
Wang et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2015 16(7):513-524 513

Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)

ISSN 1673-565X (Print); ISSN 1862-1775 (Online)

www.zju.edu.cn/jzus; www.springerlink.com

E-mail: jzus@zju.edu.cn

Arealistic resistance deterioration model for
time-dependent reliability analysis of aging bridges∗

Cao WANG†, Quan-wang LI†‡, A-ming ZOU, Long ZHANG
(Department of Civil Engineering, Tsinghua University, Beijing 100084, China)

†E-mail: wangcao12@mails.tsinghua.edu.cn; li_quanwang@tsinghua.edu.cn

Received Jan. 23, 2015; Revision accepted Apr. 27, 2015; Crosschecked June 12, 2015

Abstract: Bridge resistance and reliability may deteriorate with time due to aggressive environmental conditions
and increasing road freight volumes, resulting in an increase of potential economic loss. This is thus a great concern
to decision-makers managing the bridges’ continued future service. Reasonable models of bridge resistance and
applied loads are the fundamentals of accurate estimation/prediction of a bridge’s serviceability. In this paper, a
new model for resistance deterioration is proposed, which enables the non-increasing property and auto-correlation
in the stochastic deterioration process to be incorporated. To facilitate the practical application of the model,
methods to determine its parameters using obtained data on structural resistance are developed and illustrated
through simple numerical examples. Time-dependent reliability analysis is conducted using the proposed resistance
deterioration model based on Monte Carlo simulation, and the effect of auto-correlation in the deterioration process
on structural time-dependent reliability is investigated.

Key words: Time-dependent reliability, Aging bridges, Resistance deterioration, Auto-correlation, Deterioration
model

doi:10.1631/jzus.A1500018 Document code: A CLC number: U44

1 Introduction

Bridges may suffer from severe environmental
conditions and ever increasing traffic loads in ser-
vice. Such environmental and loading conditions
may cause changes in structural strength and stiff-
ness, impairing the bridge’s safety and serviceability
(Mori and Ellingwood, 1993; OBrien et al., 2014; Li
et al., 2015). As a result, it is often necessary to per-
form a serviceability assessment and/or maintenance
optimization regarding the safety of these bridges,
because the service reliability may eventually fall be-
low the acceptable level which would be specified for
new ones. In practice, uncertainties are associated
with structural properties and loading conditions. In
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such cases, reliability analysis is a widely-used tool
providing a rational criterion for the comparison of
the possible results of decisions taken considering
those uncertainties (Stewart and Val, 1999).

Many researchers have focused on the safety as-
sessment and damage assessment of aging bridges.
The methodology developed by Mori and Ellingwood
(1993) was one of the first attempts to assess time-
dependent reliability of aging structures considering
both the randomness of resistance and the stochas-
tic nature of load. This method was further used by
Ellingwood and Mori (1997) to help optimize main-
tenance measures for aging structures, and by En-
right and Frangopol (1998) to predict the service life
of deteriorating bridges. Akiyama et al. (2010) an-
alyzed the time-dependent structural reliability of
port structures taking the hazard associated with
airborne chlorides into account, in which random
variables related to observed information were up-
dated with the sequential Monte Carlo simulation.
Li et al. (2015) proposed an improved method for
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time-dependent reliability analysis of aging struc-
tures, which enables the non-stationarity in the load-
ing process to be incorporated. However, in these
researches, the resistance deterioration process has
been treated as fully-correlated, and is unable to ac-
count for the effects of auto-correlation. In reality,
the resistance deterioration process, without reha-
bilitation or other types of strengthening, is a non-
increasing process, and is neither statistically inde-
pendent nor fully correlated. The challenge then
arises in modeling the deterioration process real-
istically, consistent with the physics of resistance
deterioration.

This paper proposes a new model for the re-
alistic resistance deterioration process, whose pa-
rameters can be determined by regression analysis
of observed data of structural resistance. Methods
to calibrate these parameters are developed sepa-
rately for the resistance deterioration of an individ-
ual bridge and a type of bridges in similar service
conditions. The calibration methods are illus-
trated through simple numerical examples. Time-
dependent reliability analyses of an illustrative ag-
ing bridge, whose deterioration behavior is described
by the proposed deterioration model, are conducted
by Monte Carlo simulation, and the effects of auto-
correlation in the deterioration process on the esti-
mate of time-dependent reliability are investigated.

2 Resistance deterioration model

2.1 A review

The manner in which material properties of
components and systems vary with time essentially
affects the structural service life. Aging mechanisms
causing deterioration of concrete structures include
chemical or physical attack of either the cement-
paste matrix or aggregates (Clifton and Knab, 1989;
Ellingwood, 2005).

