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Abstract: A novel method is presented for fast identification of a machine tool selected point temperature rise, based on an
adaptive unscented Kalman filter. The major advantage of the method is its ability to predict the selected point temperature rise in
a short period of measuring time, like 30 min, instead of 3 to 6 h in conventional temperature rise tests. A fast identification
algorithm is proposed to predict the selected point temperature rise and the steady-state temperature. An adaptive law is applied to
adjust parameters dynamically by the actual measured temperature, which can effectively avoid the failure of prediction. A vertical
machining center was used to validate the effectiveness of the presented method. Taking any selected point, we could identify the
temperature rise at that point in 28 min. However, if the method was not used, it took 394 min to obtain the temperature rise curve
from the start-up of the machine tool to the time when it reached a steady-state temperature. The root mean square error (RMSE)
between the estimated and measured temperatures in the period of 394 min was 0.1291 °C, and the error between the estimated and
measured steady-state temperatures was 0.097 °C. Therefore, this method can effectively and quickly identify a machine tool
selected point temperature rise.
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1 Introduction temperature (Mayr et al., 2012). The manufacturing

industry is going through significant change regard-

Due to the increasing speed and precision of
machining, thermal deformation is becoming the
main factor that influences the machining accuracy of
precision machine tools (Han et al., 2012; Mayr et al.,
2012). Up to 75% of the overall geometrical errors of
machined workpieces can be induced by the effects of
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ing the management of thermally induced errors of
machine tools (Mayr et al., 2012). Before reducing
thermal deformation or compensating thermally in-
duced errors, it is important to obtain the temperature
distribution of the machine tool and the temperature
rise at a selected point. Nowadays, the thermal model
of a machine tool is simulated numerically using the
finite element method (FEM) to acquire the temper-
ature field distribution (Zhao et al., 2007; Uhlmann
and Hu, 2012; Zhang et al., 2013). But the simulation
results of the FEM thermal model cannot fully reflect
the actual temperature field distribution because the
thermal boundary conditions in FEM are simplified
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and assumed. For this reason, simulation results may
even be incorrect. Thus, the most important way to
obtain an accurate temperature distribution of a ma-
chine tool and the temperature rise of a selected point
is by temperature rise tests or thermal balance tests. In
practice, it takes 3 to 6 h or even longer to obtain the
selected point temperature rise from the start-up of the
machine tool until it reaches a steady-state tempera-
ture (Matsuo et al., 1986). Therefore, finding a rapid
method to identify the temperature rise of a selected
point in a machine tool is the key to improving tem-
perature rise tests.

Xia et al. (2014) proposed a method of machine
tool selected point temperature rise identification
based on operational thermal modal analysis. The
method realized the objective of identifying a selected
point temperature rise in a short time by using tem-
perature data at several measuring points. Matsuo et
al. (1986) presented a method to evaluate quickly the
temperature rise of machine tool structures based on
the modal analysis concept of the thermal equation.
Although both methods can deal with the need for fast
identification, they need to use temperature data from
several measuring points. The accuracy of tempera-
ture rise prediction for the selected point depends on
the temperature of other points. We aimed to develop
a method that can fast identify the machine tool se-
lected point temperature rise by use of only the se-
lected point temperature.

The unscented Kalman filter (UKF) was first
proposed by Julier and Uhlmann (2004). It has been
applied widely because of obvious advantages in
handling nonlinear state estimation and parameter
identification. Minase et al. (2010) presented an
adaptive identification method of hysteresis and creep
in piezoelectric stack actuators based on UKF. A
UKF-based adaptive identification approach was
developed to estimate accurately the nonlinear states
of a piezoelectric actuator. He et al. (2013) have ex-
plored UKF to estimate the model parameters and
state of charge of electric vehicle batteries in real-time
by use of test data from different batteries and dif-
ferent loading conditions. Similarly, the UKF algo-
rithm has been successfully applied to tune the model
parameters used in estimating the state of charge of
lithium-ion batteries, using the open-circuit voltage at
various ambient temperatures (Xing et al., 2014). The

