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Abstract:    This paper proposes a novel reliability-based sensitivity analysis (SA) method, namely relative convergence rate of 
random variables using particles swarm optimization (PSO). The convergence rate of a random variable during the optimum 
evolution process reflects the sensitivity of the objective function with respect to the random variables. An optimized group 
strategy is proposed to consider the fluctuation of the convergence rate of a variable during the optimum process. The coefficient 
of variation (COV) for candidate particles and the relative convergence rate of a random variable can be calculated using the 
particles in the optimized group. The smaller the COV for candidate particles, i.e., the larger the relative convergence rate, the 
more sensitive the objective function with respect to the variable. Three examples are available for the application of this method, 
and the results indicate that the sensitivity of the reliability index with respect to the variable obtained using the PSO technique 
and gradient of limit-state function is the same in the quantitative sense.  
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1  Introduction 
 

Safety is central to structural engineering 
(Elms, 1999). Structural reliability describes the lev-
el of structural safety. Structural reliability analysis 
usually involves many random variables, such as the 
geometry, the material properties of a structure, and 
the applied loads. Obviously, the contribution of dif-
ferent parameters to structural reliability is different; 
some are very important, whereas others may be in-

significant. Uncertainty in parameters should be tak-
en into account in the reliability analysis. The most 
probable point (MPP)-based reliability method is one 
of the most important first-order reliability methods 
(FORMs). MPP is a particular point in the design 
space that can be related (at least approximately) to 
the probability of a system failure, defined by a limit 
state. This point is often referred to as the most 
probable point or the design point which consists of 
a number of system parameters. Moreover, the time 
consumption in computing failure probability in-
creases rapidly with more variables. How to reduce 
the insignificant random variables and thus to im-
prove computational efficiency is one of the im-
portant issues in the sensitivity analysis (SA) of 
structural reliability. SA is advantageous in making 
consistent decisions about the relative significance of 
system parameters to reliability. SA has played a key 
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role in structural reliability design (Xiao et al., 
2011). The system parameters which are not sensi-
tive for reliability can be considered as constants and 
the randomness of those parameters can be neglect-
ed. Thus, the time consumption in reliability analysis 
can be significantly reduced. 

Great efforts have been made in the field of SA 
of structural reliability (Madsen, 1988; Bjerager and 
Krenk, 1989; Karamchandani and Cornell, 1992). 
Almost all studies are based on the gradient of the 
limit-state function. In certain cases the methods 
based on the gradient are not available or are compu-
tationally cumbersome, for example, the cases when 
the limit-state function is complicated or it is very 
difficult to obtain the derivative. Recently, there are 
many SA techniques that are available for multidis-
ciplinary analysis, in chemical engineering, envi-
ronmental sciences, and risk analysis (Du et al., 
2008; Xu and Gertner, 2008; Zhang and Huang, 
2010; Zhang et al., 2010; Chakraborty et al., 2012). 

In this study, particles swarm optimization 
(PSO) is employed to calculate the Hasofer-Lind 
reliability index. PSO is an evolutionary computa-
tion technique based on simulating social behaviors 
of flocks of birds and schools of fishes (Kennedy 
and Eberhart, 1995a; 1995b). As a relatively new 
member of the evolutionary algorithm family, PSO 
shares many similarities with other evolutionary 
computation techniques. PSO is a zero-order optimi-
zation algorithm which does not require the deriva-
tive of the objective function. PSO has been used to 
solve a range of optimization problems, such as neu-
ral network training and function minimization 
(Eberhart and Hu, 1999; Engelbrecht and Ismail, 
1999; Shi and Eberhart, 1999; van den Bergh and 
Engelbrecht, 2000). Elegbede (2005) used PSO to 
calculate the Hasofer-Lind reliability index which is 
the minimum distance from the origin to the limit-
state function in standard normal space (a con-
strained optimization problem). The study indicated 
that PSO can be considered as an additional efficient 
algorithm to those existing in the literature based on 
gradient methods which do not ensure the detection 
of the global optimum. 

This study demonstrates that the convergence 
rate of a random variable during the optimum 
evolution process using PSO reflects the sensitivity 
of the objective function with respect to that varia-

ble. The origin and specific algorithms of PSO are 
elaborated. Furthermore, a novel SA method, name-
ly, the relative convergence rate based on PSO, is 
proposed. The fluctuation of convergence rate of a 
variable during the optimum process is selected by a 
refined optimized group. Then, the detailed calcula-
tion process for the relative convergence rate method 
is illustrated. Finally, three examples are employed 
to verify the availability of the relative convergence 
rate method. 
 
 
2  Structural reliability and PSO 
 

A fundamental problem in structural reliability 
theory is the computation of the multi-fold probabil-
ity integral 
 

f ( ) 0
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where Pf is the probability of failure; X=[X1, X2, …, 
Xn]

T is a vector of random variables representing 

uncertain structural quantities; ( )f X  denotes the 

joint probability density function of X; g(X) is the 
performance function such that g(X)<0, g(X)=0, and 
g(X)>0 represent the failure state, the limit state, and 
the safe state of the structure system, respectively, 
and g(X)≤0 (the domain of integration) denotes the 
failure set. The difficulty in computing this probabil-
ity has led to the development of various approxima-
tion methods, of which the FORM is considered to 
be one of the most reliable computational methods 
(Zhao and Ono, 1999). 

