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Abstract: The determination of initial equilibrium shapes is a common problem in research work and engineering applications
related to membrane structures. Using a general structural analysis framework of the finite particle method (FPM), this paper 
presents the first application of the FPM and a recently-developed membrane model to the shape analysis of light weight mem-
branes. The FPM is rooted in vector mechanics and physical viewpoints. It discretizes the analyzed domain into a group of parti-
cles linked by elements, and the motion of the free particles is directly described by Newton’s second law while the constrained 
ones follow the prescribed paths. An efficient physical modeling procedure of handling geometric nonlinearity has been developed 
to evaluate the particle interaction forces. To achieve the equilibrium shape as fast as possible, an integral-form, explicit time 
integration scheme has been proposed for solving the equation of motion. The equilibrium shape can be obtained naturally without 
nonlinear iterative correction and global stiffness matrix integration. Two classical curved surfaces of tension membranes pro-
duced under the uniform-stress condition are presented to verify the accuracy and efficiency of the proposed method. 
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1 Introduction

Membrane structures have attracted considera-
ble attention due to their light weight, high flexibility,
and ease of stowing and deployment. The applications 
range from innovative architectural structures and 
space structures to medical appliances. A distin-
guishing feature of this type of structure is that it 
requires prestress to develop structural stiffness and to 
maintain a stable shape before any external load is 
applied. Therefore, for the structural function and 
strength satisfaction, a key step in the design of a 
membrane structure is to determine an initial config-
uration that respects the law of equilibrium for a fea-

sible prestress distribution under given geometrical 
boundary conditions, especially for the gossamer 
space structures with high precision requirement of 
shapes (Jenkins, 2001).

The topic of shape analysis has become an at-
tractive research field since the pioneering work of 
Otto Frei in the 1960s and 1970s (Otto and Rasch, 
1995). Early studies were conducted by direct phys-
ical modeling for visualization. A representative case 
was the soap-film analogy (Otto and Rasch, 1995; 
Lewis, 2003), which had the natural property of ad-
justing to a stable minimal surface with uniform stress 
in every direction. These physical methods can be 
tedious and inaccurate for a measurement of the 
geometry, and involve error magnification when 
measurements of the model have to be scaled up to a 
full-size structure. Thus, with the advent of the 
computer age, many researchers have paid attention 
to the numerical methods for handling this subject. 
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The analysis methods can be normally categorized 
into three main families: the stiffness matrix methods, 
the geometric stiffness methods, and the dynamic 
equilibrium methods (Veenendaal and Block, 2012).
As a typical example of the stiffness matrix method, 
the traditional finite element method (FEM) was de-
scribed in (Haug and Powell, 1972; Argyris et al.,
1974). It may have some limitations due to the high 
nonlinearity of membrane systems. Apart from its 
demand for extensive matrix manipulations, possible 
singularity of stiffness matrix and divergence may be 
encountered when the trial geometry is far from the 
equilibrium position. However, with some special 
treatments and modifications (Wüchner and Bletz-
inger, 2005), it still can be used to solve this problem 
effectively. As an alternative for finding feasible 
equilibrium shapes, the geometric stiffness methods 
can simplify the nonlinear analysis. It is represented 
by the force density method derived from special 
discretization and linearization techniques (Schek, 
1974). Although this method enables fast determina-
tion of equilibrium surfaces, it should be pointed out 
that additional iterative procedures are inevitable 
when it is used to model minimal surface forms 
(Maurin and Motro, 1998; Pauletti and Pimenta, 
2008), and thus some of its attractiveness is lost. Un-
like the preceding two methods, in the dynamic equi-
librium methods (e.g., dynamic relaxation method 
(DRM)), a steady equilibrium shape for an initially 
unbalanced structure is achieved by simulating a 
damped vibration process over time (Lewis and 
Lewis, 1996). Particularly, combined with the kinetic 
damping technique (i.e., resetting the nodal velocity 
to zero at each kinetic energy peak), this method has 
been presented as a powerful tool capable of finding 
forms of tension structures modeled by simple truss 
networks, linear triangular meshes (Barnes, 1999; 
Lewis, 2003) or high-order elements (Gosling and 
Lewis, 1996). Nevertheless, due to the introduction of 
many hypotheses for simplification (e.g., line ele-
ments and triple force elements) and the ignorance of 
shear deformation, both some errors and the tendency 
of meshes to distort may induce some inconvenience 
in the traditional dynamic relaxation-based methods 
(Wood, 2002).

In recent years, some improved approaches 
based on the conventional techniques have also un-
dergone significant development. For example, Brew 
and Lewis (2007) proposed an alternative method-

ology to the experimentally physical modeling on the 
basis of the free hanging concept. Moreover, using 
particle-spring systems, Kilian and Ochsendorf (2005)
presented a novel approach for the exploration of 
funicular forms. This approach is also a kind of dy-
namic equilibrium method in nature. It is more suita-
ble for treating the structural components with only 
axial deformation (e.g., cable or bar members), be-
cause for the solids, it is quite difficult to determine 
the spring stiffness that can represent the true material 
properties of the body exactly. Even if the body is 
discretized into equivalent networks, errors are still 
inevitable. 

