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Abstract:    A nonlinear dynamic model of a two-span rotor system is constructed based on the Hamilton principle and the finite 
element method. The Musznyska model and the short bearing model are employed to describe the nonlinear seal force and oil-film 
force. The fourth-order Runge-Kutta method is used to calculate the numerical solutions. The bifurcation diagrams, time-history 
diagrams, phase trajectories, and Poincare maps are presented to analyze the dynamic behavior of the bearing center and the disk 
center in the horizontal direction. The numerical results indicate that the rotational speed, the nonlinear seal force, the oil-film 
force, and the stiffness of the coupling have a significant effect on the stability of the rotor system. The dynamic behavior of the 
two-span rotor system is more complicated when impacted by the nonlinear seal force and oil-film force. 
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1  Introduction 

 
The field of rotor dynamics is concerned with the 

research of dynamic and stability characteristics of 
rotating machinery, and it plays an important role in 
improving the safety and performance of the entire 
systems. The modeling of rotor systems and dynamic 
characteristics analysis are the fundamental research 
content in the field of rotor dynamics. The rotor 
system is usually supported by bearings and 
influenced by internal phenomena that rotor rotates 
around a single axis. Recently the multi-disk and 
multi-span rotor system is becoming an important 
field for rotor dynamics research (Chen, 2009). 

Many studies have been conducted on rotor 
modeling and dynamic characteristics analysis. The 
Muszynska model highlights the seal force nonlinear 

characteristics with clear physical meaning (Muszyn-
ska and Bently, 1990). Al-Nahwi et al. (2003) ana-
lyzed the principle and interaction of steam excitation 
on the Jeffcott rotor system combining it with the 
Moore-Greitzer flow field model. Luo et al. (2007) 
built a periodical time-variable high-dimensional 
dynamic rotor system based on the rotor’s finite el-
ement model and investigated the stability of the 
system. Cheng et al. (2008) studied the nonlinear 
dynamic behaviors of a rotor/bearing/seal coupled 
system with Muszynska’s seal forces and Capone’s 
oil-film forces. The influence of the rotation speed, 
seal clearance, and eccentricity of the rotor were an-
alyzed. de Castro et al. (2008) modeled a flexible 
rotor with a central disk under unbalanced excitation 
and validated a complete nonlinear solution to simu-
late the fluid-induced instability during run-up and 
run-down. Wang et al. (2009) established a nonlinear 
mathematical model for orbital motion of the rotor 
under the influence of leakage flow through an in-
terlocking seal and used the fourth-order Runge- 
Kutta method to solve it. Particular attention was  
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placed on the serpentine flow path by spatially sepa-
rating the aerodynamic force on the rotor surface into 
two parts, e.g., the seal clearance and the cavity 
volume (Wang et al., 2009). Okabe and Cavalca 
(2009) developed an analytical model of a tilting pad 
bearing based on the short bearing assumption with 
the turbulence effect included. They found that the 
bearing model with turbulent flow effect generated 
higher hydrodynamic forces when compared to the 
one without this effect, which highlights the im-
portance of considering such phenomenon during the 
analysis of high speed hydrodynamic bearings. Li et 
al. (2011a; 2011b) applied the Hamilton principle and 
the finite element method (FEM) to construct a novel 
nonlinear model of a rotor/bearing/seal system. The 
dynamic behavior of the system is illustrated by bi-
furcation diagrams, large Lyapunov exponents, phase 
trajectory diagrams, and Poincare maps. Li et al. 
(2012) presented the effects of journal misalignment 
on the transient flow of a finite grooved journal 
bearing using a new 3D computational fluid dynamics 
analysis method. Based on the FEM and the Lagrange 
equation, Zhou et al. (2014) proposed a novel non-
linear model of a double disc rotor-seal system, in-
cluding the coupled effects of the gravity force of the 
discs, Muszynska’s nonlinear seal fluid dynamic 
force, and the mass eccentricity of the discs. Other 
researchers focused on the dynamic analysis of rotor 
systems supported by gas bearings. Půst and Kozánek 
(2007) calculated the dynamic characteristics of 
bearings at different revolutions, which took into 
account the inertia properties of tilting pads. Ertas et 
al. (2010) tested a rotor system using a 70-mm diam-
eter damped gas bearing reaching ultra-high speeds of 
50 000 r/min and experimentally evaluated the ability 
of the damped gas bearing to withstand large rotor 
excursions. Rashidi et al. (2010a; 2010b) studied the 
preload effect on the behavior of a rigid rotor sup-
ported by gas-lubricated noncircular journal bearings. 
Results of this study revealed how the complex dy-
namic behavior of two types of noncircular bearing 
systems, comprising periodic, KT-periodic, and quasi- 
periodic responses of the rotor center, varies with 
changes in the preload value. 