UKF has been applied to real-time nonlinear structure
system identification, and these applications have
demonstrated that it is robust (Wu and Smyth, 2007).
Regulski and Terzija (2012) estimated the power
component and frequency using the UKF algorithm.
In the field of mobile robot simultaneous localization
and mapping, the UKF is used for landmark position
estimation and update (Li ez al., 2006). Thus, the UKF
is used for nonlinear state estimation and parameter
identification in various domains. But the normal
UKF suffers from performance degradation and even
divergence, and mismatches have been found be-
tween the noise distribution assumed to be known a
priori by UKF and the true distribution in a real sys-
tem (Jiang et al., 2007). Thus, research is needed in
adaptive UKF to overcome this weakness. Hu et al.
(2003) proposed two different UKFs for vehicle
navigation using GPS, one based on fading memory
and the other based on variance estimation. Loebis et
al. (2004) used fuzzy logic techniques to update the
sensor noise covariance.

Because the UKF has an advantage in nonlinear
state estimation and parameter identification, it is also
used in selected point temperature rise identification.
Therefore, a new method for fast identification of a
machine tool selected point temperature rise based on
an adaptive UKF is proposed. The purpose is to
identify a selected point temperature rise in a short
time using the measured temperature data of only a
selected point. An adaptive law is introduced to adjust
dynamically the covariances of the process and
measurement noise.

2 Identification method based on an adap-
tive unscented Kalman filter

In this section, the normal UKF algorithm is in-
troduced and then adaptive rules for updating the
covariances of process noise and measurement noise
are presented, thereby upgrading the normal UKF to
an adaptive UKF. Then a state-space model of a ma-
chine tool selected point temperature rise is built,
which is applicable to the adaptive UKF algorithm.
Finally, the method for fast identification of a ma-
chine tool selected point temperature rise based on the
novel adaptive UKF is explained in detail.
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2.1 Normal unscented Kalman filter

A discrete nonlinear system is as follows:

X =f(x ) +w ., (1
Yo =h(x)+v,, (2

where x; is an nx1 state vector at time £, yj is an mx1
measurement vector at time &, the functions f and 4
are known, wy_; is the process noise which satisfies
Gaussian white noise with zero mean and covariance
matrix @, and v is the measurement noise, which also
satisfies Gaussian white noise with zero mean and
covariance matrix R.

For the discrete nonlinear system, the normal
UKEF algorithm can be expressed as follows:

1. Initialize the mean x, and covariance Py of

state vector xo:

%, = E(x,), 3)
P, = E[(x, - "20 )(xo - 5‘\70 )T I 4)

2. Construct a set of sigma points (X; 4, i=0, 1, ...,
2n) by unscented transformation:

Xi,k—] = 'Qk—]’ i=0 (5)

Xi,k*l = ’%kfl + (\/ (”l + 2)}3{71 )[9 l = 19 29 RPN (N (6)
Xi,k—l = "%k—l - (\/ (n+ ﬂ“)l)k—l ),-_,,a (7)

i=n+1L,n+2,---,2n,

where n is the dimension of the state vector xj-i,
J=a*(n+x)—n, o and « are scaling tuning parameters. o
determines the spread of the sigma points around x, |

and is usually set to a small positive value (e.g.,

1x107%). kis setto 0. (\[(n+ A)P,_,), is the ith row of
the matrix square root (Wan and van der Merwe,
2000).

3. Time updating

Calculate the a priori state estimate and covari-
ance by substituting the sigma points into the state
function:
0,1,

Xi,k\k—] = f(Xi,k—l)a i= ,2n, ®)

2n
'Qk\k-l - Z(W(M)Xi,k\k—l)’ )
i=0
2n

Pk\/H = Z[VVJ'(C) ()(i,k—l - "%k\k—l )(Xi,k—l - &k‘kfl )T] + Q’ (10)

i=0

where X, . is the mean of the a priori state estimate

K|k—1

and P

i1 is the covariance. The weights Wl.(’") and

W' are defined as

A
Wy = , 11
0 n+A (In
W=ty (1-a+p), (12)
n+A
W = = i=202m (13)
2(n+A)

where f is used to incorporate prior knowledge of the
distribution of x, and for Gaussian distributions =2
is optimal (Wan and van der Merwe, 2000).