A frequently used model to describe the resis-
tance deterioration of aging structures with time is

R(t) = R0 · g(t), (1)

where R(t) is the resistance at time t, R0 is the ini-
tial resistance (a random variable), and g(t) is the
degradation function (a stochastic process).

The stochastic process model of deterioration
described by g(t) is non-stationary in nature. Most

models of structural deterioration that have been
used in previous time-dependent reliability analysis
of aging infrastructures rely on experimental labora-
tory data (Sun and Hong, 2002; Mohd et al., 2014;
Sharifi and Paik, 2014). Reliability analyses requir-
ing extrapolation beyond the range of limited exper-
imental data are actually problematic because the
service conditions might differ significantly from the
laboratory conditions (Ellingwood, 2005; Melchers,
2008; Saad-Eldeen et al., 2013). For example, a crit-
ical review of corrosion propagation models showed
that the existing models have significant discrepancy
in predicting the deteriorations of concrete struc-
tures and have not been validated in many cases
(Tarighat and Jalalifar, 2014). Reasonable dete-
rioration models should incorporate both the de-
terioration mechanisms and observed information,
because the mechanism determines the overall shape
of the deterioration function while the in-situ or ex-
perimental data may reduce the epistemic uncertain-
ties associated with the mechanism-based models.
However, note that the deterioration of structures is
a multifarious process, which may include multiple
deterioration mechanisms. In practice, the observed
data associated with structural resistance deteriora-
tion are often limited, with which it is difficult or
impossible to calibrate all the deterioration param-
eters associated with the multifarious deterioration
processes. The objective of this study is to develop a
realistic deterioration model for bridges’ resistance
deterioration focusing on the overall trend of the
deterioration reflected by the observed information,
which is capable of incorporating the observed infor-
mation once it becomes available.

For a fully correlated deterioration process, a
general model for the deterioration function, g(t),
takes the form of (Mori and Ellingwood, 1993)

g(t) = 1− a · tα, (2)

where a and α are parameters determining the dete-
rioration shape. Eq. (2), which represents a generic
deterioration process capturing the overall trend of
the deterioration mechanism, can be applied to the
cases of environmental attacks. The value of α is
determined according to the dominant deterioration
mechanism of interest, such as corrosion (α = 1),
sulfate attack (α = 2), and diffusion-controlled ag-
ing (α = 0.5). However, if the inspection data are
sufficient, the value of α should be determined by the
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observed data. Moreover, the deterioration model in
Eq. (2) may appear more realistic in some cases if it
includes an additive noise, ε(t), incorporating the un-
certainty associated with the deterioration process,
i.e.,

g(t) = 1− (a · tα + ε(t)), (3)

where ε(t) is an independent, stationary, and zero-
mean normal sequence. However, such a deteriora-
tion process in Eq. (3) implies that the resistance
may increase with time since ε(t) is possibly nega-
tive. Bhattacharya et al. (2008) proposed a model
for g(t) which incorporates a multiplicative noise
term ensuring that the resistance deterioration func-
tion is non-decreasing in time:

dg(t)

dt
=

{
0, t ≤ tinitial,

β(t− tinitial)
γexp(η(t)), t > tinitial,

(4)

dη(t)

dt
= −kη(t) +

√
Dξ(t), (5)

where tinitial is the time to activate the deteriora-
tion process; η(t) is the exponentiated noise item;
ξ(t) is the white noise; β and γ are random param-
eters independent of time, while k and D are con-
stants. This model allows the non-stationarity and
the auto-correlation in resistance deterioration pro-
cess involved. It is not difficult to generate a realiza-
tion for such a deteriorating process utilizing Monte
Carlo simulations when the parameters are deter-
mined. However, the calibration of the parameters
using observed data is quite challenging due to the
non-explicit form of the model. To give a realistic
and simple description for resistance deterioration,
the Gamma process has been considered by previous
studies (Dieulle et al., 2003; Saassouh et al., 2007; van
Noortwijk et al., 2007; Li et al., 2015), because such
a process describes a continuous stochastic process
with non-decreasing trajectories. However, these re-
searches mainly focus on the parametric studies for
the deterioration process; no effort has been made
on the calibration of the deterioration model param-
eters using obtained data. In this paper, a resistance
deterioration model for aging structures is proposed
in Section 2.2, which satisfies the physics of deteri-
oration and provides convenience for the calibration
of parameters, as will be seen in Section 3.

2.2 Proposed deterioration model

The resistance deterioration process, X(t) in
time, defined as R0 −R(t) , is a non-decreasing pro-
cess with independent increments assumed. With
this, a qualitative realization of R(t) is illustrated in
Fig. 1.

