
Xia et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2014 15(10):761-773 
 

761

 

 

 

 

A novel method for fast identification of a machine tool  

selected point temperature rise based on an  

adaptive unscented Kalman filter* 
 

Chen-hui XIA, Jian-zhong FU†‡, Yue-tong XU, Zi-chen CHEN 
(State Key Lab of Fluid Power Transmission and Control, Department of Mechanical Engineering,  

Zhejiang University, Hangzhou 310027, China) 
†E-mail: fjz@zju.edu.cn 

Received Mar. 4, 2014;  Revision accepted Aug. 12, 2014;  Crosschecked Sept. 29, 2014 

 

Abstract:    A novel method is presented for fast identification of a machine tool selected point temperature rise, based on an 
adaptive unscented Kalman filter. The major advantage of the method is its ability to predict the selected point temperature rise in 
a short period of measuring time, like 30 min, instead of 3 to 6 h in conventional temperature rise tests. A fast identification 
algorithm is proposed to predict the selected point temperature rise and the steady-state temperature. An adaptive law is applied to 
adjust parameters dynamically by the actual measured temperature, which can effectively avoid the failure of prediction. A vertical 
machining center was used to validate the effectiveness of the presented method. Taking any selected point, we could identify the 
temperature rise at that point in 28 min. However, if the method was not used, it took 394 min to obtain the temperature rise curve 
from the start-up of the machine tool to the time when it reached a steady-state temperature. The root mean square error (RMSE) 
between the estimated and measured temperatures in the period of 394 min was 0.1291 °C, and the error between the estimated and 
measured steady-state temperatures was 0.097 °C. Therefore, this method can effectively and quickly identify a machine tool 
selected point temperature rise. 
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1  Introduction 

 
Due to the increasing speed and precision of 

machining, thermal deformation is becoming the 
main factor that influences the machining accuracy of 
precision machine tools (Han et al., 2012; Mayr et al., 
2012). Up to 75% of the overall geometrical errors of 
machined workpieces can be induced by the effects of 

temperature (Mayr et al., 2012). The manufacturing 
industry is going through significant change regard-
ing the management of thermally induced errors of 
machine tools (Mayr et al., 2012). Before reducing 
thermal deformation or compensating thermally in-
duced errors, it is important to obtain the temperature 
distribution of the machine tool and the temperature 
rise at a selected point. Nowadays, the thermal model 
of a machine tool is simulated numerically using the 
finite element method (FEM) to acquire the temper-
ature field distribution (Zhao et al., 2007; Uhlmann 
and Hu, 2012; Zhang et al., 2013). But the simulation 
results of the FEM thermal model cannot fully reflect 
the actual temperature field distribution because the 
thermal boundary conditions in FEM are simplified 
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and assumed. For this reason, simulation results may 
even be incorrect. Thus, the most important way to 
obtain an accurate temperature distribution of a ma-
chine tool and the temperature rise of a selected point 
is by temperature rise tests or thermal balance tests. In 
practice, it takes 3 to 6 h or even longer to obtain the 
selected point temperature rise from the start-up of the 
machine tool until it reaches a steady-state tempera-
ture (Matsuo et al., 1986). Therefore, finding a rapid 
method to identify the temperature rise of a selected 
point in a machine tool is the key to improving tem-
perature rise tests. 

Xia et al. (2014) proposed a method of machine 
tool selected point temperature rise identification 
based on operational thermal modal analysis. The 
method realized the objective of identifying a selected 
point temperature rise in a short time by using tem-
perature data at several measuring points. Matsuo et 
al. (1986) presented a method to evaluate quickly the 
temperature rise of machine tool structures based on 
the modal analysis concept of the thermal equation. 
Although both methods can deal with the need for fast 
identification, they need to use temperature data from 
several measuring points. The accuracy of tempera-
ture rise prediction for the selected point depends on 
the temperature of other points. We aimed to develop 
a method that can fast identify the machine tool se-
lected point temperature rise by use of only the se-
lected point temperature. 