In addition to the above techniques and ap-
proaches which have been extensively applied to 
shape analysis, the finite particle method (FPM) (Yu, 
2010) that is derived from vector mechanics and 
superior in the complex structural behavior analysis 
(Ting et al., 2004), can be another choice for this 
subject. In FPM, the analyzed domain is regarded as 
a body composed of a finite number of particles, 
instead of a mathematically continuous body 
adopted in the traditional methods based on analyt-
ical mechanics. The motion path of each particle can 
be modeled via a set of discrete path units. Within 
each path unit, Newton’s second law, rather than 
weak variational formulations for the governing 
partial differential equations (PDEs), is adopted to 
directly formulate the motion of the particles. In-
teractions of a particle with its neighbors are deter-
mined by the elements connected with them. In the 
calculation procedure, an incremental theory based 
on the concept of the convected material frame (Shih 
et al., 2004) and an explicit time integration scheme
for solving the equations of motion are also adopted.
For further specific considerations, the FPM based 
on Ting et al. (2004)’s mechanics concept was de-
veloped, and was successively applied to the analy-
sis of kinematically indeterminate bar assemblies 
(Yu and Luo, 2009a), deployable structures (Yu and 
Luo, 2009b), and progressive failure of truss struc-
tures (Yu et al., 2011).

According to the analysis method classification 
aforementioned, the FPM belongs to the third cate-
gory, i.e., the dynamic equilibrium methods. In FPM, 
neither the global material stiffness matrix nor the 
geometric stiffness matrix needs to be formed. In 
addition, there are some differences between the FPM 
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and other dynamic equilibrium methods (e.g., DRM, 
particle-spring method), especially in the fundamen-
tal concepts and the procedure of interaction force 
evaluation. It should be noted that the FPM essen-
tially employs a generalized mechanics frame which 
is capable of analyzing various complex behaviors. It 
is not a purely mathematical technique with intro-
ducing a fictitious mass and damping to the static 
equation to increase the numerical stability. Fur-
thermore, in FPM, the convected material frames (i.e., 
the reference configuration) combined with other 
concepts, such as the path unit and the physical pro-
cedure of fictitious motion, are used to simplify the 
evaluation of interaction forces, while in some DR 
methods involving FE techniques, numerous matrix 
operations are required for calculating the finite rota-
tion and deformation. Besides, the formulations of 
interaction forces in this method are rigidly derived 
from the theory of generalized large-deflection anal-
ysis of solids, instead of being a result of some sim-
plifications (e.g., expressions in the form of element 
side/line forces or spring forces) as in some other DR 
methods. Therefore, a fine description of the internal 
force state can be obtained, even in some complex 
cases. 

In view of the remarkable performance of the 
FPM in tackling various nonlinear behaviors of 
structures, as well as its particular convenience for 
evaluating the prestress effect on tension structures, 
the primary purpose of this work is to extend the 
application of the FPM using a recently-developed
3-node triangular (T3) membrane element to the 
shape analysis of tension membranes. The remainder
of the paper is laid out as follows. Section 2 provides 
a brief introduction of the fundamentals. Then, in 
Section 3, techniques for handling the geometrically 
nonlinear behavior of the T3 facet membrane ele-
ments are illustrated, and the formulations of interac-
tion forces are derived. In Section 4, a solution pro-
cedure of shape analysis based on the FPM is devel-
oped, together with an improved time integration
technique to reduce the computational effort. Section 
5 presents two classical examples to verify the effec-
tiveness of the proposed method in the shape analysis 
of stable minimal surfaces of tension membranes. 
Finally, some concluding remarks of this work are 
provided in Section 6.

2 Fundamental theory of the FPM

FPM is an intrinsic-modeling-based method de-
signed to describe large rigid body motion and geo-
metrical changes of a system of multiple continuous 
bodies. For simplicity, in this section, only a brief 
summary of the fundamental theory is provided by 
taking a 3D membrane as an example. More details 
can be found in (Ting et al., 2004; Yu, 2010; Yu et al.,
2011).

2.1 Point description

Considering a continuous membrane as shown in
Fig. 1, the motion of the membrane can be charac-
terized by the trajectories of a finite number of dis-
crete particles. Assume that the shape of a membrane 
undergoes a successive transformation from the initial 
configuration V0 to the reference configuration Va,
and then to the current configuration V. At the initial 
time t0, both the position x0 and velocity v0 of an ar-
bitrary particle should be predefined. The subject to 
be addressed is converted to tracing the motion of 
each particle under the initial condition.

An important concept in FPM is that particles are 
adopted as main variables to describe the parameters 
of a body, such as mass, geometry, and deformation, 
i.e., so-called point descriptions. At any moment 
every particle is in an eternal dynamic equilibrium 
state under resultant forces, whereas elements con-
necting particles to their neighbors do not carry any 
mass, and maintain static equilibrium during the mo-
tion. Hence, it ensures a strong form of energy bal-
ance for the entire system. Besides, particles are 
mutually independent, and thus all force calculations
can be implemented in each element separately.

Fig. 1 Point description model of a membrane
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2.2 Path unit description

Another characteristic of the FPM is the em-
ployment of a path unit. Referring to Fig. 2, it is as-
sumed that an arbitrary particle undergoes a motion 
during the analysis period, say from time instant t0 to 
tn, with its position vector correspondingly changing
from x0 to xn. Such a trajectory can be split into 
n-discrete segments identified by a series of time 
points t0, t1, t2, ta, tb, …, tn. Thus, the motion path of 
each particle within a segment, e.g., ta t tb, is re-
ferred to as a path unit.

Since the time interval is very small within each 
path unit, all variables (e.g., the constitutive law of 
materials, mass and topological relationships) can be 
regarded as constants with changes only at the 
boundary of a path unit, namely ta or tb. Consequently, 
the configuration of a deformable body at time ta can 
be considered as the reference material frame for the 
evaluation of interaction forces.

2.3 Governing equations of motion

As the foregoing assumptions in FPM, every
particle is considered to be in a dynamic equilibrium 
state at any instant. Considering an arbitrary particle ,
as illustrated in Fig. 3, its motion within each path 
unit is determined by the equation that follows 
Newton’s second law, that is

ext intM d F F&& ,                            (1)

where M is the particle mass matrix, d&& represents 

the acceleration vector, and extF and intF denote the 
external force and internal force applied on the parti-
cle , respectively.