4. Measurement updating

Calculate the mean and covariance of the meas-
urement vector by substituting the sigma points into
the measurement function:

Yi,k\k—l = h(Xi,k‘k—l)’ i=0,1,--,2n, (14)
2n

j’k\k—l = Z(VVi(M)Yi,k‘k—])’ (15)
i=0

2n
Pym - Z[VV:'(C) (Yi,k\k—l - K1 )(Y;‘k\k—l - j’k\k—l )'1+R.(16)
i=0

The cross covariance of the state vector and the
measurement vector is calculated according to

2n

Py = Z[VVI’(C)(Xi,k‘kfl - "A‘k\m )(Yi,k\m - j}k\k—l)T]' 17)

i=0

The Kalman gain is calculated by

K =P P

X Ve ke

(18)

The a posteriori mean and covariance estimate of
X are computed by
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(19)
(20)

X = Xy T K, (y, - yk\k-l)’

P =P, -KP

k-1 ViV KkTa
where yy is the actual measurement value at time kAz,
and At is the sampling interval.

Assuming it takes time LAz for measurement,
there are (L+1) measurement values over time 0,
At, ..., LAt. In other words, the a posteriori mean and
covariance estimates of the state vector can be up-
dated by the actual measurement values in time LA¢.
The time LAt is called the identifying time, while the
measurement value y;, used in the measurement up-
dating step, is the actual measurement in the UKF
algorithm. However, no actual measurement values
are used in the measurement updating step after the
identifying time. The measurement value y; is re-
placed by the estimate, and the estimate y; can be
obtained as follows:

s, = f(x,_,)+¢q-randn(n,1), 21
¥, =h(s,)+r-randn(m,l), (22)

where ¢-randn(n,1) denotes an nx1 process noise

vector which satisfies Gaussian white noise with zero
mean and standard deviation ¢, and r-randn(m,1)

denotes an mx1 measurement noise vector which
satisfies Gaussian white noise with zero mean and
standard deviation r. The a posteriori mean estimate
x,_, at time (k—1)At¢ is substituted into Eqs. (21) and
(22), and the estimated value of y; is obtained. The
estimate y; can be used in measurement updating at
time kAt. In this way, the nonlinear model is modified
by the actual measurement values within the identi-
fying time, and after the identifying time the predic-
tion function is implemented.

2.2 Adaptive law

While the nonlinear reference model always
approximately describes the real changing rule but
cannot accurately reflect it, measuring errors inevita-
bly exist in the measuring process and change with
time. Therefore, the constant covariance matrix Q of
the process noise and covariance matrix R of the
measurement noise are not satisfactory and may cause
divergence of the UKF.

Therefore, we propose a novel adaptive UKF
algorithm, in which the process noise covariance
matrix @ and the measurement noise covariance ma-
trix R can be tuned dynamically to obtain better per-
formance of the filter. A flow chart of the adaptive law
is shown in Fig. 1, and a description is presented
below.

The a posteriori mean X, can be acquired after
measurement updating, and then the a posteriori es-
timate p, of the measurement vector is obtained as

j’k =h(-§7k)- (23)

Here, we define a variable r, which is the a
posteriori residual between the actual measurement
value and the a posteriori estimate:

K=Yy, — ). (24)