The unscented Kalman filter (UKF) was first 
proposed by Julier and Uhlmann (2004). It has been 
applied widely because of obvious advantages in 
handling nonlinear state estimation and parameter 
identification. Minase et al. (2010) presented an 
adaptive identification method of hysteresis and creep 
in piezoelectric stack actuators based on UKF. A 
UKF-based adaptive identification approach was 
developed to estimate accurately the nonlinear states 
of a piezoelectric actuator. He et al. (2013) have ex-
plored UKF to estimate the model parameters and 
state of charge of electric vehicle batteries in real-time 
by use of test data from different batteries and dif-
ferent loading conditions. Similarly, the UKF algo-
rithm has been successfully applied to tune the model 
parameters used in estimating the state of charge of 
lithium-ion batteries, using the open-circuit voltage at 
various ambient temperatures (Xing et al., 2014). The 

UKF has been applied to real-time nonlinear structure 
system identification, and these applications have 
demonstrated that it is robust (Wu and Smyth, 2007). 
Regulski and Terzija (2012) estimated the power 
component and frequency using the UKF algorithm. 
In the field of mobile robot simultaneous localization 
and mapping, the UKF is used for landmark position 
estimation and update (Li et al., 2006). Thus, the UKF 
is used for nonlinear state estimation and parameter 
identification in various domains. But the normal 
UKF suffers from performance degradation and even 
divergence, and mismatches have been found be-
tween the noise distribution assumed to be known a 
priori by UKF and the true distribution in a real sys-
tem (Jiang et al., 2007). Thus, research is needed in 
adaptive UKF to overcome this weakness. Hu et al. 
(2003) proposed two different UKFs for vehicle 
navigation using GPS, one based on fading memory 
and the other based on variance estimation. Loebis et 
al. (2004) used fuzzy logic techniques to update the 
sensor noise covariance. 

Because the UKF has an advantage in nonlinear 
state estimation and parameter identification, it is also 
used in selected point temperature rise identification. 
Therefore, a new method for fast identification of a 
machine tool selected point temperature rise based on 
an adaptive UKF is proposed. The purpose is to 
identify a selected point temperature rise in a short 
time using the measured temperature data of only a 
selected point. An adaptive law is introduced to adjust 
dynamically the covariances of the process and 
measurement noise.  

 
 

2  Identification method based on an adap-
tive unscented Kalman filter 

 
In this section, the normal UKF algorithm is in-

troduced and then adaptive rules for updating the 
covariances of process noise and measurement noise 
are presented, thereby upgrading the normal UKF to 
an adaptive UKF. Then a state-space model of a ma-
chine tool selected point temperature rise is built, 
which is applicable to the adaptive UKF algorithm. 
Finally, the method for fast identification of a ma-
chine tool selected point temperature rise based on the 
novel adaptive UKF is explained in detail. 
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2.1  Normal unscented Kalman filter 

A discrete nonlinear system is as follows: 
 

1 1( ) ,k k kf   x x w                       (1) 

( ) ,k k kh y x v                           (2) 

 
where xk is an n×1 state vector at time k, yk is an m×1 
measurement vector at time k, the functions f and h 
are known, wk−1 is the process noise which satisfies 
Gaussian white noise with zero mean and covariance 
matrix Q, and vk is the measurement noise, which also 
satisfies Gaussian white noise with zero mean and 
covariance matrix R.  

For the discrete nonlinear system, the normal 
UKF algorithm can be expressed as follows: 

1. Initialize the mean 0x̂  and covariance P0 of 

state vector x0: 
 

0 0
ˆ ( ),Ex x                             (3) 

T
0 0 0 0 0

ˆ ˆ[( )( ) ].E  P x x x x                (4) 

 
2. Construct a set of sigma points (Xi, k, i=0, 1, …, 

2n) by unscented transformation: 
 

, 1 1
ˆ , 0,i k k i  X x                        (5) 

, 1 1 1ˆ ( ( ) ) ,  1, 2, , ,i k k k in i n     X x P       (6) 

, 1 1 1
ˆ ( ( ) ) ,  

1, 2, , 2 ,
i k k k i nn

i n n n

     

  

X x P


             (7) 

 
where n is the dimension of the state vector xk−1, 
λ=α2(n+κ)−n, α and κ are scaling tuning parameters. α 

determines the spread of the sigma points around 1
ˆ

kx  

and is usually set to a small positive value (e.g., 

1×10−3). κ is set to 0. 1( ( ) )k in   P  is the ith row of 

the matrix square root (Wan and van der Merwe, 
2000). 