In FORM, the Hasofer-Lind reliability index is 
extensively used in the structural reliability field and 
defined as the minimum distance from the origin to 
the limit-state surface in standard normal space. 
Therefore, the reliability analysis is transformed to a 
constrained optimization problem, that is  

 
1/2

2

1

1

Minimize    ,

Subject to    ( ) ( ( )) ( ) 0,

n

i
u

i

f u

g g F G





   
 
  


X U U

     (2) 

 
where ui is the particular instantiation of the corre-
sponding standard normal variables, U=F(X), F is 
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the transformation from the original space to stand-
ard normal space, and G(U) is the limit-state func-
tion in standard normal space. Three main transfor-
mation methods to solve Eq. (2) have been summa-
rized by Elegbede (2005). The solution u* of Eq. (2) 
is the MPP and enables the calculation of the relia-
bility index, βHL, as 

 
*

HL .  u                             (3) 

 

The Hasofer-Lind reliability index enables a 
first-order approximation of the reliability by the 
relationship of Pf≈Φ(−βHL), which becomes exact as 
Pf=Φ(−βHL) when the limit-state function is linear in 
standard normal space, where Φ is the standard nor-
mal distribution function. 

The PSO has been employed to solve con-
strained optimization problems successfully (Ray 
and Liew, 2001; Hu and Eberhart, 2002; Parsopoulos 
and Vrahatis, 2002; He and Wang, 2007; Zahara and 
Hu, 2008; Sun et al., 2011). Accordingly, numerous 
studies have been undertaken to implement PSO to 
solve actual civil engineering problems (Perez and 
Behdinan, 2007; Jansen and Perez, 2011; Khajehza-
deh et al., 2011). Therefore, PSO is employed to 
solve the constrained optimization problem and find 
the MPP in this study. The optimization procedure of 
PSO is initialized with a population of uniform ran-
dom candidate solutions which cover the entire 
search space, namely particles. Each particle has its 
own position and velocity, and a fitness value is as-
signed by the objective function. According to a few 
simple rules the population adaptively updates their 
positions and velocities to travel around the solution 
space, and then searches for optima iteratively. 
When a particle calculates its new position, two prior 
values are taken into account: the best position the 
particle itself has achieved so far, pid, and the global 
best position the population has obtained so far, pgd. 
The core concept of the PSO algorithm is: at each 
iteration step, changing the velocity of each particle 
utilizing the independently randomly weighted pid 
and pgd information, then updating the particles’ po-
sitions. Three features are involved in this algorithm: 
(1) particles are initialized with a population of uni-
form random solutions, (2) particles search for the 
optimum by updating generations, and (3) popula-
tion evolves based on previous generations. 

The update of the particles is accomplished by 
Eqs. (4) and (5) as 
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where the subscript d (d=1, 2, …, n) is the dimension 
of the solution space and subscript i (i=1, 2, …, N) 
denotes the ith particles in the swarm population (the 
size of the swarm population is N). Eq. (4) calculates 
a new velocity for each particle (potential solution) 
based on its previous velocity, Vid, the particle’s lo-
cation pid at which the best fitness has been achieved 
so far, and the population global location pgd at 
which the best fitness has been also achieved so far. 
Each particle’s position, xid, in the solution hyper-
space is updated by Eq. (5). The two uniform ran-
dom numbers within the range (0, 1), rand() and 
Rand(), are independently generated at each iteration, 
and c1 and c2 are learning factors which are positive. 
The use of the inertia weight, w, can provide im-
proved performance (Shi and Eberhart, 1998).  

To ensure the convergence of PSO, Eberhart 
and Shi (2000) proposed to multiply the right side of 
Eq. (4) by a constriction factor K: 
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where φ=c1+c2 (φ>4), and K is a function of c1 and c2 
as reflected in Eq. (7). Fig. 1 shows the typical pro-
cedure of PSO. For different optimization problems, 
the population size may be different. According to 
Eberhart and Shi (2000) and Elegbede (2005), the 
population size is selected to be 70, and the learning 
factors c1 and c2 are all set as 2.05 in this study. 

To solve constrained optimization problems, a 
preserving feasibility strategy, proposed by Hu and 
Eberhart (2002), is employed to deal with constraints, 
in which the following two modifications are made 
to the PSO algorithm: (1) all the particles only keep 
feasible solutions in their memory when updating the 
memories (pid and pgd), and (2) all the particles are 
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started with feasible solutions during the initializa-
tion process (Hu et al., 2003). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In a reliability analysis in civil engineering, 

since the origin in standard normal space is always 
in the safe domain, Eq. (2) can be written as 
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Eqs. (2) and (8) lead to equivalent solutions 
when the origin in standard normal space is in the 
safe domain. The initial particles are generated in a 
failure domain G(U)≤0 and all the particles keep 
only the feasible solutions in their memories when 
updating the memories (pid and pgd). This approach is 
relatively fast and simple compared with other con-
straint handling techniques. The fitness function and 
constraint are handled separately without complicat-
ed manipulation. This algorithm deals with the con-
straint by checking if a solution satisfies the  
constraint.  