While the above studies were very significant for 
the rotor design and improvement for academic re-
searches, they simplified the whole rotor/bearing/seal 

system as a rotor supported by two bearings without 
taking the concept of multi-rotor into consideration. 
The simplification of the traditional rotor/bearing/ 
seal system may lead to some errors in numerical 
simulation compared with the multi-rotor system, but 
it would be more difficult to analyze the dynamic 
orbits of all the geometric centers of rotors. 

Recently, the multi-disk and multi-span rotor 
systems have been the subject of study in the domain 
of rotor dynamics. Ding and Leung (2005) built a test 
rotor rig consisting of two flexibly coupled shafts, 
each supported at the ends by two hydrodynamic 
bearings. A mathematical model for the test rig was 
developed and the non-stationary processes of the 
system were analyzed numerically. Wu and Jing 
(2008) established a dynamic model for a two-span 
bearing-rotor system with nonlinear oil film that was 
close to a practical situation. The influence of the seal 
force in the model was not considered. The bifurca-
tion and chaos behaviors of the system under different 
work conditions were studied. Chang-Jian (2010) 
investigated the vibration characteristics of two rotors 
equipped with long journal bearings placed at both 
ends. Different cross sections, shaft lengths, bearing 
masses, and different bearing approximations were 
presented to analyze and discuss the differences of the 
dynamic responses. Luo et al. (2012) set up a non-
linear dynamic model of a two-span rotor bearing 
system with two cracks in the shafts and analyzed the 
characteristics of this system. Fei et al. (2013) dis-
cussed a typical structure with two rotor shafts and 
illustrated the procedure for obtaining the coupling 
motion equations of the subsystems using the FEM. 

In this paper, a dynamic model of a two-disk and 
two-span rotor/bearing/seal system is created based 
on the Hamilton principle and the FEM. The rotor 
system consists of two flexible coupled shafts, each of 
which is supported by two short journal bearings and 
attached with one disk. The motion equations of the 
rotor system were solved with the fourth-order 
Runge-Kutta method. The nonlinear dynamic be-
havior of this two-span flexible rotor system was 
analyzed by the bifurcation diagrams, time-history 
diagrams, phase trajectories, and Poincare maps. The 
numerical results indicate that rotational speed, the 
nonlinear seal force, and the oil-film force have an 
effect on the stability of the rotor system. 
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2  A nonlinear model of a rotor system based 
on the Hamilton principle and FEM 
 

The model of a two-span rotor system supported 
by four journal bearings is shown in Fig. 1. Two 
identical Jeffcott rotors are connected with a flexible 
coupler, each of which is supported by journal bear-
ings on both ends of the rotor. In the following de-
scription, the oil-film force model is established by 
the short bearing theory and the nonlinear seal force is 
described by the Muszynska model. The expressions 
of the kinetic energy and strain energy are derived by 
a projection angle method. In Fig. 1, d is the diameter 
of the shaft, bd and dd are the breadth and diameter of 
the disks, and L and lc are the length of one span rotor 
and coupling, respectively. 
 

 
 
 
 
 
 

 

 

2.1  Nonlinear oil-film force model 

The short bearing unsteady oil-film force model 
is 
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cient, μ is the sectional shear correction factor, Ω is the 
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2.2  Nonlinear seal force model 

The Muszynska model can be used to describe 
the nonlinear characteristic of a steam excitation force 
very well. The expression of this model can be de-
scribed as follows (Muszynska and Bently, 1990): 
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(3)

  
where Fsx and Fsy are the seal force in the x direction 
and y direction, respectively; Kf, Df, and τf are the 
nonlinear functions of the translation displacements x 
and y at the disk. They can be written as 
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where Ko, Do, and mf can be obtained from the Childs 
equation (Childs, 1983).  