The determination of particle mass is a modeling 
procedure depending on an individual’s considera-
tions for practical problems, rather than the results of

some mathematic techniques. In this study, the mass 
term M is prescribed by the physical mass of the 
membrane, which can be defined as

c
e

1
,

n

i
i

M m m                            (2)

where m is the mass attached to the particle , e
im is 

the evenly distributed mass of the ith element jointing 
at the particle , and nc is the number of elements 
connected with the particle .

intF represents the internal forces of the particle 
with its neighbors and it can be computed through 

an assembling procedure, that is
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F f                                 (3)

where int
if is the equivalent internal force contrib-

uted from the ith element connected with the particle 
. The internal force evaluation is the most important 

work in FPM, which will be presented at length in 
Section 3.

extF is the sum of the prescribed external forces 
acting on the particle , that is 
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where P is the concentrated force directly applied at 
the particle , and ext

if is the equivalent force

f
iy

ext

i=1

n

f
ix

ext

i=1

n

f
iy

int

i=1

n

fiz
int

i=1

n

f
ix

int

i=1

n
f

iz
ext

i=1

n

f f
f

1x 1y

1 z

1

f

f f

nz

nx ny n
f2x

f2y

f2z

2

f

f
f

3 z

3x
3y3

f
f

f
4y

4x

4z
4 f

f f
5z

5x 5y

5
f

f f
6z

6x
6y

6

Fig. 3 Illustration of the forces acting on the particle 

Fig. 2 Discrete path units of a particle
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transformed from the distributed loads of the ith el-
ement according to the principle of virtual work.

2.4 Description of kinematics

According to continuum mechanics (Bonet and 
Wood, 1997), the deformation at an arbitrary point of a 
membrane can be described by the geometrical change 
of a differential element with an infinitesimal size. As 
illustrated in Fig. 4a, at time ta the relative position 
vector of particle to its neighborhood is denoted by 
dxa. In FPM, the configuration at time ta is taken as a 
convected material reference frame. After some time 
increments, at time t it changes to dx, that is

d d ,ax F x                                 (5)

where F is the deformation gradient due to the re-
sultant forces. In terms of the polar decomposition 
theorem, the deformation gradient can be decom-
posed into the product of the rigid body rotation ma-
trix R and the pure deformation gradient U. Thus, 
Eq. (5) can be rewritten as

d d .ax RU x                        (6)

It is worth noting that R is only theoretically 
existent, because the rigid motion and deformation
are fully coupled and it is rather difficult to get the 
exact deformation. In fact, only an approximation to
the real one with the same order of magnitude as that 
of the residual rotation will be sufficient to obtain a 
convergent solution. Besides, there is an inherited 
predictor-corrector mechanism in FPM that prevents 
divergence even if the evaluation of the interaction 
forces is not absolutely accurate. Thus, in this con-
tribution, a simple scheme for the measure of the 
average rigid body rotation is developed, which will 
be explained in detail in Section 3. Referring to 
Fig. 4b, let particles along with the element undergo a 
fictitious reverse rotation, and then the motion and 
deformation of the differential element can be ex-
pressed as 

T Td d ( ) d d ,r r r a r ax R x R R U x F x (7)

where Rr represents an approximate average rotation, 
and Fr denotes the deformation gradient between Va

and Vr.
As illustrated in Fig. 4b, Vd is a fictitious con-

figuration after the reverse rotation with the accurate 
rotation matrix RT. The difference between Vd and Vr

is merely a residual rotation, viz. T( )rR R , the order of 
which should be equal to or less than that of a pure 
deformation. Thus, it is not necessary to take into 
account the effect of the residual rotation on the cal-
culation of strain. Moreover, for the convenience of 
defining independent degrees of freedom (DOFs), a 
set of deformation coordinates according to Fr are 
assumed. The corresponding strain, stress, and virtual 
work in the global coordinate system are

2 T( ) / 2 [( ) ] / 2,r r rE E U I F F I (8)
( ) ( ),r rS E S E                                                (9)

ˆ
( )d ( )d .

a a
r rV V

U tr V tr VS E S E (10)

With the transformation matrix Q that relates the 
global coordinates to the deformation coordinates at 
time t, Eqs. (8)–(10) can be rewritten in the defor-
mation coordinate system as

T Tˆ ˆ ,r rE QEQ QE Q E                (11)

Fig. 4 Description of kinematics
(a) Different positions and configurations of an element dur-
ing the motion; (b) Decomposition mechanism
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T Tˆ ˆ ,r rS QSQ QS Q S    (12)

ˆ
ˆ ˆ( )d .

aV
U tr VS E               (13)

In addition, the relationship between the Cauchy
stress and the second Piola-kirchhoff stress can be 
expressed as 

T T T

T T T T T

1 1ˆˆ ˆˆ
ˆ det | |det | |
1 ( ) ( ) .

det | |

r r r r r r
rr

r r

F S F Q S QF F
FF

Q R R USU R R Q
U

(14)

According to the principle of material frame indif-
ference, the stress-strain expression should be for-
mulated based on the pure deformation state. This 
requirement can be approximately satisfied when the 
strain, the stress and their relationships are defined at 
the fictitious state Vr which is very close to Vd, the 
exact state after pure deformation. Thus, if the geo-
metric change is negligible as compared with the
initial configuration at time ta, the incremental strain 
Ê can be simplified using the following infinites-

imal strain

Tˆ ˆ1 ( ) ( )ˆ ˆ ˆ ,
ˆ ˆ2r
u uE E
x x

(15)

where û is the incremental deformation displace-
ment vector. Given that U I and T ,rR R I a simple 
relationship for the incremental stress can be obtained 
from Eq. (14)