A positive threshold value (C) is preset. If the
absolute value of the a posteriori residual r; is less
than the preset threshold value C, it means the resid-
ual is within an acceptable range and the a posterior
estimate y, is approximately equal to the actual
measurement value y;. That is to say, the two param-
eters @ and R are satisfactory and do not need ad-
justment. If the a posteriori residual ry is less than —C,
it means the a posteriori estimate p, is more than the
actual measurement value y;, and the deviation ex-
ceeds the preset threshold C. The a posteriori estimate
», can be reduced to a value close to the actual
measurement value y; by the following method. The
method is to increase Q and R when the a priori re-
sidual (y, — j)k‘ ,) 1is larger than zero and decrease R

when the a priori residual (y, — j}k‘kfl) is less than

zero. If the a posteriori residual r is greater than C, it
means the actual measurement value yj is more than

the a posteriori estimate p, and the deviation exceeds

the preset threshold C. Therefore, the a posteriori
estimate y, is needed to increase to a value ap-

proximately equal to the actual measurement value yy.
The approach to increase y, is to decrease Q and R

when the a priori residual (y, — jfk‘ ) 1s larger than
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Calculate the variables Py, ., jy, ,» P,
and the posteriori residual ry

KI(’ 5&/(’ IJK’ j}k

Ve

A

Decrease Q, and update
0 to coff*Q, 0<coff<l

JFtL o

PWiaias)
<

A 4
Increase Q, and
update Q to coff*Q,
coff>1

g ST
|

A 4

Increase R, and update R to
(R+j - R_step), the initial
value of j is 1

Decrease R, and update R to
(R —j - R_step), the initial
value of j is 1

Decrease R, and update R to
(R —j - R_step), the initial value
of jis 1

Increase R, and update R to
(R+j - R_step), the initial value
ofjis 1

y

v

v

v

Update the variables PA‘H P,

K. x.,P, ) gnd the posteriori
residual r

Update the variables Pk‘,f,,, L

K,, %, P,, y, and the posteriori
residual

Update the variables LATEYY

K,, X, P, y, and the posteriori
residual ry

Update the variables B, . P, ,

K,, X, P, y, and the posteriori
residual ry

The update

he updated > upaate
posteriori residual

'he update
posteriori residual

he updated
posteriori residual

posteriori residual
r, _update| <

ro_ update‘ < ro_ updale‘ <C

Output the variables Q, R, X,, P,

Fig. 1 A flow chart of the adaptive law

zero and increase R when the a priori residual
(y, - jzk‘k_l) is less than zero. After this adjustment,

the absolute value of the updated a posteriori residual
goes back to a value that is less than or equal to the
preset threshold value C.

As mentioned above, if r,<—C, @ is increased by
multiplying a fix rate (coff) greater than 1. For R

adjustment, if the a priori residual (y, — j)k\k—l) is

larger than zero, R is increased; and if the a priori
residual (y, — jfk‘ 1) 1s less than zero, R is decreased.

Whether increasing or decreasing R, a step R_step is
set first, and then we can search with the step size to

find an appropriate R so that the absolute value of the a
posteriori residual is less than or equal to the preset
threshold value C. If r>C, the adjustment method is
similar to the above. For @ adjustment, @ is decreased
by multiplying a fix rate (coff) which is chosen to be
between 0 and 1. For R adjustment, if the a priori
residual (y, — j)k‘ .,) 1is larger than zero, R is de-

creased; and if the a priori residual (y, — j}k‘ ) isless

than zero, R is increased. The adjustment method of R
is the same as the above and a step R_step is also set
first. By adjustment of @ and R, the absolute value of
the updated a posteriori residual goes back to a value
that is less than or equal to the preset threshold value C.
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The variables x,, Py, Q, and R are updated dy-

namically according to the adaptive UKF algorithm
within the identifying time LA, to give values which
are closer to the practical values. However, there are
no actual measurement values after the identifying
time, thus we cannot adjust @ and R because the
adaptive law relies on real measurement values. After
the identifying time, the normal UKF algorithm is
used to predict the variables x,, P,, and y,, and Q

and R are maintained as the last values modified in
the identifying time.

2.3 Temperature rise model

According to thermal modal theory (Matsuo et
al., 1986; Xia et al., 2014), for a thermal system, we
can indicate its transient conduction problem using
the following equation:

[01{%} +[H1(0} =P}, 25)

where [C], [H], and {P} are the heat capacity matrix,
the heat conductive matrix, and the heat source
strength vector, respectively; and {0} is the temper-
ature vector.