3. Time updating 
Calculate the a priori state estimate and covari-

ance by substituting the sigma points into the state 
function: 

 

, 1, 1 ( ),  0,1, , 2 ,i ki k k f i n  X X             (8) 

2
( )

1 , 1
0

ˆ ( ),
n

m
ik k i k k

i

W 


 x X                     (9) 

2
( ) T

, 1 , 11 1 1
0

ˆ ˆ[ ( )( ) ] ,
n

c
i i k i kk k k k k k

i

W    


   P X x X x Q (10) 

 
where 1

ˆ
k kx  is the mean of the a priori state estimate 

and 1k kP  is the covariance. The weights ( )m
iW  and 

( )c
iW  are defined as 

 

( )
0 ,mW

n







                          (11) 

( ) 2
0 (1 ),cW

n

  


   


                (12) 

( ) ( ) 1
,  1, 2, ,2 ,

2( )
m c

i iW W i n
n 

  


       (13) 

 
where β is used to incorporate prior knowledge of the 
distribution of x, and for Gaussian distributions β=2 
is optimal (Wan and van der Merwe, 2000). 

4. Measurement updating 
Calculate the mean and covariance of the meas-

urement vector by substituting the sigma points into 
the measurement function: 

 

, 1 , 1( ),  0,1, , 2 ,i k k i k kh i n  Y X            (14) 

2
( )

1 , 1
0

ˆ ( ),
n

m
ik k i k k

i

W 


 y Y                   (15) 

2
( ) T

, 1 1 , 1 1
0

ˆ ˆ[ ( )( ) ] .
k k

n
c

y y i i k k k k i k k k k
i

W    


   P Y y Y y R (16) 

 
The cross covariance of the state vector and the 

measurement vector is calculated according to 
 

2
( ) T

, 1 1 , 1 1
0

ˆ ˆ[ ( )( ) ].
k k

n
c

x y i i k k k k i k k k k
i

W    


  P X x Y y    (17) 

 
The Kalman gain is calculated by  
 

1 .
k k k kk x y y y

K P P                         (18) 

 
The a posteriori mean and covariance estimate of 

xk are computed by  
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1 1
ˆ ˆ ˆ( ),k k kk k k k   x x K y y               (19) 

T
1 ,

k kk k y y kk k P P K P K                  (20) 

 
where yk is the actual measurement value at time kΔt, 
and Δt is the sampling interval. 

Assuming it takes time LΔt for measurement, 
there are (L+1) measurement values over time 0, 
Δt, …, LΔt. In other words, the a posteriori mean and 
covariance estimates of the state vector can be up-
dated by the actual measurement values in time LΔt. 
The time LΔt is called the identifying time, while the 
measurement value yk, used in the measurement up-
dating step, is the actual measurement in the UKF 
algorithm. However, no actual measurement values 
are used in the measurement updating step after the 
identifying time. The measurement value yk is re-
placed by the estimate, and the estimate yk can be 
obtained as follows: 

 

1
ˆ( ) randn( ,1),k kf n  s x q                (21) 

( ) randn( ,1),k kh m  y s r                 (22) 

 
where randn( ,1)nq  denotes an n×1 process noise 

vector which satisfies Gaussian white noise with zero 
mean and standard deviation q, and randn( ,1)mr  

denotes an m×1 measurement noise vector which 
satisfies Gaussian white noise with zero mean and 
standard deviation r. The a posteriori mean estimate 

1
ˆ

kx  at time (k−1)Δt is substituted into Eqs. (21) and 

(22), and the estimated value of yk is obtained. The 
estimate yk can be used in measurement updating at 
time kΔt. In this way, the nonlinear model is modified 
by the actual measurement values within the identi-
fying time, and after the identifying time the predic-
tion function is implemented. 

2.2  Adaptive law 

While the nonlinear reference model always 
approximately describes the real changing rule but 
cannot accurately reflect it, measuring errors inevita-
bly exist in the measuring process and change with 
time. Therefore, the constant covariance matrix Q of 
the process noise and covariance matrix R of the 
measurement noise are not satisfactory and may cause 
divergence of the UKF. 

Therefore, we propose a novel adaptive UKF 
algorithm, in which the process noise covariance 
matrix Q and the measurement noise covariance ma-
trix R can be tuned dynamically to obtain better per-
formance of the filter. A flow chart of the adaptive law 
is shown in Fig. 1, and a description is presented 
below. 