T ˆˆ .r Q SQ S                           (16)

From Eq. (16), it can be concluded that compli-
cated stress updates for satisfying the principle of 
objectivity are not required, and the incremental stress 
can be defined as the engineering stress. Then, the 
total second Piola-Kirchhoff stress at time t, defined 
in compliance with the material reference frame, can 
be expressed in the deformation coordinate as

ˆ ˆ ˆ ˆ ˆ .a a rS S S                     (17)

The actual Cauchy stress at the current state can 
be obtained from the total second Piola-Kirchhoff 
stress through a pure rotation, that is

T T T Tˆ .r r r r r r rR R R Q SQR R SR      (18)

Substituting Eqs. (15) and (17) into Eq. (10), the 
virtual strain energy at time t is

ˆ ˆ
ˆ ˆˆ ˆ( ) d ( ) d .

a a
a rV V

U tr V tr V (19)

In Eqs. (17) and (19), the Cauchy stress ˆa is a 
known quantity calculated by Eq. (18) in the previous 
path unit.

Note that in FPM, the evaluation of the virtual 
work is only used for deriving the reaction forces 
acting on particles from each element, instead of 
solving the equivalent weak form of the PDEs of the 
entire system in terms of variational principles as in 
the FEM (Shih et al., 2004).

3 Interaction forces in membrane structures

In this section, a T3 facet membrane element is 
used to evaluate the interaction forces between parti-
cles within the membrane structures. Instead of 
adopting large strain tensors or simple coordinate 
transformations as in the common approaches, a 
physical modeling procedure is developed to handle 
the geometric nonlinearity.

For instance, consider an arbitrary T3 membrane 
element (1-2-3) with thickness h as shown in Fig. 5a, 
in which each node has three translational DOFs in 
the global coordinate system. Because the nodes of 
the element are rigidly connected with the particles, 
the position vectors of node i at times ta and t can be
defined as xa

i and xi (i=1, 2, 3), respectively. Since the 
time interval between ta and t is very small, both the 
material properties and the configuration are assumed
to be unchanged within this time segment. If the 
configuration of the element at time ta is chosen as the 
reference material frame, the displacement increment 
of node i between ta and t is

ui=xi xa
i, i=1, 2, 3.   (20)
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Note that the total nodal displacement increment 
ui includes pure deformation, rigid body translation, 

and rotation. For computational expediency, an effi-
cient kinematical strategy is suggested here to extract 
deformation. As illustrated in Fig. 5b, it is assumed 
that the total rigid body rotation can be divided into 
two components, namely out-plane rotation 1 and 
in-plane rotation 2.

Firstly, the angle of out-plane rotation can be 
conveniently measured by

1=arcsin(|na×n|),              (21)

where na and n denote the normal vectors of a mem-
brane element at time ta and t, respectively. The cor-
responding rotation axial vector is

1 .a

a

n nn
n n

                           (22)

Secondly, to account for the in-plane rotation, 
the element (1-2-3) is moved to make the centroids Ca

and C coincide (Ca and C denote the centroids of the 
elements at time ta and t, respectively), and then every 
node (1, 2, 3) of the element at time t is projected onto 
the plane (1p, 2p, 3p) with normal vector na (Fig. 6a). 
Consequently, the projective nodes (1p, 2p, 3p) and the 
element nodes (1a, 2a, 3a) should be in a same plane. 
Then, the rotation angle with regard to node i can be 
evaluated according to the change of orientation for a 
line connecting node i with the centroid of the ele-
ment, as shown in Fig. 6b,
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ci are the position vectors of node i
with relative to the centroids of the element at time ta

and t, respectively, i.e.,
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a a a
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Then, the angle of in-plane rotation is approxi-
mately measured by the average of three node rota-
tions, that is

3

2 2
1

1
3 i

i
.                                 (25)

So far, the total rigid body rotation vector of the 
element (1-2-3) from ta to t can be expressed as

= n = 1n1+ 2n2,                    (26)

where is the angle of total rigid body rotation, and n
is the corresponding rotation axial vector, n =[l m n]T.

Next, assume that the element (1-2-3) translates 
first with a fictitious reverse displacement ( u1) to 
make the nodes 1 and coincide, and then undergoes 
a fictitious reverse rotation ( ) to arrive at the ficti-
tious position Vr with the nodal labels changed to 
(1r-2r-3r), as shown in Fig. 7a. When the fictitious 
reverse motion is completed, the pure deformation of 
the analyzed element can be obtained from a com-
parison of the configurations between the fictitious 
state Vr (1r-2r-3r) and the reference state Va (1a-2a-3a). 
Therefore, the deformation displacement vector of 
node i from ta to t is 

d
1 0 ,                                                (27a)
d r *

1 1( ) ( )( ),
2, 3,

i i i i i

i
u u R x x

(27b)

where i and r
i are the total displacement increments 

of node i relative to node 1 and the rigid body dis-
placement increment due to the fictitious reverse 
rotation of node i, respectively, and 

*

2

( ) ( )
1 cos( ) ( ) sin( ) ( ),

R R I
n n

(28)

where R is a rotation matrix, I is a 3×3 identity matrix, 
and (n ) is an angular velocity matrix expressed in 

terms of the components of the axial vector n (Be-

lytschko et al., 2000),
0

( ) 0
0

n m
n l
m l

n .