0 t1 t2 t3 ti tn

Initial resistance R0

Time

Deterioration: X(t)

R(t)

τ
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R
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e

Fig. 1 Stochastic processes of deterioration and loads.
Reprinted from (van Noortwijk et al., 2007) with
modification, Copyright 2006, with permission from
Elsevier

For the service period of interest, (0, T ], sup-
pose that a sequence of load effects, S1, S2, . . . , Sn,
occurs at times t1, t2, . . . , tn, and the duration of
each load event (τ) is short enough compared with
T (Fig. 1). The time sequence, {t1, t2, . . . , tn} in
ascending order, divides (0, T ] into n + 1 sections.
With the resistance deterioration function, g(t),
modeled as a Gamma process (an introduction to the
Gamma distribution and Gamma process is found in
Appendix A), the increment of deterioration dur-
ing time interval (ti−1, ti], Gi, is assumed statisti-
cally independent (Appendix A). Suppose that Gi

is Gamma distributed with scale parameter b and
shape parameter ai, Gi ∼ Ga(ai, b), i = 1, 2, . . . , n,
then the resistance at time tk, R(tk), is

R(tk) = R0 · g(tk) = R0 ·
(
1−

k∑
i=1

Gi

)
. (6)

Thus,

g(tk) = 1−
k∑

i=1

Gi, k = 1, 2, . . . , n. (7)

Eq. (6) generates a non-increasing process since

each Gi > 0. Note that Gi ∼ Ga(ai, b),
k∑

i=1

Gi ∼
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Ga(
k∑

i=1

ai, b), the mean value and variance of g(tk)

are determined respectively by

Mean[g(tk)] = 1− b ·
k∑

i=1

ai, (8)

Var[g(tk)] = b2 ·
k∑

i=1

ai, (9)

for k = 1, 2, . . . , n. It is seen from Eqs. (8) and
(9) that the mean value of g(tk) decreases with time
while the variance of g(tk) increases in time due to
the involvement of more uncertainties. In this paper,
ai and b are called deterioration parameters, and it
is assumed that the deterioration process is indepen-
dent of the initial resistance R0.

The deterioration parameters, ai and b, will be
determined using observed resistance data, as will be
discussed in Section 3. The effects of auto-correlation
in deterioration process will be discussed in
Section 5.

According to Eqs. (7) and (9), the coefficient of
correlation between g(ti) and g(tj), ρi,j , is given as

ρi,j =

√
Var[g(ti)]

Var[g(tj)]
=

√√√√√√√√

i∑
l=1

al

j∑
l=1

al

, ti < tj . (10)

Eq. (10) demonstrates that the proposed dete-
rioration model accounts for the auto-correlation in
the realistic deterioration process, and ρi,j decreases
as the time lag tj−ti increases and reaches zero when
the time lag is sufficiently long, which is consistent
with the physics of deterioration.

3 Determination of deterioration
parameters

3.1 Condition inspection and resistance eval-
uation of existing bridges

Practically, deterioration conditions of existing
bridges are assessed by in-situ inspection following
established standards or manuals (e.g., AASHTO,
2008; MOT, 2011). The inspection results provide
useful information to the resistance evaluation of the
bridge. For example, according to the Chinese code
“Specification for inspection and evaluation of load-
bearing capacity of highway bridges” (MOT, 2011),

the residential resistance of existing reinforced con-
crete girders, Rc, is estimated by

Rc = R(fd, ξcadc, ξsads) · Z1 · (1− ξe), (11)

where fd is the design strength of materials; ξc and
ξs are the section reduction coefficients of concrete
and steel bars; adc and ads are the geometry di-
mensions of concrete and steel, respectively; Z1 is
the comprehensive modification coefficient of bridge
load-bearing capacity; and ξe is the deterioration co-
efficient of load-bearing capacity. With Rc obtained,
the deterioration function at time tc, g(tc), is calcu-
lated as

g(tc) = Rc/R0, (12)

where tc is the survival age of the inspected bridge.
The initial resistance of the girder, R0, in Eq. (12)
may be calculated following the manuals or national
codes (e.g., MOT, 2004). For example, according to
the stress-block model, if the neutral axis is within
the flange, the initial bending moment capacity, R0,
can be expressed as

R0 = Asfy

(
d− 0.5

Asfy
0.85f ′

c · w
)
, (13)

where As is the area of reinforcing steels, fy is the
yielding strength of reinforcing steel, d is the depth
of girder, f ′

c is the compressive strength of concrete,
and w is the width of girder flange.

In practice, the bridge resistance is seldom eval-
uated during the service life partially because of the
relatively high cost required; as a result, available
resistance information for an existing bridge is lim-
ited. Recognizing this, two methods to calibrate the
deterioration parameters using limited resistance in-
formation are developed in this section. Method 1
is for an individual existing bridge whose resistance
is evaluated currently. Method 2 is for a type of
bridges in similar service conditions; the resistance
of these bridges follows a common deterioration func-
tion; some individual bridges of the type were evalu-
ated at different ages and these data are available.