In this study, the modified PSO with preserving 
feasible strategy is employed to solve constrained 
optimization problems. The sequence of successive 
population generations is usually stopped according 
to one of the following criteria: (1) when the mean 
fitness of the individuals in the population is larger 
than an assigned convergence value; (2) when the 
fitness of the best individual in the population ex-
ceeds an assigned convergence value (this criterion 

guarantees that at least one individual is good 
enough); (3) when the assigned number of popula-
tion generations is reached. 

 
 

3  Relative convergence rate 
 
Variance-based methods are those most often 

used for SA techniques. The main idea is to express 
the sensitivity through the variance, and to evaluate 
how the variance of such an input or a group of in-
puts contributes to the variance of the output (Hom-
ma and Saltelli, 1996; Jacques et al., 2006). Applica-
tions of SA are model calibration or model valida-
tion, and the decision making process, where they 
are generally useful for knowing which variables 
contribute most to the output variability. Inspired by 
variance-based SA methods, the COVs for candidate 
particles of random variables in PSO solution space 
are used as the measurement of relative sensitivity. 
During the optimization process, it is observed that 
the convergence rates of various random variables 
are different. This phenomenon implies that it has 
the potential to obtain the relative sensitivity be-
tween various random variables. The smaller the 
COV for the candidate particles of a variable, the 
more sensitive the fitness function with respect to 
this variable. Because PSO is a stochastic global op-
timization algorithm, the convergence rates of vari-
ous variables may fluctuate during the optimization 
process. To solve this problem, the COVs for the 
candidate particles of the random variables in PSO 
solution space are obtained in an optimized group, 
rather than in each population. The procedure for 
obtaining the COVs for candidate particles is depict-
ed in detail as follows. 

An optimized group is a set of particles with 
relatively better fitness values, and these particles are 
selected from successive S generations. Suppose that 
the size of the swarm population is N and there are L 
particles in one optimized group. The product of S 
and N should be larger than L. The first successive S 
generations are employed to build the first optimized 
group Θ(1). For concision, four kinds of sets are de-
fined here. 

(i) jX  is the set of the jth generation of the 

swarm population, and ,{  1, 2, , }j i jX x i N    

Fig. 1  Flow chart of PSO 
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with the ith particle { 1, 2, , }i idx x d n   . As 

mentioned above, d is the dimension of the solution 
space. 

(ii) Jj is the set of fitness values of jX , i.e., 

,{ ( )  1, 2, , },j i jJ f x i N    where ,( )i jf x  de-

notes the fitness function of the ith particle in the jth 
generation of the swarm population. 

(iii) Θ(l) is the set of the lth optimized group, 

and ( ) ( ){  1, 2, , }.l l
mx m L     

(iv) ( )lJ  is the set of fitness values of Θ(l), i.e., 
( ) ( ){ ( )  1, 2, , }.l l
Θ mJ f x m L    

For the union set of swarm population of the 

first successive S generations, 1 2 SX X X    

1,1 2,1 ,1 1,2 ,2 1, ,{ , , , , , , , , , , } ,N N S N S N Sx x x x x x x      

the corresponding set of the fitness values is 
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The set of the fitness values is sorted in ascend-
ing order, and thus 1 2 SJ J J   is rewritten as  
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The first optimized group Θ(1) can be built by 

picking the first L elements from (1) (1)
1 2{ , , ,x x   

(1) (1) (1)
1, , , }L L N S N Sx x x    as  

 

 (1) (1) (1) (1)
1 2, , , .L L

x x x                    (11) 

 

The corresponding fitness value set (1)J  is 
 

 (1) (1) (1) (1)
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J f x f x f x            (12) 

 

The COVs for the L particles of the n variables 
in Θ(1) can be calculated as  

(1) (1) (1) 2 (1)
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where (1)
dx  (d=1, 2, …, n) is the mean value of the 

candidate particles of the dth variable in the opti-
mized group. 

Next, the particle population moves to the 
(S+1)th generation, and N new particles are obtained. 
The second optimized group Θ(2) can be built 

through the union set (1) (1) (1)
1 1 2{ , , ,SX x x     

(1)
1, 1 2, 1 , 1, , , , }L S S N S L Nx x x x    . The fitness value set 

of (1)
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In the same way, the ascending sorted set 

(1)
1SJ J   can be written as 
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Similarly, the elements in set (1)
1SX   are 

correspondingly rearranged according to the order of 
their counterpart fitness values in the sorted union 

set (1)
1SJ J  . The rearranged set (1)

1SX   can be 

written as (1) (2) (2) (2)
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its first L elements are picked to build the second 

optimized group  (2) (2) (2) (2)
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x x x    The 

COVs of the n variables of the L particles in Θ(2), 
)2(

d , can be calculated using Eq. (13), with only the 

superscript (1) replaced by (2). 
When the particle population evolves to the 

(S+l−1)th generation, the lth optimized group Θ(l) is 
then built based on the union set of the optimized 

group Θ(l-1) and N  new particles 1S lX   : 
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The fitness value set of ( 1)
1

l
S lX 
   can be 

written as 
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Finally, the elements in set ( 1)
1

l
S lX 
   are 

rearranged as the same order of their counterpart 

fitness values in the sorted set ( 1)
1

l
S lJ J


   and its 

first L elements are picked to fill in the lth optimized 

group  ( ) ( ) ( ) ( )
1 2, , , .l l l l

L L
x x x    The COV for can-

didate particles of the n variables in Θ(l) can be de-
fined by 
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The construction process for the optimized 
group is continuously repeated until the optimization 
criterion is satisfied and the optimal solution is ob-

tained. Meanwhile, a series of COVs (1) (2), , ,d d    
final
d  for candidate particles are obtained, where 
final
d  is the COV for candidate particles of the dth 

random variable in the last generation. For the first L 
particles with the best fitness values are selected to 
construct the optimized group, COV curves for can-
didate particles converge consistently in the solution 
hyperspace. 