The a posteriori mean ˆ
kx  can be acquired after 

measurement updating, and then the a posteriori es-

timate ˆ
ky  of the measurement vector is obtained as 

 
ˆ ˆ( ).k khy x                            (23) 

 
Here, we define a variable rk which is the a 

posteriori residual between the actual measurement 
value and the a posteriori estimate: 

 
ˆ .k k k r y y                           (24) 

 
A positive threshold value (C) is preset. If the 

absolute value of the a posteriori residual rk is less 
than the preset threshold value C, it means the resid-
ual is within an acceptable range and the a posterior 

estimate ˆ
ky  is approximately equal to the actual 

measurement value yk. That is to say, the two param-
eters Q and R are satisfactory and do not need ad-
justment. If the a posteriori residual rk is less than −C, 

it means the a posteriori estimate ˆ
ky  is more than the 

actual measurement value yk, and the deviation ex-
ceeds the preset threshold C. The a posteriori estimate 
ˆ

ky  can be reduced to a value close to the actual 

measurement value yk by the following method. The 
method is to increase Q and R when the a priori re-

sidual 1
ˆ( )k k ky y  is larger than zero and decrease R 

when the a priori residual 1
ˆ( )k k ky y  is less than 

zero. If the a posteriori residual rk is greater than C, it 
means the actual measurement value yk is more than 

the a posteriori estimate ˆ
ky  and the deviation exceeds 

the preset threshold C. Therefore, the a posteriori 

estimate ˆ
ky  is needed to increase to a value ap-

proximately equal to the actual measurement value yk. 

The approach to increase ˆ
ky  is to decrease Q and R 

when the a priori residual 1
ˆ( )k k ky y  is larger than  
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zero and increase R when the a priori residual 

1
ˆ( )k k ky y  is less than zero. After this adjustment, 

the absolute value of the updated a posteriori residual 
goes back to a value that is less than or equal to the 
preset threshold value C. 

As mentioned above, if rk<−C, Q is increased by 
multiplying a fix rate (coff) greater than 1. For R 

adjustment, if the a priori residual 1
ˆ( )k k ky y  is 

larger than zero, R is increased; and if the a priori 

residual 1
ˆ( )k k ky y  is less than zero, R is decreased. 

Whether increasing or decreasing R, a step R_step is 
set first, and then we can search with the step size to  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

find an appropriate R so that the absolute value of the a 
posteriori residual is less than or equal to the preset 
threshold value C. If rk>C, the adjustment method is 
similar to the above. For Q adjustment, Q is decreased 
by multiplying a fix rate (coff) which is chosen to be 
between 0 and 1. For R adjustment, if the a priori 

residual 1
ˆ( )k k ky y  is larger than zero, R is de-

creased; and if the a priori residual 1
ˆ( )k k ky y  is less 

than zero, R is increased. The adjustment method of R 
is the same as the above and a step R_step is also set 
first. By adjustment of Q and R, the absolute value of 
the updated a posteriori residual goes back to a value 
that is less than or equal to the preset threshold value C. 

Fig. 1  A flow chart of the adaptive law
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The variables ˆ ,kx  Pk, Q, and R are updated dy-

namically according to the adaptive UKF algorithm 
within the identifying time LΔt, to give values which 
are closer to the practical values. However, there are 
no actual measurement values after the identifying 
time, thus we cannot adjust Q and R because the 
adaptive law relies on real measurement values. After 
the identifying time, the normal UKF algorithm is 

used to predict the variables ˆ
kx , kP , and ˆ

ky , and Q 

and R are maintained as the last values modified in 
the identifying time.  

2.3  Temperature rise model 

According to thermal modal theory (Matsuo et 
al., 1986; Xia et al., 2014), for a thermal system, we 
can indicate its transient conduction problem using 
the following equation: 

 
d

[ ] [ ]{ } { },
dt

    
 

θ
C H θ P                  (25) 

 
where [C], [H], and {P} are the heat capacity matrix, 
the heat conductive matrix, and the heat source 
strength vector, respectively; and {θ} is the temper-
ature vector.  

The solution of Eq. (25) can be calculated by 
solving the equation as follows: 

 
[ ]{ } [ ]{ } ,  1, 2, , ,j j j j p H M C M        (26) 

 
where {M}j is the characteristic mode vector, and λj is 
the thermal eigenvalue. 