To evaluate the work equivalent internal forces
acting on particles, a shape function with the same 
form as that developed in FEM is introduced for de-
scribing the strain distribution within the element.
While different from the total displacements em-
ployed in FEM, the nodal variables here only account 
for the deformation. Therefore, the redundant DOFs 
corresponding to the rigid body modes must be 
eliminated to reduce the total independent variables to 
the correct number. To this end, a set of deformation 
coordinate systems are defined, with the origin lo-
cating at node 1 and the x̂ axis parallel to the de-
formation displacement vector of node 2, d

2 (also 

can be replaced by d
3 ), as shown in Fig. 7b. The 

basic vectors of x̂ , ˆ,y and ẑ axes are denoted by 
ˆ ,xe ˆ ,ye and ˆ ,ze respectively, that is

d 3 1
2d

3 12

ˆ ˆ1ˆ ˆ ˆ,   ,   .
ˆ ˆx z a y
e ee e n e
e e
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Fig. 7 Evaluation of interaction forces
(a) Fictitious reverse translation ( u1) and rotation ( ); (b) 
Deformation displacements in the deformation coordinate
system

(a)

(b)

x

y

z

x

x
y

z

y

z

e1

eye z

2a

3a

1a1r

2r

3r

3
d

v1 = 0
u1 = 0

v3

u3

na

2
d

2
du2

u2

v2 =0
w2=0w1=0

w3 =0

=,

=
ex= 2

d

2
d



Yang et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2014 15(4):255-271 263

Before the evaluation of the interaction forces 
can be implemented in the deformation coordinates, 
the deformation vector d

i should be transformed to 
the new coordinate system first by 

T dˆˆ ˆ ˆ ˆ , 1, 2, 3,i i i i iu v w iu Q (30)

where 
Tˆ ˆ ˆ ˆ    x y zQ e e e represents the coordinate 

transformation matrix from the global coordinates (x,
y, z) to the local deformation coordinates ˆ ˆ ˆ( , , ).x y z

In the new coordinate system, six components 
(i.e., 1 1 1 2 2 3 3 3ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , u v w v w u v w ) are zero, which 
implies that six DOFs are deleted. The remaining 
three non-zero deformation components are inde-
pendent, and for convenience, they can be expressed 

in a condensed form, i.e., T*
2 3 3

ˆ ˆ ˆ ˆu u vd . Thus, the 
deformation displacements at an arbitrary point 
within the membrane element can be described by a 
set of linear interpolation functions similar to those in 
FEM, 

3
* * *

2

ˆˆ ˆˆ ˆ ,i i
i

Nu N d u                  (31)

where T*ˆ ˆ ˆi i iu vu is a condensed nodal deformation 

vector, and ˆ
iN and *N̂ are the shape function and the 

corresponding matrix form, respectively, where

1
ˆ ˆ ˆ( ) /i i iN x y (i=2, 3), 1 2 3 3 2ˆ ˆ ˆ ˆ ,x y x y

2 3ˆ ,y 3 2ˆ ,y 2 3ˆ ,x 3 2x̂ . With the de-
formation distribution functions, one can formulate 
the incremental strain and stress in terms of the elastic 
mechanics theory, and hence

2 3 2
* *

3 3
1

2 3 3 3

ˆ01ˆˆˆ ˆ0 0 ,
ˆ

u
u
v

B d (32)

* *ˆˆ ˆ ˆˆˆ ,r a aD D B d                         (33)

where ˆ
aD denotes the constitutive matrix of the ma-

terial under the plane stress condition referring to the 
stress state, and ˆa is the stress value at time ta. If an 

isotropic elastic material is used, the matrix ˆ
aD can 

be written as

2

1 0
1 0ˆ .

11 0 0
2

a
a

ED                 (34)

Then, substituting Eqs. (32) and (33) into Eq. (19), 
one can obtain the equivalent internal forces,

* * T * T * *ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ( ) d ( ( ) d ) ,
a a

a a a aA A
h A h Af B B D B d (35)

where Aa and ha denote the area and the thickness of 
the membrane element at time ta, respectively.

The other three components of nodal forces 
corresponds to the DOFs that have been eliminated in 
the deformation coordinate system, and thus they 
should be determined by the static equilibrium con-
ditions of the element in the ˆ ˆx y plane, namely

2 3 3 2 2 3 3 2
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ0, ( ) / ,z y x x yM f f y f y f x x (36a)

1 2 3
ˆ ˆ ˆˆ 0, ( ),x x x xF f f f                        (36b)

1 2 3
ˆ ˆ ˆˆ 0, ( ).y y y yF f f f                  (36c)

As a matter of fact, this equilibrium condition 
must be imposed to ensure that the internal virtual 
work remains unchanged even if subjected to a su-
perposed rigid body motion, which is a requirement 
of the principle of objectivity for a continuum.

Next, to assemble the equivalent interaction 
forces acting on a conjunct particle (i.e., summed by 
Eq. (3)), all the force components must be trans-
formed to the global coordinate system. In addition, 
the element needs to undergo a forward motion, in-
cluding a translation (+ u1) and a rotation (+ ), and 
to move back to the position at time t. Therefore, the 
actual internal forces at time t can be determined by 

Tint T ˆ( ) , 1, 2, 3,i ix iy iz if f f if R Q f (37)

where
Tˆ ˆˆ 0i ix iyf ff can be derived from Eqs. (35) 

and (36), R is a rotation matrix from Eq. (28) except 
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that the rotation angle should be replaced by (+ ), and 
Q is a coordinate transformation matrix as that in 
Eq. (30).  

In the above formulations, magnitudes and di-
rections of internal forces depend on the estimated 
rigid body rotation that may be not an exact value. A 
correction measure in displacements and rotations is 
thus generated in the subsequent calculation. In other 
words, if a particle moves too far from the equilibrium
position due to the inaccurate evaluation in the pre-
vious step, the errors may exert effect on the calcula-
tion in the following step, which will increase the 
internal force in the opposite direction and pull the 
particle back to the equilibrium position. In short, the 
estimated rotation values, the equilibrium require-
ments of the elements and the equations of motion 
compose a self-predictor-corrector system in a natural
way, which prevents the divergence due to the error 
accumulation.