The relative convergence rate which is used to 
evaluate the sensitivity of the limit-state function 
with respect to random variables is defined as 
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where ηd is the relative convergence rate of the dth 
random variable at the design point. 

Therefore, the relative sensitivity of the objec-
tive function with respect to random variables can be 
obtained by the PSO technique. This method can not 
only be used in structural reliability analysis but also 
in other optimization analyses. 

 
 

4  Numerical studies 
 
Three examples are used to demonstrate the 

methodology of SA using the PSO technique. The 
first example is a numerical example with strong 
nonlinearity to illustrate the effectiveness and feasi-
bility of PSO in the reliability solution and SA. Fi-
nally, two practical examples are adopted in this 
study to illustrate the feasibility of the proposed rela-
tive convergence rate. 

4.1  Example 1 

The limit-state function is 
 

 
1 2 3 4 5 6

1 2 3 4 5 6 5

( , , , , , )

 2.5 / (1 ) log ( ) / ,

g X X X X X X

X X X X X X X   
 (21) 

 

where Xi (i=1, 2, …, 6) are six independent normal 
random variables. It can be seen that the limit-state 
surface is a nonlinear function. The mean and COV 
of the random variables are listed in Table 1. The 
MPP and reliability index obtained using PSO are 
listed in Table 2, where x* is the corresponding MPP 
in the original space, and there are approximately 
4.84×104 evaluation function calls by PSO. The reli-
ability index simulated by the directional Monte Car-
lo sampling (MCS) method with 2×106 samples is 
2.497 (vs. 2.439 from PSO) and there are 2×106 
evaluation function calls. Therefore, the PSO tech-
nique is more efficient in obtaining results with good 
accuracy. 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Means and COVs of random variables in 
example 1 

Random variable Mean COV 

X1 1.000 0.10 

X2 0.396 0.25 

X3 1.190 0.15 

X4 168.000 0.05 

X5 3.720 0.05 

X6 0.350 0.20 
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The minimum, average, and maximum values 
of fitness in each generation are shown in Fig. 2. It 
can be seen that the minimum value of fitness of the 
objective function converges with good accuracy 
after several generations, and then the average and 
maximum values of the fitness converge to the same 
value in succession as the generations increase. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
During the optimization process, it is observed 

that the convergence rates of the various random 
variables are different. In this example, there are six 
variables in each particle. u2 and u3 are selected to 
describe the convergence process. Only 10 popula-
tions are selected in the solution hyperspace to find 
the design point. u2 and u3 are randomly generated at 
an interval of (−5, 5) in standard normal space with 
feasible solutions at the beginning. After several it-
erations, the particles converge at the MPP. The po-
sitions of particles in the u2-u3 plane are shown in 
Fig. 3, in which the symbols of triangle, ring, and 
“+” denote the positions of all particles in their ini-
tial state, the 30th generation, and MPP, respectively. 
It can be observed that the range of u2 between the 
two broken lines is much less than that of u3 between 
the two dotted lines in the 30th generation. In other 

words, the particles move more rapidly in the dimen-
sion of the random variable u2 compared with that of 
u3, implying that the variable u2 is more sensitive 
than u3 to the objective function. 

The convergence curves of COV for candidate 
particles of random variables during the optimization 
process are shown in Fig. 4. It can be seen that the 
COV for candidate particles of random variables 
begin to converge after the 10th generation. Differ-
ent random variables stabilize to their final best val-
ues at different times in accordance with their sensi-
tivity. Variable u2 converges at the MPP with the 
fastest rate. As a result, the COV for candidate parti-
cles tends towards zero. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

For comparison, the method of the sensitivity 
coefficient based on the gradient of the limit-state 
function in standard normal space is also given here. 
Usually, it is defined as 

Table 2  Results of example 1 calculated by PSO 

MPP 
Reliability index, β 

PSO MCS 

u*=(0.8224, 1.5917, −0.7743, 
0.4355, −0.4296, 1.3286), 

x*=(1.0822, 0.5536, 1.0518, 
171.6585, 3.6401, 0.4430) 

2.439 2.497 
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Fig. 3  Diagrammatic sketch of relative positions of all 
particles in the u2-u3 plane 
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Fig. 2  Convergence history of the minimum, average,
and maximum fitness in each generation (example 1) 
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*
HL .d
du

 

 u

                           (22) 

 
Substituting Eq. (3) into Eq. (22) gives  

 
*

*THL

HL

1
.

d du u




 


 
u

u                       (23) 

 

Considering that G(u*+du*) approximately 
equals zero, and (u*+du*) and G(u*+du*) are mutual-
ly orthogonal, Eq. (23) is simplified as (Karamchan-
dani and Cornell, 1992) 