3.2 Method 1

In Eq. (7), as indicated in Appendix A,
k∑

i=1

Gi ∼

Ga(
k∑

i=1

ai, b), where ai and b are unknown. The

choice of ai is mechanism-related, which determines
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the shape of the deterioration function referring to
Eq. (8). For example, if the deterioration is mainly
controlled by corrosion of reinforcement, the mean
value of the deterioration function is usually modeled
as linear with time (Mori and Ellingwood, 1993). In
this case, ai takes the form of

ai = κl(ti − ti−1), i = 1, 2, . . . , n, (14)

where κl is a parameter indicating the deterioration
rate. Substituting Eq. (14) into Eq. (8), we have

Mean[g(tk)] = 1− b · κl · tk. (15)

Eq. (15) implies that the mean value of resistance de-
teriorates linearly with time. Similarly, if the square
root model in Eq. (2) (α = 0.5) due to the mechanism
of diffusion-controlled aging, or the parabolic model
(α = 2) due to the mechanism of sulfate attack is
used, ai is in the form of

ai = κs(
√
ti −

√
ti−1), (16)

ai = κp(ti
2 − t2i−1), i = 1, 2, . . . , n, (17)

where κs and κp are deterioration rate parameters
similar to κl in Eq. (14).

A general form for Eqs. (14), (16), and (17) is

ai = κ(ti
α − tαi−1), i = 1, 2, . . . , n, (18)

where κ is a parameter indicating the deterioration
rate; α = 0.5, 1, or 2 corresponding to different de-
terioration mechanisms.

Now if the mean value and variance of g(t∗) at
time t∗ are known asm∗ and v∗, according to Eqs. (8)
and (9),

m∗ = 1− b · κ · (t∗)α, (19)

v∗ = b2 · κ · (t∗)α. (20)

Thus, the estimates of parameters b and κ, b̂ and κ̂,
are determined as

b̂ =
v∗

1−m∗ , (21)

κ̂ =
(1 −m∗)2

v∗ · (t∗)α . (22)

An illustrative application of Method 1 can be
found in Section 5.

3.3 Method 2

Different from Method 1 which aims at deter-
mining the deterioration function for an individual
bridge, Method 2 aims at determining a common de-
terioration function for a specific type of bridges in
similar service conditions.

Now suppose that the deterioration functions
(i.e., the ratio of residential resistance to initial
resistance) of p existing bridges in similar service
conditions, whose survival ages are t∗1, t

∗
2, . . . , t

∗
p (in

ascending order and in years) respectively, are ob-
tained as m1,m2, . . . ,mp. With Eqs. (8) and (18),
we have

1−mi = b · κ · (t∗i )α. (23)

Taking the logarithmic form for both sides of
Eq. (23),

ln(1−mi) = ln(b · κ) + αln(t∗i ), (24)

where i = 1, 2, . . . , p. The estimates of α and b · κ, α̂
and b̂ · κ̂ , can be obtained graphically in the coordi-
nates with the abscissa of ln(t∗i ) and the ordinate of
ln(1−mi). Using the “least squares method” (Spiegel
et al., 2009), α̂ equals the slope of the linearly fitted
curve ln(1 − mi) with respect to ln(t∗i ), while b̂ · κ̂
equals the intercept of the fitted line accordingly.

With α̂ and b̂ · κ̂, the estimated mean val-
ues of the deterioration function at time instants
t∗1, t

∗
2, . . . , t

∗
p can be obtained as m̂1, m̂2, . . . , m̂p.

Note that Eq. (9) implies that the variance of the
deterioration function increases with time in propor-
tion to tα. However, the limited data can not reflect
the change of variance of the deterioration function
with time since the number of samples corresponding
to each time instant is very few. Recognizing this,
this paper uses the average variance of the deteriora-

tion function, which is
1

p

p∑
i=1

(mi−m̂i)
2, to determine

the unknown parameters. With this, we have

b̂2 · κ̂ ·
p∑

k=1

(t∗k)
α =

p∑
i=1

(mi − m̂i)
2. (25)

Thus, b̂ and κ̂ are determined as

b̂ =

p∑
i=1

(mi − m̂i)
2

b̂ · κ̂ ·
p∑

k=1

tαk

, κ̂ =
b̂ · κ̂
b̂

. (26)
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As a widely-used indicator of goodness of fit es-
timate (Rousson and Goşoniu, 2007; Tellinghuisen
and Bolster, 2011), R2 is employed in this paper to
assess the fitting of mean deterioration value upon
the bridge’s survival age (t∗i , i = 1, 2, . . . , p), which
is defined as

R2 = 1−

p∑
i=1

(mi − m̂i)
2

p∑
i=1

(mi −m)2
, (27)

where m =
1

p

p∑
i=1

mi. A perfect fit yields R2 = 1.