4 Computational procedure of shape analy-
sis based on the FPM

4.1 Solution strategy for governing equations

Since every item in the governing equations of 
motion is explicitly expressed (Eqs. (1) to (4)), the 
structural response under given initial conditions may 
be explicitly obtained by replacing the nonlinear it-
erations with the recursions over time. Particularly, if 
a damping item is added to Eq. (1) to dissipate the 
kinetic energy of the system, the unbalanced force 
acting on each particle will be gradually reduced. In 
other words, every particle can naturally approach the
equilibrium position and finally come to rest under 
the damping effect when the oscillations are progres-
sively reduced. However, choosing a proper damping 
that is able to attenuate the pseudo-dynamic response
in the shortest time is not easy. Moreover, in this 
study we mainly focus on the accuracy of the 
steady-state solution, while the transient process has 
no physical meaning and thus is not concerned. 
Therefore, to obtain fast convergence to the equilib-
rium shape, a modified integral-form time integration 
strategy is suggested here. 

Firstly, instead of directly solving the second-
order force equation, we convert Eq. (1) into a 
first-order one (i.e., so-called a momentum equation 

of motion (Chang et al., 1998)) by integrating it with 
respect to time once, i.e.,

ext int ,M d F F&                          (38)

where ext extdtF F and int intdtF F represent 

the time integral of the external force and the time 
integral of the internal force, namely the external 
momentum and the internal momentum, respectively. 
In the case of shape analysis, no external forces are 
applied, so ext .0F

Then, assume that every particle satisfies a spe-
cial condition similar to that of an initial value prob-
lem as follows:

,n 0d                                     (39a)

1 ,n 0d                                  (39b)

where 1nd and nd are used to denote the approxima-

tions to 1( )ntd and ( )ntd , the theoretical integrals of 
the displacements from t0 to tn-1 and from t0 to tn,
respectively. This condition implies that the dis-
placement can be considered to be zero before time tn,
namely dn=0 and dn 1=0. Thus, the calculation of the 
integral function of the displacement at the following 
step, 1( )ntd , is independent of the previous trajec-
tory history. In the physical perspective, it suggests 
that the motion of the particles can be deemed to 
re-start from rest at each step. In this manner, the 
pseudo dynamic response of the discretized system 
can be effectively attenuated.

It should be mentioned that the direct integration 
methods can be employed to computer the solutions 
of the new governing equation, and their basic prop-
erties in stability, accuracy, and convergence remain 
unchanged. If an explicit central difference formula-
tion is adopted, an approximation to the velocity of an 
arbitrary particle at time tn can be given by

2
1 1( 2 ) / .n n n n td d d d&             (40)

Substituting Eqs. (39) and (40) into Eq. (38) and 
rearranging terms gives the time integral of dis-
placement at time tn explicitly,
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2 1 ext int 2 1 int
1 ( )n n n nt S t Sd M F F M F .  (41)

Then, the displacement of particle at time tn+1

can be approximated in a finite difference form as

1 int1 1
1

( )
.

2 2
n n

n n
t S

t
d dd M F (42)

In Eqs. (41) and (42), S is a positive parameter 
for accelerating the convergence procedure. The 
physical meaning of factor S is illustrated in Fig. 8. 
With the aid of this scale parameter, it can be expected 
that the rate of convergence will be improved. After a 
large number of trial calculations, it is also found that
an empiric value of S on the order of 102 is appropriate 
when a similar rate of convergence can be obtained. 

The resulting formulation (Eq. (42)) seems sim-
ilar to that of Euler’s method since they both employ 
the explicit difference format, but here we involve 
some special physical and mechanical considerations, 
rather than a pure mathematical technique for solving 
the differential equations of motion.

It also can be found that the proposed time inte-
gration strategy only involves simple algebraic ma-
nipulations for vectors and at each step the solution 
may proceed particle by particle in a numerically 
uncoupled form. As a result, no global stiffness ma-
trices need to be formed, and the requirement for the 
memory storage is very low.

4.2 Procedure for initial stable shape analysis

During the shape analysis implemented by the 
FPM, the calculation of equilibrium is always made 
based on a set of convected material frames, adopting 
a constant prescribed stress 0 as the Cauchy stress (in 
Eq. (35)) at the beginning of each path unit. Moreover, 
we set the fictitious elastic modulus of the membrane 

model to be a very small value to ensure that the stress 
distribution in the equilibrium configuration is close 
enough to that of the specified prestress. However, the 
value of the modulus should not be zero, otherwise 
the self-error-correction mechanism (whereby the 
geometric change of an element can be suppressed by 
the interaction forces in the opposite direction in-
duced by deformation) will become invalid, possibly 
leading to surface inaccuracy and irregular locations 
of particles that may be unusable for the subsequent 
load analysis in the design. After providing an ap-
propriate initial arrangement of particles, we start the 
solution for the equilibrium shape of a membrane 
structure under given boundary conditions in which 
the displacements of the particles attached to the 
supporting systems are constrained. A recurrent cal-
culation has to be carried out until the system reaches 
a steady equilibrium configuration according to the 
convergence criteria for the out-of-balance forces and 
the stress deviations, given by

int
02 2

F Sint
0 02 2

, ,n nF

F
       (43)

where the tolerances F and S are set to be very small 
values, so as to minimize the admissible influence of 
the dynamic response.

The whole solution procedure outlined above for 
finding initial equilibrium shapes of tension mem-
branes is summarized in the flowchart in Fig. 9. A
self-designed C++ program has been developed to 
implement the proposed method that has been used 
for the numerical tests in Section 5. 