Then, the expression of the solution of Eq. (25) 
is  

 

( )T

0
1

T
0

1

{ } { } { } { ( )}e d

{ } { } [ ]{ }e ,

j

j

p t t

j j
j

p
t

j j
j

 



  











 



T M M P

M M C T

    (27) 

 
where {T0} is the initial temperature. When {T0}={0} 
and {P(τ)} is a step loading, Eq. (27) can be simpli-
fied as  

T
0

1

T
0

1

1
{ } { } { } { }

1
{ } { } { }e .j

p

j j
j j

p
t

j j
j j





















T M M P

M M P

           (28) 

 
Therefore, Eq. (28) can be turned into a more 

compact form 
 

( )

1

( , ) ( ) ( )e ,j

p
r t

j
j

r t r r 




 T T D             (29) 

 
where r is the position coordinates of a measuring 
point, T(r, t) is the transient temperature of the 
measuring point in location r at time t, T∞(r) is the 
steady state temperature of the measuring point in 
location r, Dj(r) is a constant which is related to the 
thermophysical properties of the material and initial 
temperature, λj(r) is also a constant which is related to 
comprehensive physical properties of the thermal 
system, t is a time variable, and j=1, 2, …, p denotes 
there are p terms. We can use Eq. (29) to indicate the 
transient temperature distribution of the thermal sys-
tem. When temperature is measured without external 
disturbance, the high order terms from 2 to p decay 
rapidly. So we retain the first term to approximately 
represent the transient temperature distribution: 
 

( )( , ) ( ) ( )e .r tr t r r 
 T T D                (30) 

 
The temperature rise model is transformed into a 

discrete state-space model form. Assume state vector 
x=[T  λ  T∞]T, and the discrete temperature rise model 
is expressed in the following form: 

 

1

1 1

, 1 1 , 1

1 1

, 1

( )

( )e

,

k

k k k

t
k k k

k k

k

f

T T T

T







 

 
    

 

 

 

  
   
  

x x w

w
     (31) 

( ) ,k k k k kh   y x v T v                                (32) 

 
where Δt is the sampling interval, and k denotes the 
moment at time kΔt. 
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2.4  Fast identification of a machine tool selected 
point temperature rise 

The machine tool selected point temperature rise 
curve can be obtained through the adaptive UKF 
algorithm within the identifying time, and through the 
normal UKF algorithm after the identifying time. To 
characterize the accuracy of the prediction, we use a 
new variable root mean square error (RMSE) between 
the estimated temperature and the measured temper-
ature in a given period of time: 

 

2
e o

1

[ ( ) ( )] / ( 1),
M

k

T k T k M


            (33) 

 
where σ is the RMSE; M is the total number of 
measuring times, MΔt represents the measuring time; 
Te(k) is the estimated temperature at time kΔt; and 
To(k) is the measured temperature at time kΔt. 

Here, the measuring time MΔt is defined as the 
sampling time, and the identifying time must be less 
than the sampling time.  

Assume first that temperature is measured dur-
ing a sampling time M1Δt, and an identifying time 
L1Δt is chosen. The temperature of a selected point is 

estimated and the variables ˆ ,kx  Pk, Q, and R are 

updated dynamically by use of the actual measured 
temperature, according to the adaptive UKF  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

algorithm within the identifying time L1Δt. After the 
identifying time L1Δt, the selected point temperature 
is predicted according to the normal UKF algorithm. 
The machine tool selected point temperature rise 
curve can be obtained through the above process. To 
evaluate the accuracy of prediction, the RMSE be-
tween the predicted temperature and the measured 
temperature in a sampling time M1Δt is chosen. The 
RMSE is denoted by σ1. Draw a figure with the iden-
tifying time as the horizontal coordinate and the 
RMSE in a period of sampling as the vertical coor-
dinate. The symbol (L1, σ1) denotes the point with the 
identifying time L1Δt as the abscissa and the RMSE σ1 
as the ordinate. Then the point (L1, σ1) is drawn in the 
figure. When the identifying times L2Δt, …, LgΔt are 
chosen and L1<L2<…<Lg<M, the corresponding 
curves of temperature rise at each selected point are 
obtained. Different RMSEs σ2, …, σg between the 
estimated temperature and the measured temperature 
in the same sampling period M1Δt can be obtained in 
the same way. The points (L2, σ2), …, (Lg, σg) are 
shown in Fig. 2a, which shows the change in RMSE 
with different identifying times in sampling period 
M1Δt. 