For illustration purposes, suppose we obtained
the resistance data of some bridges at different ages,
i.e., 11 years, 12 years, ..., 25 years, and the val-
ues of the deterioration function at these ages were
calculated, as presented in Table 1.

Table 1 Observed values of deterioration function in
the illustrative example

t∗ (year) Mean[g(t∗)] t∗ (year) Mean[g(t∗)]

11 0.817 19 0.737
12 0.897 20 0.719
13 0.788 21 0.726
14 0.802 22 0.630
15 0.723 23 0.707
16 0.739 24 0.673
17 0.835 25 0.562
18 0.804

With the data obtained, first, α̂ and b̂ · κ̂ are
determined using the graphical method mentioned
above: α̂ = 1.0847 and b̂ · κ̂ = exp(−4.5216) =
0.0109, as shown in Fig. 2. b̂ and κ̂ are further de-
termined as 0.008645 and 1.2575, respectively, using
Eq. (26). With the deterioration parameters, α, b,
and κ determined as α̂, b̂, and κ̂, respectively, the
observed and estimated values of the deterioration
process are shown in Fig. 3. The variances associ-
ated with the calibrated deterioration function can
also be calculated by Eqs. (9) and (18) and are also
plotted in Fig. 3, where the coefficient of variance
(COV) is simply the ratio of standard deviation to
mean value. The value of R2 is calculated as 0.68 ac-
cording to Eq. (27) for Fig. 3, which is an indicator
of the model uncertainty, related to the uncertainties
associated with α̂ and b̂ · κ̂.

The coefficients of correlation ρi,j between g(ti)

and g(tj) are calculated according to Eq. (10) and are
presented in Fig. 4. ρi,j equals 1 when ti = tj and

Observed scattered points 

Fitted linear line
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−m
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Fig. 2 Determination of α̂ and b̂·κ̂ using the graphical
method
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Fig. 3 Estimated mean values and variances of the
deterioration function

decreases as the time lag, tj−ti, increases. Moreover,
ρi,j depends on both ti and tj , rather than the time
lag only.

ti=1 year

ti=5 years

0 5
0
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0.4
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0.9

10
tj−ti (year)

ρ i,j

15 20 25

Fig. 4 Coefficients of correlation associated with the
deterioration process

4 Time-dependent reliability analysis

Structural resistance, R, and applied load, S,
are random variables, and the margin of safety is

Z = R− S. (28)
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The structural failure probability, Pf , is defined as
the possibility that Z < 0. Correspondingly, the
reliability, Rel, equals 1− Pf .

Taking into account the time-variant properties
of R and S, let R(t) and S(t) denote the resistance
and applied load at time t (R(t) has been defined in
Eq. (1)), and the margin of safety at any time, t, is
then

Z(t) = R(t)− S(t). (29)

Under the assumption that R and S are statis-
tically independent, the instantaneous probability of
failure, Pf(t), is

Pf(t) = Pr[Z(t) < 0] =

∫ ∞

0

FR(x, t)fS(x, t)dx,

(30)
where Pr[ ] is the probability of the event in the
bracket, FR(x, t) is the cumulative density function
(CDF) of R(t), and fS(x, t) is the probability density
function (PDF) of S(t).

For the purpose of service life prediction and
reliability analysis, the probability of structural ex-
pected performance over the period of interest, say,
(0, T ], is of more importance than the snapshot of
the reliability (or the failure probability) expressed
in Eq. (30). The probability that a structure survives
over (0, T ], Rel(0, T ], is

Rel(0, T ] = Pr{R(τ) ≥ S(τ), ∀τ ∈ (0, T ]}. (31)

Significant load events occur randomly in time
with random intensities. Suppose that the load in-
tensity varies negligibly or slowly during the inter-
val in which it occurs, and there is no dynamic re-
sponse, its effect on the structure may be considered
as static, and for the purpose of reliability analysis,
the load intensity may be treated as constant dur-
ing the load event (Fig. 1). With these assumptions,
suppose that during interval (0, T ] n discrete statisti-
cally independent loads S1, S2, . . . , Sn occur at times
t1, t2, . . . , tn (The load events may be eventually cor-
related (Li and Wang, 2014). In this study, the
correlation in load events is ignored, i.e., the loads
are treated as statistically independent), then
Rel(0, T ] becomes

Rel(0, T ] = Pr{R(t1) > S1∩. . .∩R(tn) > Sn}. (32)

The discrete loading process can be modeled as a
stationary Poisson process, within which the occur-
ring time of each load event is uniformly distributed
in (0, T ] independently.