Fig. 1  The physical model of a two-disk and two-span
rotor system 
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2.3  Finite element model of a rotor system 

The finite element model of a rotor system is 
established by applying the FEM as Fig. 2, where md 
is the disk mass. There are six nodes in total, which 
are distributed on the bearings, disks, and five shaft 
elements. The displacement vector of the shaft ele-
ment between nodes 1 and 2 can be written as  
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The translation displacements and rotation dis-

placements of a random point in the shaft element can 
be approximated as  
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where D is the rotation displacement shape function 
matrix, and N is the translation displacement shape 
function matrix. The expressions of Ni and Di ( i =1, 2, 
3, 4) can be found in (Zeng, 2004). 
 
 
 
 
 
 
 

 

2.4  Hamilton principle 

A general dynamic problem with N degrees of 
freedom should be expressed by N differential equa-
tions. By using the Hamilton principle, there is only 
one equation. This means that the Hamilton principle 
is highly recapitulative for dynamics problems and 
independent of the choice of coordinate systems, 
while the Newton equation changes along with the 
coordinate systems. Therefore, the Hamilton principle 
is more convenient to use for analyzing the dynamic 
systems. 

The extended Hamilton principle can be ex-
pressed as 
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where T and U are kinetic energy and potential energy 
of the rotor system, respectively, and W is the work 
done by non-conservative forces and any forces not 
accounted for in the potential energy function. 

The kinetic energy of the shaft element (Ts) and 
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where l is the length of the shaft element; ρ is the 
material density of shaft unit; Id and Ip are the dia-
metric inertia moment and polar inertia moment of the 
shaft element, respectively; and Jd and Jp are the di-
ametric inertia moment and polar inertia moment of 
the disk, respectively. 

Considering the bending and shearing distortion 
of the shaft element, the strain energy of the shaft 
element can be obtained as 
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where E is the Young’s modulus of elasticity, I is the 
area rotary inertia of shaft unit, k is the shape factor, G 
is the gravity vector of the rotor system, A is the sec-

tional area of shaft unit, ,
x

x
s

 


 ,
y

y
s

 


 ,x
x s




 


 

and y
y s





 


. 

By substituting Eqs. (6) and (7) into Eqs. (9) and 
(11), the following energy equation of the shaft ele-
ment can be obtained: 
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Fig. 2  The finite element model of a rotor system 
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are the mass matrix and the gyroscope matrix of the 
shaft element, respectively; 
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is the stiffness matrix of the shaft element. 

2.5  Motion equation 

The shaft element motion equation can be 
achieved by substituting Eqs. (12) and (13) into 
Eq. (8) as follows: 
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Ce and Cd are the damping matrixes of shaft unit and 
disk, respectively; Fe and Fd are the vectors of forces 
acting on shaft unit and disk, respectively; and Ge and 
Gd are the gravity vectors of the shaft unit and disk, 
respectively.  

The motion equation of the rotor system can be 
achieved by assembling all the shaft elements and the 
disks while ignoring the rotation displacement, which 
is given as follows:  
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is the vector of the forces acting on the rotor system, 
where Fdx=mdrdΩ

2cos(Ωt) and Fdy=mdrdΩ
2sin(Ωt) are 

the eccentric force acting on the disk in the x and y 
directions, respectively.  

We can define the dimensionless time and di-
mensionless displacement as follows: 
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Therefore, Eq. (16) can be transformed as  
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3  Numerical analysis and discussion 
 

In this study, time-history diagrams, bifurcation 
diagrams, phase trajectory diagrams, and Poincare 
maps are used to illustrate the nonlinear dynamics  
of the rotor system. In the dynamic system, a bifurca-
tion diagram shows the possible long-term values  
(equilibria/fixed points or periodic orbits) of a system 
as a function of a bifurcation parameter in the system. 
A Poincare map can be interpreted as a discrete dy-
namical system with a state space that is one dimension 
smaller than the original continuous dynamical system. 
By numerical integration of the equations of the rotor 
motion, the y coordinate, which denotes the dimen-
sionless speed in the x or y direction, can be plotted 
versus the x coordinate, which stands for the dimen-
sionless displacement in the x or y direction as the time 
increases. This produces a phase trajectory diagram. 