The solution of Eq. (25) can be calculated by
solving the equation as follows:

[H{M}, = A,[C]{M},

j=1a2a"'9p> (26)

where {M}; is the characteristic mode vector, and /4, is
the thermal eigenvalue.

Then, the expression of the solution of Eq. (25)
is

= Zp: M3 {M}I L: (P(r)le " dr
: 27)

-t

SRR ISl

where {7} is the initial temperature. When {7}={0}
and {P(7)} is a step loading, Eq. (27) can be simpli-
fied as

()= Y- M, (M3
]:lp j | (28)
— 2 My My

J

Therefore, Eq. (28) can be turned into a more
compact form

T(r,0)=T,(r)+ ib}. (rye ", (29)

where r is the position coordinates of a measuring
point, T(r, f) is the transient temperature of the
measuring point in location » at time ¢, T(r) is the
steady state temperature of the measuring point in
location r, Di(r) is a constant which is related to the
thermophysical properties of the material and initial
temperature, 4,(r) is also a constant which is related to
comprehensive physical properties of the thermal
system, ¢ is a time variable, and j=1, 2, ..., p denotes
there are p terms. We can use Eq. (29) to indicate the
transient temperature distribution of the thermal sys-
tem. When temperature is measured without external
disturbance, the high order terms from 2 to p decay
rapidly. So we retain the first term to approximately
represent the transient temperature distribution:
T(r,t)=T,(r)+ D(r)e """, (30)
The temperature rise model is transformed into a
discrete state-space model form. Assume state vector
x=[T 1 T. m]T, and the discrete temperature rise model
is expressed in the following form:

X, =f(x)+w,

T s T (T, — Too,k—l )e_lHAt

- (31)
= A W,
Too,kfl
y,=h(x)+v, =T, +v,, 32)

where At is the sampling interval, and k& denotes the
moment at time kAt
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2.4 Fast identification of a machine tool selected
point temperature rise

The machine tool selected point temperature rise
curve can be obtained through the adaptive UKF
algorithm within the identifying time, and through the
normal UKF algorithm after the identifying time. To
characterize the accuracy of the prediction, we use a
new variable root mean square error (RMSE) between
the estimated temperature and the measured temper-
ature in a given period of time:

0=JZ[7;(k>—7;(k>]2/<M—1), (33)

where o is the RMSE; M is the total number of
measuring times, MAt represents the measuring time;
T«(k) is the estimated temperature at time kAt; and
To(k) is the measured temperature at time kA¢.

Here, the measuring time MA¢ is defined as the
sampling time, and the identifying time must be less
than the sampling time.

Assume first that temperature is measured dur-
ing a sampling time M;A¢, and an identifying time
LAt is chosen. The temperature of a selected point is
estimated and the variables x,, P, Q, and R are

updated dynamically by use of the actual measured
temperature, according to the adaptive UKF

A (a)

RMSE

A\

0 Les Lga Lgsz Lgo Lgt Ly
Identifying time
A (C)

RMSE

\

0 Lgs Lga Lgs Lgo Ly Ly
Identifying time

algorithm within the identifying time L;At¢. After the
identifying time L,A¢, the selected point temperature
is predicted according to the normal UKF algorithm.
The machine tool selected point temperature rise
curve can be obtained through the above process. To
evaluate the accuracy of prediction, the RMSE be-
tween the predicted temperature and the measured
temperature in a sampling time M, At is chosen. The
RMSE is denoted by o;. Draw a figure with the iden-
tifying time as the horizontal coordinate and the
RMSE in a period of sampling as the vertical coor-
dinate. The symbol (L, o1) denotes the point with the
identifying time LAt as the abscissa and the RMSE g,
as the ordinate. Then the point (L, ¢1) is drawn in the
figure. When the identifying times L,A¢, ..., L At are
chosen and L<L;<...<L,<M, the corresponding
curves of temperature rise at each selected point are
obtained. Different RMSEs o, ..., o, between the
estimated temperature and the measured temperature
in the same sampling period M,At can be obtained in
the same way. The points (L,, 02), ..., (Lg, 0g) are
shown in Fig. 2a, which shows the change in RMSE
with different identifying times in sampling period
MiAt.