With Eq. (6), the time-dependent reliability in
Eq. (32) becomes

Rel(0, T ] = Pr

{
n⋂

k=1

[
R0 ·

(
1−

k∑
i=1

Gi

)
> S(tk)

]}
.

(33)
Because of the difficulty of solving Eq. (33) in

close form, the Monte Carlo simulation is performed
herein for structural time-dependent reliability anal-
ysis. To estimate Rel(0, T ], the procedure of each
simulation run is summarized as follows.

(1) Generate a sample of initial resistance, r0,
according to the PDF of R0, fR0(r).

(2) Since the number of load events during
(0, T ], N , is Poisson distributed, simulate a sam-
ple of N , n, and then generate n random variables
uniformly in (0, T ], t1 < t2 < . . . < tn.

(3) Knowing that Gi ∼ Ga(ai, b), generate G1,
G2,. . . , Gn independently for time intervals (0, t1],
(t1, t2], ..., (tn−1, tn].

(4) Corresponding to t1, t2, . . . , tn, simulate n

independent load effects, S(t1), S(t2), . . . , S(tn).
(5) If S(ti) does not exceed R(ti) for all i =

1, 2, . . . , n, then the structure is deemed to survive
during (0, T ].

Performing the above procedures for M times
(M = 1 000 000), if the structure survives for m

times, the time-dependent reliability, Rel(0, T ], is
then m/M .

5 Illustrative examples

With the proposed resistance deterioration
model, the effect of auto-correlation in the deteri-
oration process on time-dependent reliability is in-
vestigated in this section using several parametric
representations of resistance deterioration and load
process.

5.1 Models of resistance and loads

The probabilistic models of initial resistance and
load history of an existing bridge used in this para-
metric study are summarized in Table 2. The ini-
tial resistance, R0, is assumed to be lognormally
distributed with mean value of 1.15Rn (Rn is the
nominal or code-specified resistance) and COV of
0.15. This assumption is consistent with many ob-
servations in structural reliability analysis where un-
certainties in time-varying loads contribute a major
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Table 2 Statistical descriptions for structural resistance and loads

Resistance and load Mean COV Distribution Occurrence rate

Initial resistance 1.15Rn 0.15 Lognormal –
Dead load 1.05Dn 0 – –

Live load 1 (LL1) 0.5Ln 0.40 Extreme type I 1.0/year
Live load 2 (LL2) 0.6Ln 0.40 Extreme type I 1.0/year

portion of the overall uncertainties (Nowak, 1995;
Enright and Frangopol, 1998; Faber et al., 2000).
The dead load is equal to 1.05Dn (Dn is the nomi-
nal value), and its variability is assumed to have a
negligible impact on reliability in comparison with
the uncertainty in the time-varying live load. The
time-dependent reliabilities for the bridge’s service
periods up to 20 years are considered.

The loading process is assumed to be a
stationary Poisson process with occurrence rate λ

= 1.0/year (on average 1 load event occurs per
year). To illustrate the effect of load magnitude on
bridge reliability, two live load models are considered
(Table 2). Each live load follows the extreme type I
distribution with COV = 0.40.

The mean value of initial resistance is evalu-
ated according to the design requirement for concrete
structures in flexure (AASHTO, 2007):

1.0Rn = 1.25Dn + 1.75Ln. (34)

For the purpose of simplicity, it is assumed thatDn =

Ln = 1.0, from which Rn is obtained as 3.0 according
to Eq. (34).

5.2 Deterioration model

For the existing bridge, suppose the resistance
deterioration function at the end of 20 years, g(20),
is estimated to have a mean value of 0.7 and COV
of 0.30. Parameters b and κ in the deterioration
function (Eqs. (7) and (18)) can be determined using
Method 1 as follows.

For linear deterioration due to the mechanism of
corrosion (α = 1), parameters b and κ can be solved
from Eqs. (21) and (22) as b̂ = 0.147, κ̂ = 0.102.
For the cases of square root deterioration (α = 0.5),
b̂ = 0.147, κ̂ = 0.456, and for parabolic deterioration
(α = 2), b̂ = 0.147, κ̂ = 0.0051. Some illustra-
tive realizations of linear deterioration processes are
plotted in Fig. 5; the coefficients of correlation ρi,j
between g(ti) and g(tj) for the linear deterioration
are plotted in Fig. 6.
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CB: Mean[g(t)]
A: Mean[g(t)](1 + COV[g(t)])
C: Mean[g(t)](1 − COV[g(t)])
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Fig. 5 Samples of linear deterioration processes gen-
erated by Eq. (9)
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Fig. 6 Coefficients of correlation associated with
the resistance deterioration process for the illustra-
tive example