 
*

HL
*

1 ( )
,

( )d d

G

u uG

 
 

 
u

u
                  (24) 

.
du

 
   

 
                             (25) 

 

Relative convergence rates and sensitivity coef-
ficients of the random variables are shown in Fig. 5. 
The comparison indicates that the sensitivity of the 
variables obtained using PSO and the gradient of 
limit-state function are almost the same in the quan-
titative sense. u2 is the most sensitive variable, 
whereas u5 is the most insensitive variable. The re-
sults indicate that the proposed relative convergence 
rate can be used as a sensitivity measurement. The 
proposed relative convergence rate can directly ob-
tain the sensitivity of variables by simple algebraic 
operation from the COV for the candidate particles 
in the optimized group without using the gradient or 
derivative information of the objective function dur-
ing the optimization process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2  Example 2 

Next, the behavior of a tower of a cable-stayed 
bridge along the longitudinal direction is employed 
as a numerical example in this study (Shen and Gao, 
1994). The schematic model of the tower is shown in 
Fig. 6. A coupled axial force and moment are ap-
plied to the tower. Consequently, the limit-state 
equation of the bridge tower’s bending resistance is 
expressed as 

 
2( / ) 0,g M Pe W h l e Ql                 (26) 

 
where l is the height of the resultant force of the stay 
cables in one cable-plane, h is the height of the cen-
ter of gravity of the tower and h=0.4H, H is the 
height of the bridge tower, P and Q are the vertical 
and horizontal components of the forces of all stay 
cables, respectively, W denotes the deadweight of 
the bridge tower, M is defined as the moment re-
sistance of a section at the bridge tower foot, and e is 
the eccentricity which can be obtained by 

 
3

2
,

2
3 1

5

Ql
e

Pl
EI

EI


 
 

 

                       (27) 

 
where E is the elastic modulus of the bridge tower, 
and I is the equivalent inertia moment of the variable 
cross-section of the bridge tower. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Additionally, vehicle loads and temperature 
variation may lead to lateral deformation of the tow-
er, and additional moment is added to the section at 

Fig. 6  Schematic model of the tower of a cable-stayed 
bridge along longitudinal direction 
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Fig. 5  SA based on the PSO and the gradient of limit-
state function (example 1) 
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the foot of the tower. Here, the additional moment is 
equivalent to an additive horizontal force, i.e., Q is 
replaced by Q′, and thus Eq. (26) is rewritten as 

 
3 2

2 2
,

2 2
3 1 3 1

5 5

PQ l WQ lh
g M Q l

Pl Pl
EI EI

EI EI

 
   

   
    

   

 (28) 

 
where Q′ is the total equivalent horizontal force. 

The parameters of a tower of the Brotonne 
Bridge constructed in France in 1977 are used here 
(Girmscheid, 1987; Shen and Gao, 1994), i.e., H= 
70.5 m, l=47.4 m, W=1170 kN, and h=0.4H=28.2 m. 
I, E, P, Q′, and M are considered as random variables 
and denoted by X1, X2, X3, X4, and X5, respectively. 
The random variables are mutually independent. Fi-
nally, the limit-state function is 
 

1 2 3 4 5

3
3 4

5 2
1 2 3

2
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42
1 2 3

( , , , , )

5

3(5 2 )

5
     .

3(5 2 )

g X X X X X

X X l
X

X X X l

WX lh
X l

X X X l

 


 


               (29) 

 
The distribution types, means, and COVs of 

random variables are listed in Table 3. 
The minimum, average, and maximum values 

of fitness in each generation are shown in Fig. 7. The 
final results are listed in Table 4. The convergence 
curves of COV for candidate particles of random 
variables are shown in Fig. 8. Relative convergence 
rates and sensitivity coefficients of the random vari-
ables are then obtained using PSO and the gradient 
of limit-state function at MPP, respectively, as 
shown in Fig. 9. 

Results similar to those of the first example can 
be observed from Figs. 8 and 9. Additionally, it can 
be seen from Figs. 8 and 9 that the reliability indices 
with respect to random variables u1 (I), u2 (E), and u3 
(P) are very insensitive. If the three variables are 
fixed at their means and the initial particles of u4 (Q′) 
and u5 (M) are generated based on the former results, 
the reliability index β is equal to 3.502 which chang-
es only 0.2% from the result shown in Table 4.  
Simultaneously, there is a substantial increase in  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Distribution types, means, and COVs of the 
random variables in example 2 

Random 
variable 

Distribution 
type 

Mean COV

X1 Normal 17.6 m4 0.10 

X2 Lognormal 4×107 kN/m2 0.08 

X3 Normal 9.01×104 kN 0.10 

X4 Normal 2.12×103 kN 0.15 

X5 Normal 2.6×105 kN/m2 0.15 

Table 4  Final results of example 2 

MPP β Pf 

u*=(−0.1301, −0.1025, 0.1263, 
1.3789, −3.2043),  

x*=(17.3711, 3.9547×107, 
9.1238×104, 2.5585×103, 
1.3503×105) 

3.495 2.370×10−4
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Fig. 8  Convergence curves of COV for candidate parti-
cles of random variables during optimum process (exam-
ple 2) 
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computational efficiency. In fact, the three variables 
have almost no impact on the reliability index. How-
ever, u4 (Q′) and u5 (M) are much more sensitive to 
the objective function. As a consequence, these two 
variables have a dramatic influence on the reliability 
index. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3  Example 3 