The numerical analysis was performed by using 
the fourth-order Runge-Kutta method and imple-
mented in MATLAB. The main partial parameters of 
the numerical calculation are listed in Table 1. The 
bifurcation diagrams at bearings and disks are plotted 
as shown in Fig. 3. Trajectory diagrams, time-history 
diagrams, and Poincare maps of disks and bearings at 
different rotational speeds are also listed to analyze 
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the dynamic characteristics of the rotor system in this 
study. For simplicity, all the diagrams are only illus-
trated in the x direction. In the numerical calculation, 
the structural damping of the bearing is 2300 N·s/m, 
and the disk’s is 5300 N·s/m. These dampings are 
described as vectors and added to the material 
damping of the rotor system. The stiffness of the 
flexible coupler is very small, which can be deemed 
as 1/100 of its nearby shaft element. The dimension-
less time ranges from 0 to 800π, and the step is 0.01π. 
Thus, 80 001 data can be achieved. The latter 40 001 
data are plotted, while the first 40 000 data are omitted 
considering the iteration veracity. In addition, the seal 
length, seal pressure drop, structural damping, and the 
stiffness of the rotor system are varied for the dy-
namic characteristic analysis of the rotor system’s 
stability. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 shows the bifurcation diagrams at bear-

ing 1, bearing 2, and the disks. Figs. 4–8 illustrate the 
time-history diagrams, the trajectory diagrams, and 
the Poincare maps with different rotational speeds at 
bearing 1, bearing 2, and the disks. In Fig. 3, it can be 
determined that at a lower speed, Ω≤700 rad/s, the 
system motion is maintained steady, which is a peri-
odic motion and the amplitude is limited. When 
Ω>700 rad/s, the system turns into a triple periodic 
motion, which is shown as three isolated points in the 
corresponding Poincare map and three obvious fre-
quency parts in the frequency spectrum. The trajec-
tory diagram also reflects this characteristic. Mean-
while, the amplitude is greatly increased. When the 
rotational speed increases to 720–760 rad/s, the rotor 

system represents quasi-periodic motion, which is 
shown as a whole cycle in the Poincare map. The 
motion of the system becomes triple periodic motion 
in the range of 764 rad/s≤Ω≤792 rad/s. With in-
creasing rotational speed, the response of the rotor 
system becomes more complicated, and the quasi- 
periodic motion and multi-periodic motion happen 
alternatively. For example, the quasi-periodic motion  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Partial test parameters 

Structural 
parameter 

Value 
Characteristic 

parameter 
Value 

L (m) 1 ρ (kg/m3) 7810 

l (m) 0.5 E (MPa) 1.97×105

d (m) 0.05 G (MPa) 8.0×104 

dd (m) 0.5 k 0.65 

ls (m) 0.052 n 2.5 

rd (mm) 0.06 b 0.45 

co (mm) 0.2 τo 0.2 

Lo (mm) 25.2 Δp (MPa) 0.2 

Ro (mm) 25.2   

cs (mm) 1   

lc (m) 0.2   

Fig. 3  Bifurcation diagram at bearing 1 (a), disk (b), and
bearing 2 (c) with rotational speed increasing 

(a)

(b)

(c)



Li et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2014 15(11):883-895 889