When the sampling period is increased to M2Δt, 
different RMSEs σ1′, σ2′, …, σg′ with different iden-
tifying times L1Δt, L2Δt, …, LgΔt can be calculated. 
These points (L1, σ1′), (L2, σ2′), …, (Lg, σg′) are drawn 
in Fig. 2b, which shows the change in RMSE with  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2  Changes in RMSE with different identifying times in different sampling periods: (a) M1Δt; (b) M2Δt; (c) M3Δt; 
(d) M4Δt 
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different identifying times in sampling period M2Δt. 
Similarly, Fig. 2c represents the change in RMSE 
with different identifying times in sampling period 
M3Δt, and Fig. 2d the RMSE change with different 
identifying times in sampling period M4Δt. 

For each of the four sampling times, the RMSE 
is minimal with the same identifying time, Lg−2Δt. If 
this identifying time is found, the measurement test 
can be stopped and the identifying time is called the 
minimal time for identification. From this we can 
predict the selected point temperature rise accurately. 
In this way, the time of temperature rise test can be 
greatly reduced.  

For a certain identifying time with a certain 
sampling period, the temperature rise of the selected 
point can be predicted according to the novel adaptive 
UKF algorithm within the identifying time, and ac-
cording to the normal UKF algorithm after the iden-
tifying time. Furthermore, the RMSE between the 
estimated temperature and the measured temperature 
in the sampling period can be calculated. Then, 
RMSEs for different identifying times and sampling 
periods can also be obtained and the minimal time for 
identification can be searched according to the above 
process. When the minimal time for identification is 
found, the measurement test can be stopped and the 
selected point temperature rise can be predicted ac-
curately. The minimal time for identification is al-
ways short, around 30 min. In practice, it takes 3–6 h 
or even longer to obtain a selected point temperature 
rise from the start-up of a machine tool until a 
steady-state temperature is reached. Therefore, the 
presented method for selected point temperature rise 
identification based on a novel adaptive UKF can be 
applied to greatly decrease the time taken to obtain 
the temperature rise curve. The method has good 
prospects for industrial application. 

 
 

3  Tests on a vertical machining center 

3.1  Application of the fast identification method 
based on the adaptive UKF 

A vertical machining center was used to validate 
the effectiveness of the fast identification of machine 
tool selected point temperature rise based on the novel 
adaptive UKF algorithm. Fig. 3 shows the equipment 
of the temperature rise test system, which included 

four parts: a vertical machining center, several tem-
perature sensors, a data acquisition system, and a 
computer. Several temperature sensors were arranged 
at different positions in the vertical machining center 
to measure temperature. The measured temperature 
data were recorded by the data acquisition system and 
then processed and analyzed in the computer. The 
process of fast selected point temperature rise identi-
fication based on the adaptive UKF was performed on 
the computer. All temperature sensors were of the 
PT100 type. 

The room temperature was about 17.9 °C. When 
the vertical machining center started and the spindle 
was running at a speed of 5000 r/min, the temperature 
rise test began. The sampling interval Δt was set to 
1 min. Thus, temperature measuring data were rec-
orded every minute until the machine tool reached a 
steady-state temperature. The process for rapidly 
identifying a selected point temperature rise can be 
illustrated by taking one point as an example. Tem-
perature rise curves of other points can be predicted in 
the same way. Fig. 4 shows the measured temperature 
of the selected point. The total measuring time was 
394 min. 

First, some parameters needed to be initialized. 
The initial state vector of the temperature rise model 
was chosen as x0=[T0  λ0  T∞,0]

T=[10  0.01  30]T, the 

mean value of the initial state vector as 0 0
ˆ x x , the 

covariance of the initial state vector as P0=diag(0.52, 
0.12, 0.12), the initial covariance matrix Q of the 
process noise as Q0=diag(0.0012, 0.0012, 0.0012), the 
initial covariance matrix R of the measurement noise 
as R0=0.0012, the initial standard deviation q of the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Temperature rise test system 
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process noise as q0=diag(0.001, 0.001, 0.001), and the 
initial standard deviation r of the measurement noise 
as r0=0.001. In the adaptive law, when the covariance 
matrix Q of the process noise needs to be increased, 
the fix rate coff is set to 10, that is to say, 
Q_update=10Q; when Q needs to be decreased, the 
fix rate coff is set to 0.1, in other words, Q_update  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=0.1Q. The parameter R_step was set to R/100. The 
preset threshold C was chosen as 0.0001.  