The third example is a linear frame structure of 
12-storey and 3-bay as shown in Fig. 10. Different 
cross sectional areas Ai and horizontal load P are 
treated as independent random variables. The sec-
tional moments of inertia are expressed as Ii=αiAi

2 
(α1=α2=α3=0.08333, α4=0.2667, and α5=0.2) (Cheng 
and Xiao, 2005). The elastic modulus, E= 
2.0×107 kN/m2, is treated as deterministic. Element 
types are indicated in Fig. 10. Of interest is the prob-
ability that the horizontal displacement at node A (uA) 
exceeds the limit value [u]=H/500=0.096 m (H is the 
height of the 12-storey frame). A1, A2, A3, A4, A5, and 
P are denoted by X1, X2, X3, X4, X5, and X6, respec-
tively. Thus, the limit-state function is expressed as 

 

1 2 3 4 5 6

1 2 3 4 5 6

( , , , , , )

     0.096 ( , , , , , ).A

g X X X X X X

u X X X X X X 
       (30) 

 

Obviously, the limit-state function is implicit. 
The distribution types, means, and COVs of random 
variables are listed in Table 5. 

The final results are listed in Table 6. There are 
approximately 4.15×104 evaluation function calls 
and CPU time is about 5.32×102 s using PSO. The 

reliability index simulated by the directional Monte 
Carlo sampling method with 2×106 samples is 1.439 
(vs. 1.454 from PSO) and CPU time is about 
2.33×104 s for 2×106 evaluation function calls. Ob-
viously, the PSO technique is more efficient. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

The minimum, average, and maximum values 
of fitness in each generation are shown in Fig. 11. 
The convergence curves of COV for candidate  

Table 5  Distribution types, means, and COVs of the 
random variables in example 3 

Random  
variable 

Distribution  
type 

Mean COV

X1 Lognormal 0.25 m2 0.10 

X2 Lognormal 0.16 m2 0.10 

X3 Lognormal 0.36 m2 0.10 

X4 Lognormal 0.20 m2 0.10 

X5 Lognormal 0.15 m2 0.10 

X6 Gumbel 30 kN 0.25 

Table 6  Final results of example 3 

MPP 
β 

PSO MCS 

u*=(−0.2186, −0.0789, −0.1458, 
−0.3719, −0.1346, 1.3723),  

x*=(0.2434, 0.1580, 0.3530, 
0.1918, 0.1473, 40.7838) 

1.454 1.439 
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Fig. 9  SA based on the PSO and the gradient of limit-
state function (example 2) 

Fig. 10  Schematic model of 12-storey frame structure
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particles of random variables are shown in Fig. 12. 
Relative convergence rates and sensitivity coeffi-
cients of the random variables are then obtained us-
ing PSO and the gradient of limit-state function at 
MPP, respectively, as shown in Fig. 13. It can be 
seen that the load variable u6 (P) is the most sensi-
tive with respect to the objective function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As a matter of fact, PSO as a global optimiza-

tion technique offers advantages of simplicity in im-
plementation, ability to quickly converge to a rea-
sonably good solution, and robustness against local 
minima. Simultaneously, there are no extra evalua-
tion function calls for the proposed SA method dur-
ing the optimization process, and the COV for can-
didate particles of random variables in PSO solution 
space can be used as the measurement of relative 
sensitivity. The relative convergence rate of random 

variables is calculated by a simple algebraic opera-
tion from the COV for the candidate particles in the 
optimized group. The simulation studies involving 
solutions on the reliability index and SA confirm that 
the proposed approach is accurate and has a fast 
convergence rate. The results demonstrate that PSO 
offers a viable tool for reliability index calculation 
and SA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5  Conclusions 
 
A novel reliability-based SA method using PSO, 

namely the relative convergence rate, is proposed in 
this paper. The relative convergence rate of the ran-
dom variable during an evolution optimization pro-
cess is related to the sensitivity of the objective func-
tion with respect to the random variable. To avoid 
fluctuation of the convergence rate, an optimized 
group strategy is proposed to ensure that the COV 
curve for candidate particles converges consistently 
in the solution hyperspace. The convergence rate of a 
random variable is replaced by the COV for candi-
date particles. The COV for candidate particles of a 
variable is statistically operated on the selected op-
timized group for several generations and is regarded 
as the measurement of sensitivity of the variable. 
The smaller the COV for the candidate particles of a 
variable, the more sensitive the objective function 
with respect to that variable. Numerical studies indi-
cate that PSO is more efficient for reliability index 
calculation and SA, particularly in solving compli-
cated problems. 
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Fig. 12  Convergence curves of COV for candidate parti-
cles of random variables during optimum process (exam-
ple 3) 
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state function (example 3) 

0 10 20 30 40 50 60
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

 Maximum
 Average
 Minimum

 

Generation

F
itn

es
s

Fig. 11  Convergence history of the minimum, average,
and maximum fitness in each generation (example 3) 



Lan et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2016 17(12):961-973 972

References 
Bjerager, P., Krenk, S., 1989. Parametric sensitivity in first 

order reliability theory. Journal of Engineering Mechan-
ics, 115(7):1577-1582. 
http://dx.doi.org/10.1061/(ASCE)0733-9399(1989)115:7 
(1577) 

