as λ1=λ2 
=λ3=1. We arrive at 
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(62) 

where r1, r2, r3, and r4 can be expressed as 

2 2
1 1 2( / 2) ( / 2) ,r x d y d   

2 2
2 1 2( / 2) ( / 2) ,r x d y d     

2 2
3 1 2( / 2) ( / 2) ,r x d y d     

2 2
4 1 2( / 2) ( / 2) .r x d y d     

Eq. (62) is the analytical solution of a steady- 
state temperature field of four freezing pipes in a 
rectangle arrangement in an infinite plane. 

A visualized figure of the temperature field drawn 
according to the results from the analytical solution, 
Eq. (62), is shown in Fig. 24. The steady-state numer-
ical calculation method was again applied to verify the 
analytical solution, under the following particular 
conditions: d1=0.6 m, d2=0.8 m. The other parameters 
were the same as in Sections 5.3–5.5 and Section 6.3. 
According to the relationship of heat flow among four 
freezing pipes, the temperature fields of main sections 
1 and 2 in Fig. 23 are the same. An isothermal diagram 
of the steady-state numerical solution when ξ=1.0 m is 
shown in Fig. 25. A comparison of results from the 
analytical formula and numerical simulation of the 
main section 1 is shown in Fig. 26. A comparison of 
results from the analytical formula and numerical 
simulation of the intersection is shown in Fig. 27. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 23  Four freezing pipes laid in a rectangle arrangement

P4 (-d1/2, -d2/2)

d1

d2
d5

r1

r2

r3

r4

y

x

ξ

boundary of frozen soil
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intersection

M(x, y)

P1 (-d1/2, d2/2)

P3 (d1/2, -d2/2)

P2 (d1/2, d2/2)

Fig. 24  Temperature field calculated by the analytical
formula for four freezing pipes laid in a rectangle ar-
rangement 

Fig. 22  Comparison of results from applying the analyti-
cal formula and numerical simulation to intersection 1 in
Fig. 18 
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From Figs. 26 and 27, we find that the results 
calculated by the two methods coincide, which shows 
the analytical solution, Eq. (62), is precise enough. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7  Conclusions 
 

A method for deriving an analytical solution to 
the steady-state temperature field frozen by multiple 
freezing pipes has been found. The method is based 
on potential superposition theory. Using this method, 
solutions to the steady-state temperature field pro-
duced by one-, two-, three-, and four-piped freezing 
are presented. The results calculated by the analytical 
solutions are precise enough in comparison with those 
obtained by numerical simulation. Concerning the 
method, some conclusions can be drawn as follows: 

1. The freezing pipe can be simplified to a point 
source, i.e., a cold source or heat sink, located at the 
center of the pipe. The potential field formed by the 
point source is governed by the Laplace equation, 
whose solution is the potential function.  

2. In the case of multiple-pipe freezing, potential 
superposition theory can be applied to derive an an-
alytical solution to the steady-state temperature field. 
The essence of the method is that the heat potential at 
an arbitrary point is equal to superposition of the heat 
potentials which are caused by the cold sources of 
each freezing pipe separately at this point. The heat 
flux to each pipe depends on the arrangement of all 
the pipes and the final solution is determined ac-
cording the boundary conditions. 

3. Simplifying a freezing pipe to a point source 
leads to certain errors in the solutions. However, the 
errors occur only within tiny areas around the pipes 
and are small enough to meet engineering accuracy 
requirements. 

Using the method developed in this paper, we 
obtained analytical solutions to steady-state temper-
ature fields of frequently used layouts of freezing 
pipes, such as two, three or four pipes arranged at 
random. In particular, solutions were derived for 
some specific arrangements of freezing pipes that are 
more commonly applied in AGF projects, such as 
three pipes in a linear arrangement with equal or un-
equal spacing, right and isosceles triangle arrange-
ments, four pipes in a linear arrangement with equal 
spacing, and rhombus and rectangle arrangements. 
Theoretically, this method can serve as a universal 
method to solve the steady-state temperature field for 
any complicated layouts of freezing pipes. 

Fig. 25  Isothermal diagram calculated by numerical sim-
ulation for four freezing pipes laid in a rectangle
arrangement 

Fig. 27  Comparison of results from applying the analyt-
ical formula and numerical simulation to the intersection
in Fig. 23 

Fig. 26  Comparison of results from applying the analyti-
cal formula and numerical simulation to the main section
1 in Fig. 23 
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中文概要 
 

题 目：少量管冻结稳态温度场数学模型 

目 的：少量任意布置冻结管冻结的稳态温度场无解析

解。建立任意布置少量管冻结稳态温度场模型，

获得解析解，解决人工冻结温度场理论问题。 

创新点：1. 基于势函数叠加原理，确立人工地层冻结中少

量管冻结稳态温度场的通用求解方法；2. 建立任

意布置的 3 根和 4 根非等温冻结管下冻结稳态温

度场数学模型，获得其解析解通解及特解。 

方 法：1. 通过理论分析，将冻结管简化为热汇点源，确

定人工地层冻结热势的拉普拉斯方程表述；2. 应
用势函数叠加原理建立少量管冻结稳态温度场

的通用求解方法；3. 建立少量管冻结稳态温度场

的数学模型，通过理论推导获得温度场解析解；

4. 通过数值模拟，验证所提方法、数学模型和解

析解的正确性和准确性。 

结 论：1. 将冻结管简化为点源（热汇），其冻结形成的

热势场服从拉普拉斯方程，其解即为热势函数；

2. 多根冻结管冻结时，将单根冻结管的热势函数

叠加，由冻结管的位置决定每根冻结管的热流，

再根据边界条件定解。这一方法（即势函数叠加

法）可以用于任意布置冻结管冻结稳态温度场解

析解的求解；3. 将冻结管简化为点源导致获得的

解析解存在一定的误差，但误差仅发生在冻结管

附近极小的范围内，并且误差微小，完全满足工

程上的精度要求。 

关键词：人工地层冻结法；少量管冻结；稳态；温度场；

解析解；势函数 