When the sampling period is increased to M,A¢,
different RMSEs o', 0/, ..., g’ with different iden-
tifying times LiAt, LyAt, ..., L At can be calculated.
These points (Ly, 61), (L2, 02'), ..., (Lg, 0,) are drawn
in Fig. 2b, which shows the change in RMSE with

A (b)

RMSE

A\

0 Lgs Lga Lgs Lgo Lyt Ly
Identifying time
A (d)

RMSE

-
!

0 Lgs Lgsa Lgs Lgo Lgv Ly
Identifying time

Fig. 2 Changes in RMSE with different identifying times in different sampling periods: (a) M;Az; (b) MyAt; (¢) M3At;

(d) M At
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different identifying times in sampling period M,At.
Similarly, Fig. 2c represents the change in RMSE
with different identifying times in sampling period
M;At, and Fig. 2d the RMSE change with different
identifying times in sampling period M,At.

For each of the four sampling times, the RMSE
is minimal with the same identifying time, Ly »At. If
this identifying time is found, the measurement test
can be stopped and the identifying time is called the
minimal time for identification. From this we can
predict the selected point temperature rise accurately.
In this way, the time of temperature rise test can be
greatly reduced.

For a certain identifying time with a certain
sampling period, the temperature rise of the selected
point can be predicted according to the novel adaptive
UKEF algorithm within the identifying time, and ac-
cording to the normal UKF algorithm after the iden-
tifying time. Furthermore, the RMSE between the
estimated temperature and the measured temperature
in the sampling period can be calculated. Then,
RMSE:s for different identifying times and sampling
periods can also be obtained and the minimal time for
identification can be searched according to the above
process. When the minimal time for identification is
found, the measurement test can be stopped and the
selected point temperature rise can be predicted ac-
curately. The minimal time for identification is al-
ways short, around 30 min. In practice, it takes 3—6 h
or even longer to obtain a selected point temperature
rise from the start-up of a machine tool until a
steady-state temperature is reached. Therefore, the
presented method for selected point temperature rise
identification based on a novel adaptive UKF can be
applied to greatly decrease the time taken to obtain
the temperature rise curve. The method has good
prospects for industrial application.

3 Tests on a vertical machining center

3.1 Application of the fast identification method
based on the adaptive UKF

A vertical machining center was used to validate
the effectiveness of the fast identification of machine
tool selected point temperature rise based on the novel
adaptive UKF algorithm. Fig. 3 shows the equipment
of the temperature rise test system, which included

four parts: a vertical machining center, several tem-
perature sensors, a data acquisition system, and a
computer. Several temperature sensors were arranged
at different positions in the vertical machining center
to measure temperature. The measured temperature
data were recorded by the data acquisition system and
then processed and analyzed in the computer. The
process of fast selected point temperature rise identi-
fication based on the adaptive UKF was performed on
the computer. All temperature sensors were of the
PT100 type.

The room temperature was about 17.9 °C. When
the vertical machining center started and the spindle
was running at a speed of 5000 r/min, the temperature
rise test began. The sampling interval As was set to
1 min. Thus, temperature measuring data were rec-
orded every minute until the machine tool reached a
steady-state temperature. The process for rapidly
identifying a selected point temperature rise can be
illustrated by taking one point as an example. Tem-
perature rise curves of other points can be predicted in
the same way. Fig. 4 shows the measured temperature
of the selected point. The total measuring time was
394 min.