Chakraborty, S., Bhattacharjya, S., Haldar, A., 2012. Sensi-
tivity importance-based robust optimization of structures 
with incomplete probabilistic information. International 
Journal for Numerical Methods in Engineering, 90(10): 
1261-1277. 
http://dx.doi.org/10.1002/nme.3360 

Cheng, J., Xiao, R.C., 2005. Serviceability reliability analysis 
of cable-stayed bridges. Structural Engineering and Me-
chanics, 20(6):609-630. 
http://dx.doi.org/10.12989/sem.2005.20.6.609 

Du, X., Guo, J., Beeram, H., 2008. Sequential optimization 
and reliability assessment for multidisciplinary systems 
design. Structural and Multidisciplinary Optimization, 
35(2):117-130.  
http://dx.doi.org/10.1007/s00158-007-0121-7 

Eberhart, R.C., Hu, X., 1999. Human tremor analysis using 
particle swarm optimization. Proceedings of the IEEE 
Congress on Evolutionary Computation, Washington DC, 
USA, p.1927-1930. 

Eberhart, R.C., Shi, Y., 2000. Comparing inertia weights and 
constriction factors in particle swarm optimization. Pro-
ceedings of the Congress on Evolutionary Computation, 
La Jolla, CA, USA, p.84-88. 
http://dx.doi.org/10.1109/CEC.2000.870279 

Elegbede, C., 2005. Structural reliability assessment based on 
particles swarm optimization. Structural Safety, 27(2): 
171-186. 
http://dx.doi.org/10.1016/j.strusafe.2004.10.003 

Elms, D.G., 1999. Achieving structural safety: theoretical 
considerations. Structural Safety, 21(4):311-333. 
http://dx.doi.org/10.1016/S0167-4730(99)00027-2 

Engelbrecht, A.P., Ismail, A., 1999. Training product unit 
neural networks. Stability and Control: Theory and Ap-
plications, 2(1/2):59-74. 
http://dx.doi.org/10.1016/ j.engappai.2013.04.007 

Girmscheid, G., 1987. Statische und dynamische Berechnung 
von Schrägseilbrücken. Bautechnik, 64(10):340-347 (in 
German). 

He, Q., Wang, L., 2007. A hybrid particle swarm optimiza-
tion with a feasibility-based rule for constrained optimi-
zation. Applied Mathematics and Computation, 186(2): 
1407-1422. 
http://dx.doi.org/10.1016/j.amc.2006.07.134 

Homma, T., Saltelli, A., 1996. Importance measures in global 
sensitivity analysis of nonlinear models. Reliability En-
gineering & System Safety, 52(1):1-17.  
http://dx.doi.org/10.1016/0951-8320(96)00002-6 

Hu, X., Eberhart, R.C., 2002. Solving constrained nonlinear 

optimization problems with particle swarm optimization. 
Proceedings of the 6th World Multiconference on Sys-
temics Cybernetics and Informatics, Orlando, FL, USA, 
p.203-206. 

Hu, X., Eberhart, R.C., Shi, Y., 2003. Engineering optimiza-
tion with particle swarm. IEEE Swarm Intelligence 
Symposium, Indianapolis, IN, USA, p.193-197. 

Jacques, J., Lavergne, C., Devictor, N., 2006. Sensitivity 
analysis in presence of model uncertainty and correlated 
inputs. Reliability Engineering & System Safety, 91(10-
11):1126-1134. 
http://dx.doi.org/10.1016/j.ress.2005.11.047 

Jansen, P.W., Perez, R.E., 2011. Constrained structural design 
optimization via a parallel augmented Lagrangian parti-
cle swarm optimization approach. Computers and Struc-
tures, 89(13-14):1352-1366.  
http://dx.doi.org/10.1016/j.compstruc.2011.03.011 

Karamchandani, A., Cornell, C.A., 1992. Sensitivity estima-
tion within first and second order reliability methods. 
Structural Safety, 11(2):95-107.  
http://dx.doi.org/10.1016/0167-4730(92)90002-5 

Kennedy, J., Eberhart, R.C., 1995a. A new optimization using 
particle swarm. Proceedings of the 6th International 
Symposium on Micro Machine and Human Science, Na-
goya, Japan, p.39-43. 

Kennedy, J., Eberhart, R.C., 1995b. Particle swarm optimiza-
tion. Proceedings of the IEEE International Conference 
on Neural Network, Perth, Australia, p.1942-1948. 

Khajehzadeh, M., Taha, M.R., El-Shafie, A., et al., 2011. 
Modified particle swarm optimization for optimum de-
sign of spread footing and retaining wall. Journal of 
Zhejiang University-SCIENCE A (Applied Physics & 
Engineering), 12(6):415-427.  
http://dx.doi.org/10.1631/jzus.A1000252 

Madsen, H.O., 1988. Omission sensitivity factors. Structural 
Safety, 5(1):35-45.  
http://dx.doi.org/10.1016/0167-4730(88)90004-5 

Parsopoulos, K.E., Vrahatis, M.N., 2002. Particle swarm 
optimization method for constrained optimization prob-
lems. Proceeding of the Euro-International Symposium 
on Computational Intelligence, Košice, Slovakia, p.214-
220. 