According to the above method, Figs. 5a–5d 
show the change in the RMSE curve corresponding to 
different sampling times of 35, 40, 45, and 50 min, 
respectively. From these four figures, we can easily 
see that the RMSE is minimal at the same identifying 
time of 28 min. Therefore, the selected point temper-
ature rise can be predicted accurately within 28 min. 
If the present method is not applied, it takes 394 min 
of measuring time to obtain the selected point tem-
perature rise from the start-up of the machine tool to 
the time it reaches a steady-state temperature. 

In the identifying time of 28 min, the adaptive 
UKF algorithm was adopted to identify the selected 
point temperature rise. The parameters Q and R were 
adjusted to diag(10−7, 10−7, 10−7) and 1.932×10−9, 
respectively. Fig. 6 shows the predicted temperature 
rise curve in the identifying time of 28 min and the 
measured temperature rise curve. We used the 
steady-state temperature and thermal equilibrium  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5  Changes in RMSE with identifying times for different sampling periods of the selected point: (a) 35 min; 
(b) 40 min; (c) 45 min; (d) 50 min 

Fig. 4  Measured temperature of a selected point
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time to compare the estimated and measured temper-
ature rises of the selected point. When the tempera-
ture reaches 95% of the maximum temperature rise, 
this state is called the thermal equilibrium state, and 
that moment the thermal equilibrium time. The esti-
mated steady-state temperature was 26.797 °C, and 
the thermal equilibrium time was 197 min. The 
measured steady-state temperature was 26.7 °C, and 
the thermal equilibrium time 195 min. So the selected 
point temperature rise identified by the proposed 
method was satisfactory.  

For the state vector x=[T  λ  T∞]T, the parameters 
λ and T∞ are also obtained in the process of identify-
ing the temperature rise. Figs. 7 and 8 show the es-
timated λ and T∞, respectively. The estimated variable 
λ converges to 0.016 min−1 in Fig. 7, and the estimated 
variable T∞ converges to 26.797 °C in Fig. 8.  

Then, we can calculate the RMSEs between the 
predicted and measured temperatures with different 
identifying times in the period of time from the 
start-up of the machine tool to the time a steady-state 
temperature is reached (394 min). Fig. 9 shows the 
change in RMSE with different identifying times with 
a sampling period of 394 min. The minimal RMSE 
(0.1291 °C) was found in the identifying time of 28 min. 
This time was the same as that based on the fast 
identification of the selected point temperature rise. 
Therefore, the proposed method for fast identification 
of the selected point temperature rise is effective. 

3.2  A comparison of results from the unscented 
Kalman filter with and without model adaptation  

Next, a comparison of the selected point tem-
perature rise identification based on adaptive UKF 
and UKF without the adaptive algorithm is presented. 
In the process of identifying the selected point tem-
perature rise based on UKF without the adaptive al-
gorithm, the same initial parameters were used:  

 
T T

0 0 0 0 ,0
ˆ [ ] [10 0.01 30] ,T T   x x  

2 2 2
0 diag(0.5 , 0.1 , 0.1 ),P  

2 2 2
0 diag(0.001 , 0.001 , 0.001 ),Q  

2
0 0.001 ,R  

0 diag(0.001, 0.001, 0.001),q  

0 0.001.r  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the fast identification method based on 

UKF without the adaptive algorithm, the changes in 
RMSE with different identifying times in different 
sampling periods can be calculated. Figs. 10a–10d 
represent the change in the RMSE curves corre-
sponding to sampling periods of 40, 45, 50, and 
55 min, respectively. These four figures show that the 

Fig. 6  Measured and estimated temperature rises of the 
selected point based on UKF with model adaptation 

Fig. 7  Estimated variable λ 

Fig. 8  Estimated variable T∞ 



Xia et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2014 15(10):761-773 
 

771

RMSE is minimal in the same identifying time of 
32 min.  