To investigate the effects of auto-correlation in
the deterioration process on the time-dependent re-
liability of structures, the case of fully correlated de-
terioration process is considered with the same mean
value and variation as the proposed one. Note that
for the proposed model, the mean value of the dete-
rioration function decreases with time in proportion
to tα and the variance increases with time in propor-
tion to tα, as seen from Eqs. (8), (9), and (18). Thus,
the mean value and variance of the fully correlated
deterioration function should also decrease/increase
linearly with tα. With this, the fabrication and sim-
ulation of the fully correlated deterioration process
can be found in Appendix B.
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5.3 Results

With the realistic resistance deterioration pro-
cess (the proposed one), the time-dependent reliabil-
ities for periods up to 20 years are obtained using
Monte Carlo simulation (Section 4) and are plotted
in Fig. 7. The ordinate of Fig. 7 is the probability of
failure, Pf(0, T ], defined as 1 − Rel(0, T ]. For com-
parison purposes, time-dependent reliabilities with
fully correlated deterioration processes are also ob-
tained by simulation (Appendix B) and are plotted in
Fig. 7.
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Fig. 7 Time-dependent reliabilities for periods up
to 20 years: (a) square root deterioration; (b) linear
deterioration; (c) parabolic deterioration

The effect of auto-correlation in the resistance
deterioration on time-dependent reliability is seen
through Fig. 7. In all cases, the failure probability

increases with time, which is characteristic of struc-
tural aging; Pf(0, T ] associated with live load 2 is
greater than that associated with live load 1 as ex-
pected. The probability of failure associated with
the fully correlated deterioration process is smaller
than that associated with the Gamma deterioration
process (the realistic one), indicating that structural
reliability may be overestimated when the deterio-
ration process is modeled as fully correlated (e.g.,
Eq. (2)). For example, for the parabolic deterioration
process, when live load 1 is considered, the failure
probability is 0.0209 for fully correlated resistance,
about 0.87 times that associated with the realistic
deterioration model. This observation is consistent
with that by Li et al. (2015). Further, it is observed
from Fig. 7 that at the early stages of the service
life where the failure probability is small, the failure
probability for the case of “LL1, realistic model” is
greater than that associated with the case of “LL2,
fully correlated model”, although the intensity of LL2
is greater than LL1, indicating that Pf(0, T ] is more
sensitive to the auto-correlation in the resistance de-
terioration process than the intensity of live loads.
However, as the service life becomes longer, the fail-
ure probability for the case of “LL2, fully correlated
model” becomes close to and even exceeds the fail-
ure probability for the case of “LL1, realistic model”,
implying that Pf(0, T ] becomes gradually more sen-
sitive to the live load intensity.

Moreover, the difference between the failure
probabilities associated with the fully correlated de-
terioration process and those associated with the re-
alistic one becomes smaller as the failure probability
increases. This can also been seen through Table 3,
where the ratios of failure probabilities associated
with the realistic deterioration model to those asso-
ciated with the fully correlated one are presented for
the case of linear deterioration. Therefore, it is con-
cluded that when the realistic deterioration model is
treated as fully correlated, it may result in a signifi-
cant overestimate for the time-dependent reliability
if the failure probability is small. This observation
can be explained conceptually as follows. For sim-
plicity, consider two extreme cases: (1) the resistance
R(t) is fully correlated and (2) the resistance R(t) is
statistically independent for different time instants.
Suppose that no resistance deterioration occurs (i.e.,
R(t) = R) during the considered time period and
two loads, S1 and S2, occur. With this, the failure
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probabilities for the two cases are determined respec-
tively as

Pf,1 = FR(max(S1, S2)), (35)

Pf,2 = 1− (1− FR(S1))(1 − FR(S2)), (36)

where FR(r) is the CDF of the resistance, R. Now if
S1 = S2 = S, then

Pf,2

Pf,1
= 2− FR(S). (37)

Table 3 Ratios of failure probabilities associated with
the realistic deterioration model to those associated
with the fully correlated one (the unit of T is year)

Load
Ratio of failure probabilities

T = 4 T = 8 T = 12 T = 16 T = 20

LL1 54.250 3.694 1.690 1.303 1.127
LL2 10.727 3.005 1.560 1.254 1.124

It is seen from Eq. (37) that Pf,2 is greater than
Pf,1 since 0 < FR(S) < 1, indicating that the fully-
correlated deterioration model results in an underes-
timate of failure probability. In addition, the ratio
of Pf,2 to Pf,1 decreases as FR(S) increases, implying
that the effect of auto-correlation in the deterioration
process on structural reliability becomes smaller as
the failure probability increases.