Perez, R.E., Behdinan, K., 2007. Particle swarm approach for 
structural design optimization. Computers and Struc-
tures, 85(19-20):1579-1588.  
http://dx.doi.org/10.1016/j.compstruc.2006.10.013 

Ray, T., Liew, K.M., 2001. A swarm with an effective infor-
mation sharing mechanism for unconstrained and con-
strained single objective optimization problem. Proceed-
ings of IEEE Congress on Evolutionary Computation, 
Seoul, Korea, p.75-80. 
http://dx.doi.org/10.1109/CEC.2001.934373 

Shen, H.S., Gao, F., 1994. Reliability analysis of cable-stayed 
bridge towers. China Journal of Highway and Transport, 



Lan et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2016 17(12):961-973 973

7(4):40-43 (in Chinese). 
Shi, Y., Eberhart, R.C., 1998. A modified particle swarm 

optimizer. Proceedings of IEEE International Confer-
ence on Evolutionary Computation, Anchorage, Alaska, 
USA, p.69-73. 
http://dx.doi.org/10.1109/ICEC.1998.699146 

Shi, Y., Eberhart, R.C., 1999. Empirical study of particle 
swarm optimization. Proceedings of Congress on Evolu-
tionary Computation, Washington DC, USA, p.1945-
1950. 
http://dx.doi.org/10.1109/CEC.1999.785511 

Sun, C.L., Zeng, J.C., Pan, J.S., 2011. An improved vector 
particle swarm optimization for constrained optimization 
problems. Information Science, 181(6):1153-1163.  
http://dx.doi.org/10.1016/j.ins.2010.11.033 

van den Bergh, F., Engelbrecht, A.P., 2000. Cooperative 
learning in neural networks using particle swarm opti-
mizers. South African Computer Journal, 26:84-90. 

Xiao, N.C., Huang, H.Z., Wang, Z.H., et al., 2011. Reliability 
sensitivity analysis for structural systems in interval 
probability form. Structural and Multidisciplinary Opti-
mization, 44(5):691-705.  
http://dx.doi.org/10.1007/s00158-011-0652-9 

Xu, C., Gertner, G.Z., 2008. Uncertainty and sensitivity anal-
ysis for models with correlated parameters. Reliability 
Engineering & System Safety, 93(10):1563-1573. 
http://dx.doi.org/10.1016/j.ress.2007.06.003 

Zahara, E., Hu, C.H., 2008. Solving constrained optimization 
problems with hybrid particles swarm optimization. En-
gineering Optimization, 40(11):1031-1049.  
http://dx.doi.org/10.1080/03052150802265870 

Zhang, X., Huang, H.Z., 2010. Sequential optimization and 
reliability assessment for multidisciplinary design opti-
mization under aleatory and epistemic uncertainties. 
Structural and Multidisciplinary Optimization, 40(1-6): 
165-175.  
http://dx.doi.org/10.1007/s00158-008-0348-y 

Zhang, X., Huang, H.Z., Xu, H., 2010. Multidisciplinary de-
sign optimization with discrete and continuous variables 
of various uncertainties. Structural and Multidisciplinary 
Optimization, 42(4):605-618.  
http://dx.doi.org/10.1007/s00158-010-0513-y 

Zhao, Y.G., Ono, T., 1999. A general procedure for 
first/second-order reliability method (FORM/SORM). 
Structural Safety, 21(2):95-112.  
http://dx.doi.org/10.1016/S0167-4730(99)00008-9 

 
 

中文概要 
 

题 目：基于粒子群优化算法的结构可靠度敏感性分析

方法：相对收敛率 

目 的：采用粒子群优化算法（PSO）提高可靠指标计算

效率，探讨 PSO 求解过程中粒子群在不同维上

统计特性及其收敛速率表征的物理含义，研究

优化过程中粒子收敛速率与随机变量敏感性的

关系，提出可靠度敏感性分析新方法。 

创新点：1. 根据 PSO 寻优过程中粒子在不同维上收敛速

率不同，提出采用收敛速率表征随机变量的敏

感性；2. 建立最优化策略组避免粒子群收敛过

程中产生波动，保证最优化策略组内粒子在不

同维上连续收敛，定义相对收敛率表征随机变

量敏感性。 

方 法：1. 根据 Hasofer-Lind 可靠指标的几何意义，建立

可靠指标的优化模型，提出采用改进的 PSO 求

解可靠指标与验算点，采用可行策略方法处理

约束条件；2. 通过理论推导，构造 PSO 迭代过

程的最优评价函数集（公式（18）），建立最

优化策略组保证粒子在不同维上连续收敛，提

出表征随机变量敏感性的相对收敛率计算公式

（公式（19））；3. 通过数值模拟并与传统基

于梯度的敏感性分析计算结果比较，验证本文

所提方法的可行性和有效性。 

结 论：1. 相对收敛率可以表征随机变量的敏感性；

2. 最优化策略组避免相对收敛率的波动，保证

候选粒子变异系数曲线在解空间内连续收敛；

3. 最优化策略组内随机变量候选解的变异系数

越小则其表征的随机变量越敏感；4. 基于 PSO

的可靠度及敏感性分析对复杂问题更有效。 

关键词：敏感性分析；优化；结构可靠度；随机变量 

 
 
 
 