First, some parameters needed to be initialized.
The initial state vector of the temperature rise model
was chosen as xo=[Ty Ao Two]'=[10 0.01 307", the
mean value of the initial state vector as X, = x,, the

covariance of the initial state vector as Py=diag(0.57,
0.12, 0.12), the initial covariance matrix @ of the
process noise as Q0:diag(0.0012, 0.001%, 0.0012), the
initial covariance matrix R of the measurement noise
as Ro=0.0012, the initial standard deviation ¢ of the

Temperature 2
- Vertical

Data
acquisition

Fig. 3 Temperature rise test system
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process noise as go=diag(0.001, 0.001, 0.001), and the
initial standard deviation r of the measurement noise
as r¢=0.001. In the adaptive law, when the covariance
matrix @ of the process noise needs to be increased,
the fix rate coff is set to 10, that is to say,
Q update=10Q; when Q needs to be decreased, the
fix rate coff is set to 0.1, in other words, @ update

27
26 o
25
24
23
22
21
20
19 |
18
17

B
--.“""“‘I- 4

-

Temperature (°C)

",

150 200 250 300 350 400
Time (min)

0 50 100
Fig. 4 Measured temperature of a selected point

05
(@

0.4

0.1

014 16 18 20 22 24 26 28 30

Identifying time (min)

0 1 1 1 1 1
14 16 18 20 22 24 26 28 30
Identifying time (min)

=0.1Q. The parameter R_step was set to R/100. The
preset threshold C was chosen as 0.0001.

According to the above method, Figs. Sa—5d
show the change in the RMSE curve corresponding to
different sampling times of 35, 40, 45, and 50 min,
respectively. From these four figures, we can easily
see that the RMSE is minimal at the same identifying
time of 28 min. Therefore, the selected point temper-
ature rise can be predicted accurately within 28 min.
If the present method is not applied, it takes 394 min
of measuring time to obtain the selected point tem-
perature rise from the start-up of the machine tool to
the time it reaches a steady-state temperature.

In the identifying time of 28 min, the adaptive
UKF algorithm was adopted to identify the selected
point temperature rise. The parameters Q and R were
adjusted to diag(10~’, 107, 1077) and 1.932x10°,
respectively. Fig. 6 shows the predicted temperature
rise curve in the identifying time of 28 min and the
measured temperature rise curve. We used the
steady-state temperature and thermal equilibrium
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Fig. 5 Changes in RMSE with identifying times for different sampling periods of the selected point: (a) 35 min;

(b) 40 min; (c) 45 min; (d) 50 min
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time to compare the estimated and measured temper-
ature rises of the selected point. When the tempera-
ture reaches 95% of the maximum temperature rise,
this state is called the thermal equilibrium state, and
that moment the thermal equilibrium time. The esti-
mated steady-state temperature was 26.797 °C, and
the thermal equilibrium time was 197 min. The
measured steady-state temperature was 26.7 °C, and
the thermal equilibrium time 195 min. So the selected
point temperature rise identified by the proposed
method was satisfactory.

For the state vectorx=[T 1 T. OO]T, the parameters
A and T, are also obtained in the process of identify-
ing the temperature rise. Figs. 7 and 8 show the es-
timated A and T, respectively. The estimated variable
/A converges to 0.016 min "' in Fig. 7, and the estimated
variable T, converges to 26.797 °C in Fig. 8.

Then, we can calculate the RMSEs between the
predicted and measured temperatures with different
identifying times in the period of time from the
start-up of the machine tool to the time a steady-state
temperature is reached (394 min). Fig. 9 shows the
change in RMSE with different identifying times with
a sampling period of 394 min. The minimal RMSE

(0.1291 °C) was found in the identifying time of 28 min.

This time was the same as that based on the fast
identification of the selected point temperature rise.
Therefore, the proposed method for fast identification
of the selected point temperature rise is effective.

3.2 A comparison of results from the unscented
Kalman filter with and without model adaptation

Next, a comparison of the selected point tem-
perature rise identification based on adaptive UKF
and UKF without the adaptive algorithm is presented.
In the process of identifying the selected point tem-
perature rise based on UKF without the adaptive al-
gorithm, the same initial parameters were used:

X, =x,=[T, A4 T,] =[10 0.01 30]",
P, =diag(0.5%,0.1%,0.1%),
Q, = diag(0.001%,0.001°,0.001%),

R, =0.001%,
g, = diag(0.001, 0.001, 0.001),
r, =0.001.