5 Examples

To illustrate the performance of the proposed 
methodology, two well-known examples are de-
scribed in this section: a catenoid and a Scherk-like 
surface. Both cases preserve the principle of uniform 
and isotropic tensile stress for driving the membrane 
towards an ideal equilibrium shape that minimizes the 
surface area under given boundary conditions, as
observed in the soap film models (Lewis and Lewis, 
1996; Wüchner and Bletzinger, 2005; Pauletti and 
Pimenta, 2008). The self-coded program for the

Fig. 8 Illustration of the fast solution strategy
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numerical tests is run on a desktop PC with a CPU of 
Inter Core processor i5-2400 3.1 GHz and a memory 
of 4.00 GB RAM. All the results are obtained with the 
fixed tolerance values of F= S=10 3 for the conver-
gence criteria.

5.1 Catenoid 

The catenoid is the only minimal surface of rota-
tional symmetry that can be described analytically, 
and thus it is commonly used as a benchmark 
shape-analysis case (Lewis and Lewis, 1996; Wood,
2002; Ye et al., 2011). The theoretical equation of a 
catenoid surface is given by 

2 2 2 2 2ln( ) ln .z h a x y x y a a (44)

In this example, a=12 m, h=27.5092 m are used and 
the sketch for the curvature shape of the catenary 
along the cross section is shown in Fig. 10.

The initial configuration of the analysis model is 
a conoid shape with fixed constraints imposed on the 
particles lying along the edges of two parallel rings 
with 12 and 60 m in radius and a distance of h apart to 

satisfy the boundary conditions determined by 
Eq. (44). Its geometrical and material properties are 
described in Fig. 11. A state of isotropic prestress, i.e.,

0=[ x y xy]T=[ 0 0 0]T with 0=20 kN/m (force per 
unit width), is re-applied during the analysis process 
in order to obtain a close approximation to the min-
imal surface. Given the symmetric condition of the 
problem, only a quarter of the entire membrane is 
solved. To monitor the trend of convergence, three 
cases with different densities of particles (i.e., 49, 100,
and 196 particles) are considered. An artificial scale 
factor S=100 for increasing the accumulative dis-
placements, a time step t=10 4 s and a fictitious 
elastic modulus 21 kN / mE% are employed for 
these numerical implementations. According to the 
given convergence criteria, the program respectively 
takes 182, 278, and 394 steps (corresponding to the
three different models) to complete the solutions. 

Fig. 12 illustrates the stable-found shape of each 
model after analysis. It is noticed that all the particles 
are reasonably distributed across the final surfaces with 
regular spacing. The surface areas are 12253.217 m2,
12186.362 m2, and 12149.755 m2, respectively, giv-
ing errors within 1.5% of the theoretical value of 
12118.302 m2. At the same time, the maximum root 
mean square (RMS) error (in the model composed of
49 particles) in the z-direction is only 0.431 m, i.e.,
1.567 % of the height.

START

Get initial model (particle positions, material 
properties, boundary conditions, prestress)

Suppress DOFs corresponding to fixed particles

Initialize fictitious modulus                       , 
time increment     , counter n=0, and

generate N path units  

! !!

a c

Construct mass matrix Ma for each particle, and  
set Cauchy stress at ta to prescribed stress

Compute and assemble particle interaction 
forces      and internal momenta

Solve momentum equation of motion to 
obtain displacement of every particle,  

Convergence?
No

No. of cycles 
=Max?

Yes
Results output  

Yes

No

No

END

Yes

n=n+1

To next 
path unit?

Fig. 9 Procedure of shape analysis performed by the FPM
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The geometrical profiles of the sections of final 
surfaces across the diameter of the upper/lower ring 
are compared against the analytical solution in Fig. 13. 
It can be observed that the discrepancy is small even
in the case of a coarse arrangement of particles, and 
the convergence trend is apparent as the surface dis-
cretization is refined.

For comparison, DRM with kinetic damping 
(Lewis and Lewis, 1996) is also programmed and 
applied to this example. Note that the same level of 
discretization is employed by the DRM. The results of 
the comparative study on accuracy of FPM against 
DRM are displayed in Table 1, where the coordinates 
of the points marked with 1–m observed in Fig. 12 are 
presented and the errors are evaluated against the 
exact positions obtained from the theoretical equation. 
It can be found that both methods can provide accu-
rate solutions. The results predicted by the FPM are a 

little closer to the theoretical values, though the im-
provement is very limited. However, the DRM has to 
monitor the kinetic energy of the entire system as the 
iterations proceed. Moreover, an extra effort for es-
timating the precise point of maximum kinetic energy 
and corresponding corrections for displacements are 
repeatedly required whenever an energy peak occurs. 
For the FPM, by contrast, it is not necessary to take 
into account any additional condition during the 
whole analysis process. Furthermore, with the aid of 
the fast integration strategy for static solutions, the 
FPM can handle the shape analysis of tension mem-
brane structures more effectively, which will be fur-
ther investigated in the next example.

(a)

(b)

(c)

Fig. 12 Form-found shapes of tension membranes in the 
form of catenoid
(a) Model 1 with 49 particles; (b) Model 2 with 100 particles;
(c) Model 3 with 196 particles

Table 1 Comparison of the membrane surface coordinates
of the FPM with the exact solutions

Point 
No.