The comparison among Figs. 7a–7c shows that
the square root deterioration model generates the
greatest failure probability, followed by that associ-
ated with the linear model and the parabolic model.
This is because for the same g(20), the square root
model generates the lowest resistance for the con-
sidered periods up to 20 years while the parabolic
model generates the highest resistance. In addition,
the failure probability is sensitive to the choice of
deterioration type for the early stage of service life.
For example, for LL1, if a service period of 10 years
is considered, the failure probabilities, Pf (0, 10], are
0.0118, 0.0041, and 0.0008 for square root, linear,
and parabolic deterioration types, respectively, us-
ing the realistic deterioration model. However, the
failure probability becomes less sensitive to the dete-
rioration type as the service life becomes longer. For
example, Pf(0, 20] are found as 0.0361, 0.0299, and
0.0241 respectively for the three deterioration types
mentioned above.

6 Conclusions

A new model for a bridge’s resistance deteriora-
tion is presented in this paper for evaluating time-
dependent reliability of aging bridges, which enables
non-decreasing properties and auto-correlation in de-
terioration process to be incorporated. For the prac-
tical application of the proposed deterioration model,
calibration methods are developed to determine the
deterioration parameters for two cases: the dete-
rioration function of an individual bridge and the
common deterioration function of similar bridges in
similar service conditions. Numerical examples are
presented to illustrate the application of the realistic
model and the calibration methods. The proposed
deterioration model is then used in time-dependent
reliability analyses of an illustrative bridge, and the
effects of auto-correlation in the resistance deteriora-
tion process are investigated. It is found that if the
deterioration process is treated as fully correlated,
the failure probability will be underestimated, and
this underestimate may be significant if the failure
probability is small. In addition, the square root
deterioration process generates the lowest reliability
compared with that associated with the linear model
and the parabolic model. Time-dependent reliabil-
ity is sensitive to the choice of deterioration type at
the early stage of service life and becomes less sen-
sitive to the deterioration type as the service period
becomes longer.
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Appendix A

A random variable, X , has a Gamma distribu-
tion with shape parameter a > 0 and scale parameter
b > 0 if the PDF of X takes the form of

fX(x) =
(x/b)a−1

bΓ (a)
exp(−x/b), x ≥ 0, (A1)

where Γ () is the Gamma function. Such an X is
usually written as X ∼ Ga(a, b). The mean value
and variance of X are ab and ab2, respectively.

A very useful property for Gamma distribution
is that for two parameters X1 ∼ Ga(a1, b) and X2 ∼
Ga(a2, b), the sum of X1 and X2 also follows Gamma
distribution, i.e., X1 +X2 ∼ Ga(a1 + a2, b).

The Gamma process with shape function a(t) >

0 and scale parameter b > 0 is a continuous stochas-
tic process {X(t), t > 0} if satisfying the following
three properties:

(1) The probability that X(0) = 0 is 1;
(2) X(t) has independent increments;
(3) The increments in (2) also follow Gamma

distribution with the same scale parameter b.
With these, the mean value and variance of X(t)

are respectively:

Mean[X(t)] = a(t) · b, Var[X(t)] = a(t) · b2. (A2)

Appendix B

For comparison purposes, the mean value of the
fully correlated deterioration function, g(t), should
decrease linearly with tα while the variance of g(t)
should increase in proportion to tα. With this, g(t)
takes the form of

g(t) = 1− ξ · tα/2 +Mean[ξ] · (tα/2 − tα), (B1)

where the random variable ξ indicates the deterio-
ration rate. The mean value and variance of g(t) in
Eq. (B1) are

Mean[g(t)] = 1−Mean[ξ] · tα, (B2)

Var[g(t)] = Var[ξ] · tα. (B3)

It is easy to see that the mean value and variance of
g(t) in Eq. (B1) varies linearly with tα as expected.

The Monte Carlo simulation is employed in
this paper to analyze time-dependent reliabilities
with fully correlated deterioration processes. For
each simulation run, the procedure is summarized as
follows:

(1) Generate a sample of initial resistance, r0,
and then generate a Gamma distributed random
variable X with mean value of 0.3 and COV of 0.7;
set g(20) = 1−X ;

(2) Determine the value of ξ in Eq. (B1) with
sampled g(20). To do this, Mean[ξ] is firstly deter-
mined with Eq. (B2), and then ξ is obtained as

ξ =
1 +Mean[ξ] · (20α/2 − 20α)− g(20)

20α/2
; (B4)

(3) Simulate a sample of number of load events
N , n, and then generate n random variables uni-
formly in (0, T ], t1 < t2 < . . . < tn;

(4) The resistance at time ti, R(ti), is calculated
according to Eqs. (1) and (B1) for i = 1, 2, . . . , n;

(5) Corresponding to t1, t2, . . . , tn, simulate n

independent load effects, S(t1), S(t2), . . . , S(tn);
(6) If S(ti) does not exceed R(ti) for all i =

1, 2, . . . , n, then the structure is deemed to survive
during (0, T ].
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