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4  Numerical analysis results at Ω=300 rad/s 
(a) Time-history diagram at bearing 1; (b) Trajectory diagram at bearing 1; (c) Poincare map at bearing 1; (d) Time-history 
diagram at the disk; (e) Trajectory diagram at the disk; (f) Poincare map at the disk; (g) Time-history diagram at bearing 2; 
(h) Trajectory diagram at bearing 2; (i) Poincare map at bearing 2; (j) Frequency spectrum at bearing 2 
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Fig. 5  Numerical analysis results at Ω=764 rad/s 
(a) Time-history diagram at bearing 1; (b) Trajectory diagram at bearing 1; (c) Poincare map at bearing 1; (d) Time-history 
diagram at the disk; (e) Trajectory diagram at the disk; (f) Poincare map at the disk; (g) Time-history diagram at bearing 2; 
(h) Trajectory diagram at bearing 2; (i) Poincare map at bearing 2; (j) Frequency spectrum at bearing 2 
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Fig. 6  Numerical analysis results at Ω=900 rad/s 
(a) Time-history diagram at bearing 1; (b) Trajectory diagram at bearing 1; (c) Poincare map at bearing 1; (d) Time-history dia-
gram at the disk; (e) Trajectory diagram at the disk; (f) Poincare map at the disk; (g) Time-history diagram at bearing 2; 
(h) Trajectory diagram at bearing 2; (i) Poincare map at bearing 2; (j) Frequency spectrum at bearing 2 
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Fig. 7  Numerical analysis results at Ω=1216 rad/s 
(a) Time-history diagram at bearing 1; (b) Trajectory diagram at bearing 1; (c) Poincare map at bearing 1; (d) Time-history 
diagram at the disk; (e) Trajectory diagram at the disk; (f) Poincare map at the disk; (g) Time-history diagram at bearing 2; 
(h) Trajectory diagram at bearing 2; (i) Poincare map at bearing 2; (j) Frequency spectrum at bearing 2 
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Fig. 8  Numerical analysis results at Ω=1400 rad/s
(a) Time-history diagram at bearing 1; (b) Trajectory diagram at bearing 1; (c) Poincare map at bearing 1; (d) Time-history dia-
gram at the disk; (e) Trajectory diagram at the disk; (f) Poincare map at the disk; (g) Time-history diagram at bearing 2; 
(h) Trajectory diagram at bearing 2; (i) Poincare map at bearing 2; (j) Frequency spectrum at bearing 2 
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happens at 900 rad/s (Fig. 6), the septuple periodic 
motion happens at 1216 rad/s (Fig. 7), and the quasi- 
periodic motion occurs at 1400 rad/s (Fig. 8), which is 
shown as a whole cycle in the Poincare map and some 
frequency parts are unable to be commonly divided in 
the spectrum of the frequency. 

 
 

4  Conclusions 
 
In this paper, a model of a two-disk and two-span 

rotor/bearing/seal system is created based on the 
Hamilton principle, which is more accurate and easier 
for a numerical solution. The nonlinear coupling vi-
bration of the rotor system is investigated by the 
fourth-order Runge-Kutta method. The figures 
achieved with various rotational speeds show the 
complexity of the nonlinear vibration and the bifur-
cation behavior of the rotor system. The numerical 
results indicate that the damping reduction and the 
increase of the seal pressure drop will make the bi-
furcation of the rotor system happen earlier, while the 
increase of the stiffness will prevent the bifurcation 
points from appearing too early and also greatly re-
duce the amplitude of the system motion. Based on 
the numerical analysis, it can be concluded that the 
rotational speed, the nonlinear seal force, the oil-film 
force, and the stiffness of the coupling have a great 
effect on the stability of a rotor system. 

This study can enhance understanding of the 
nonlinear dynamics of rotor systems and be helpful in 
choosing some designing parameters which affect the 
stability of the rotor systems. Further work will be 
done to analyze the nonlinear dynamics of the multi- 
disk and multi-span rotor systems. 
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中文概要： 
 

本文题目：基于 Hamilton 原理的双跨转子系统建模和转子动态特性分析 

Modeling a two-span rotor system based on the Hamilton principle and rotor dynamic be-
havior analysis 

研究目的：研究双盘双跨转子/轴承/汽封系统在非线性油膜力和非线性汽封力共同作用下的动力学特性，

分析了转子转速、密封力、油膜力和联轴器刚度等因素对转子稳定性的影响。 

创新要点：采用 Hamilton原理和有限元方法建立双盘双跨转子/轴承/汽封系统模型，使得双跨多节点的转

子系统数值求解更加容易。研究分析转子转速、非线性密封力、非线性油膜力和联轴器刚度等

因素对转子稳定性的影响，为大型转子系统的设计提供理论基础。 

研究方法：采用 Hamilton原理和有限元方法建立双盘双跨转子/轴承/汽封系统模型（图 1和 2）。应用四阶

Runge-Kutta 法进行数值求解，并采用轴承处、圆盘处的分岔图、时程图、庞加莱映射图、频

率图和相轨迹图等来分析转子系统的动态特性。 

重要结论：1. 通过数值计算分析，转子的转速、非线性汽封力、非线性油膜力和联轴器的刚度对双跨

转子的稳定性有重要的影响作用。2. 随着转速的上升，双跨转子系统从最初的稳定运动，

到三倍周期运动，到准周期运动和多倍周期运动交替出现，运动特性相比单跨转子系统要

更为复杂。 

关键词组：Hamilton 原理；双盘双跨转子系统；非线性汽封力；动态特性 