Fig. 11 shows the predicted temperature rise 
curve in the identifying time of 32 min based on UKF 
without adaptation and the measured temperature rise 
curve. Although there was a minimal identifying time 
of 32 min for the selected point using this method, the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

predicted temperature rise curve at 32 min deviated 
greatly from the measured temperature curve. How-
ever, the predicted temperature rise curve at 28 min 
based on the UKF with model adaptation was closer 
to the measured temperature (Fig. 6). For the unscented 
Kalman filter without adaptation, the covariance ma-
trix Q of the process noise and covariance matrix R  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10  Changes in RMSE with identifying times for the selected point based on the UKF without model adaptation in 
different sampling times: (a) 40 min; (b) 45 min; (c) 50 min; (d) 55 min 

Fig. 9 Changes in RMSE with different identifying 
times in a sampling period of 394 min 

R
M
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Fig. 11  Measured and estimated temperature rises of 
the selected point based on UKF without adaptation 
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of the measurement noise remained unchanged so the 
covariances Q and R did not match the true covari-
ances in the real system. This shows that the UKF 
without model adaptation suffers from performance 
degradation and even divergence. This is the reason 
why the estimated temperature curve in 32 min based 
on the UKF without adaptation deviated greatly from 
the measured temperature curve. When the UKF with 
model adaptation was used, the estimated temperature 
rise curve more closely matched the actual meas-
urement temperature curve (Fig. 6). Therefore, the 
result of the selected point temperature rise identified 
by the UKF with model adaptation was satisfactory. 
The fast identification method based on the adaptive 
UKF has obvious advantages over the method with-
out model adaptation. 

 
 

4  Conclusions 
 
In this paper, a novel method is presented for fast 

identification of a machine tool selected point tem-
perature rise based on an adaptive UKF. The major 
advantage of the method is that it can predict the 
temperature rise in a short measuring time, like 
30 min, instead of 3 to 6 h in conventional tempera-
ture rise tests. Moreover, the UKF algorithm can be 
successfully applied to temperature rise prediction for 
any measuring point, and modified to the adaptive 
UKF by adding the adaptive law. The adaptive UKF is 
used to decrease the influence of external perturba-
tions on temperature rise prediction. A vertical ma-
chining center was used to validate the effectiveness 
of the presented method. In the experiment, taking 
one point as the selected point, the temperature rise of 
the selected point was identified in 28 min. The 
RMSE between the estimated and measured temper-
atures in the time period of 394 min was 0.1291 °C, 
and the error between the estimated and measured 
steady-state temperatures was 0.097 °C. So this 
method can effectively and quickly identify a ma-
chine tool selected point temperature rise. 
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中文概要： 
 

本文题目：基于自适应无味卡尔曼滤波的机床选点温升快速辨识方法研究 

A novel method for fast identification of a machine tool selected point temperature rise 
based on an adaptive unscented Kalman filter 

研究目的：为了缩短机床温升试验时间，提出一种机床热特性快速辨识方法，利用较短时间的温度采

样数据即可准确预测出完整的温升曲线，进而获得热平衡时间及稳态温度等热特性参数。 

创新要点：提出了基于自适应无味卡尔曼滤波的机床选点温升快速辨识方法，其中最短辨识时间判据

可以有效解决如何寻找准确辨识热特性参数的最短采样时间问题，而自适应无味卡尔曼滤

波则可以实时调整参数，防止外界因素对辨识的干扰。 

研究方法：由于无味卡尔曼滤波在非线性状态预测和参数辨识上具有优势，所以本文将无味卡尔曼滤

波算法应用到机床选点温升辨识上。为了防止辨识过程中的发散退化等问题，将无味卡尔

曼滤波发展为自适应无味卡尔曼滤波（图 1）。在快速辨识方法上提出了最短辨识时间判

据（图 2）。文章中又将此算法应用到实际的立式加工中心温升辨识上，证明了该算法的

可行性及有效性（图 5 和 6）。最后又将带有自适应调整过程的无味卡尔曼滤波算法和不带

调整过程的算法做了对比，显示了自适应调整过程对辨识算法的重要性（图 6 和 11）。 

重要结论：基于自适应无味卡尔曼滤波的机床选点温升快速辨识方法可以准确快速地辨识出温升曲线，

获取热特性参数，将原来 394 min 的热平衡试验时间缩短，只需 28 min 即可得到温升变化

情况。 

关键词组：温升；快速辨识；自适应无味卡尔曼滤波；机床 