24 A e Measured temperature

Estimated temperature in the
identifying time of 28 min

Temperature (°C)
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17 . . . . . . . .
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Fig. 6 Measured and estimated temperature rises of the

selected point based on UKF with model adaptation

04

0.3

0 F'
_01 1

0 50

100 150 200 250 300 350 400
Time (min)
Fig. 7 Estimated variable 4

30.0
29.5
29.0
o 28.5
= 28.0F
2751

270

26.5 L
0 50

100 150 200 250 300 350 400
Time (min)

Fig. 8 Estimated variable T,

Using the fast identification method based on
UKF without the adaptive algorithm, the changes in
RMSE with different identifying times in different
sampling periods can be calculated. Figs. 10a—10d
represent the change in the RMSE curves corre-
sponding to sampling periods of 40, 45, 50, and
55 min, respectively. These four figures show that the
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RMSE is minimal in the same identifying time of
32 min.

Fig. 11 shows the predicted temperature rise
curve in the identifying time of 32 min based on UKF
without adaptation and the measured temperature rise
curve. Although there was a minimal identifying time
of 32 min for the selected point using this method, the

A O

RMSE (°C)
w

14 1.6 1.8 2.0 2.2 2.4 2.6 28 3.0
Identifying time (min)

Fig. 9 Changes in RMSE with different identifying

times in a sampling period of 394 min

Identifying time (min)

14 18 22 26 30 34

0 . . .

Identifying time (min)

predicted temperature rise curve at 32 min deviated
greatly from the measured temperature curve. How-
ever, the predicted temperature rise curve at 28 min
based on the UKF with model adaptation was closer
to the measured temperature (Fig. 6). For the unscented
Kalman filter without adaptation, the covariance ma-
trix @ of the process noise and covariance matrix R

29
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---------- Measured temperature

Estimated temperature in
32 min based on UKF
without adaptation

Temperature (°C)
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= w
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Fig. 11 Measured and estimated temperature rises of
the selected point based on UKF without adaptation
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Fig. 10 Changes in RMSE with identifying times for the selected point based on the UKF without model adaptation in
different sampling times: (a) 40 min; (b) 45 min; (c¢) 50 min; (d) 55 min
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of the measurement noise remained unchanged so the
covariances @ and R did not match the true covari-
ances in the real system. This shows that the UKF
without model adaptation suffers from performance
degradation and even divergence. This is the reason
why the estimated temperature curve in 32 min based
on the UKF without adaptation deviated greatly from
the measured temperature curve. When the UKF with
model adaptation was used, the estimated temperature
rise curve more closely matched the actual meas-
urement temperature curve (Fig. 6). Therefore, the
result of the selected point temperature rise identified
by the UKF with model adaptation was satisfactory.
The fast identification method based on the adaptive
UKEF has obvious advantages over the method with-
out model adaptation.

4 Conclusions

In this paper, a novel method is presented for fast
identification of a machine tool selected point tem-
perature rise based on an adaptive UKF. The major
advantage of the method is that it can predict the
temperature rise in a short measuring time, like
30 min, instead of 3 to 6 h in conventional tempera-
ture rise tests. Moreover, the UKF algorithm can be
successfully applied to temperature rise prediction for
any measuring point, and modified to the adaptive
UKF by adding the adaptive law. The adaptive UKF is
used to decrease the influence of external perturba-
tions on temperature rise prediction. A vertical ma-
chining center was used to validate the effectiveness
of the presented method. In the experiment, taking
one point as the selected point, the temperature rise of
the selected point was identified in 28 min. The
RMSE between the estimated and measured temper-
atures in the time period of 394 min was 0.1291 °C,
and the error between the estimated and measured
steady-state temperatures was 0.097 °C. So this
method can effectively and quickly identify a ma-
chine tool selected point temperature rise.
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