Radius, 
r (m)

Z-component (m) FPM 
error 
(%)

DRM 
error 
(%)

FPM 
results

DRM 
results

Analytic 
values

1 12.461 24.210 24.215 24.195 0.063 0.086
2 13.836 20.985 20.990 20.953 0.153 0.179
3 15.982 18.028 18.034 17.985 0.241 0.275
4 18.753 15.356 15.367 15.310 0.302 0.371
5 22.041 12.954 12.964 12.904 0.391 0.468
6 25.733 10.797 10.811 10.750 0.439 0.564
7 29.732 8.873 8.883 8.825 0.543 0.658
8 34.048 7.113 7.121 7.068 0.640 0.753
9 38.669 5.489 5.496 5.450 0.726 0.848

10 43.563 3.985 3.991 3.954 0.781 0.942
11 48.764 2.573 2.579 2.552 0.803 1.038
12 54.305 1.235 1.238 1.224 0.877 1.136

Note: the numerical results listed above are corresponding to the fairly 
fine analysis model with a density of 196 particles
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Fig. 13 Profiles of the form-found shapes in comparison
with the theoretical solution
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5.2 Scherk-like surface

Like the catenoid, the Scherk-like minimal sur-
face (or referred to as a Box surface) is also a classic 
shape-analysis case, which has been previously 
studied by Maurin and Motro (1998), Brew and Lewis 
(2003), and Yuan et al. (2010). In this example, the 
initial configuration of the analysis model is a box 
shape which consists of three rectangular planes with 
the straight boundaries following the edges of a cube. 
The geometrical and material properties of the box 
model are specified in Fig. 14. To achieve the stable 
minimal surface, an isotropic and uniform prestress 
with 0=20 kN/m and a scale factor S=100 are also 
employed. The fictitious elastic modulus is set as 

21 kN / mE% and the size of time step is t=5×10 4 s.

In the case of a dense arrangement of particles 
(425 particles), the final equilibrium surface spanning 
the rigid boundary frame is represented in Fig. 15. 
The final area of this surface is 246.28 m2, which
shows good coincidence with the exact geometry, as 
that obtained by Yuan et al. (2010).

Here, since the theoretical solution is not known, 
the results generated by DRM based on Barnes’s
formulations (Barnes, 1999) are used for the assess-
ment of accuracy. Figs. 16a and 16b show the profiles 
of the sections of the surfaces across the x-z and y-z
central planes, respectively. A visual comparison 
shows that the discrepancy between the results pre-
dicted by FPM and those generated by DRM is not 
apparent. It also can be found that the center point at 
the top of the profiles lies very closely to midway 
between the top and bottom boundaries, with a slight 
deviation of only 0.536% of the height range, as ne-
cessitated by the zero mean curvature required for the 
minimal surface and the symmetry of the boundaries 
as well. 

For a better investigation of the solution process, 
the variations of kinetic energy (KE) of the entire 
system with the iteration history and the shapes of the 
membrane structure at different steps are plotted in 
Fig. 17. As predicted, the KE becomes smaller and
eventually approaches zero, as more computation
steps are taken in the implementations of both 
methods. In details, it is noticed that the decrease 
trends of KE during the solution process are almost 
the same for both methods, but with the FPM, a much 
smoother convergence process for attenuating the 
pseudo-dynamic oscillations can be achieved within a 
shorter iteration history, when compared with the
DRM with kinetic damping.

Fig. 15 Form-found shape of tension membrane in the
form of Scherk-like minimal surface

Fig. 14 Scherk-like surface: initially assumed analysis model

Mass density, =1.8×103 g/m2,
Young’s modulus, E=600 MPa,
Poisson’s ratio, v=0.37
Thickness, h=0.9 mm
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Table 2 gives the results concerning the relative 
efficiency of the two methods for increasing DOFs, in 
terms of the number of iterations for convergence, the 
amount of time per iteration, and the total runtime 
required by FPM and DRM, respectively. One can 
observe that the slightly more computational effort of 
the FPM per step can be compensated well by the 
fairly decreased number of iterations for completing 
the solutions. Obviously, the FPM using the proposed 
formulations combined with the fast time integration
strategy exhibits a higher convergence rate, so that a 
maximum reduction of solution time up to around 
40% has occurred while a result of equal accuracy 
still can be achieved as compared to the DRM. Based 
on these results, it can be reasonably deduced that the 
FPM has a potential for an efficient analysis of large 
and complex structures with sufficiently fine dis-
cretization for ensuring accuracy. This statement is 
also documented in a comparison of the performance 
between the two methods as shown in Fig. 18, where 
the relationship between the influence of the level of 
discretization input and the time taken for the

calculation to terminate is further illustrated. This 
comparison reveals that the time cost increases ap-
proximately log-linearly with the DOFs for both 
methods, but at a little lower rate for the FPM. To sum 
up, the proposed method can mimic the solutions 
generated by the DRM very well while considerably 
reducing the computational costs, especially when the 
size of the problem is enormous.

6 Conclusions

This study presents a general FPM framework 
for investigating the shape analysis of tension mem-
brane structures under given boundary conditions. An 
efficient numerical procedure of generating viable 
initial equilibrium shapes is given. If this method is 
applied iteratively with constant and isotropic stress 
prescribed at any given point on the surface, it can 
lead to a stable minimal surface. The analysis of two 
classical tension membranes characterized by mini-
mal surfaces has been conducted using a program 
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Fig. 18 Relationship between computational time and 
degrees of freedom for both numerical methods

Table 2 Comparison of the efficiency between FPM and DRM

No. of 
DOFs

DRM FPM Improvement,
DRM FPM

DRM

-

(%)

RMS deviation 
in z-direction 

(m)
No. of 

iterations

Average 
runtime per 
iteration (s)

Total 
runtime (s)

No. of 
iterations

Average
runtime per 
iteration (s)

Total 
runtime (s)

288 592 0.0042 2.483 447 0.0046 2.051 17.4 3.46×10 1

399 648 0.0063 4.075 481 0.0068 3.270 19.8 1.82×10 1

528 697 0.0089 6.204 503 0.0097 4.894 21.1 1.09×10 1

675 745 0.0122 9.079 524 0.0133 6.988 23.0 6.81×10 2

1023 887 0.0203 18.029 554 0.0218 12.098 32.9 3.95×10 2

1275 993 0.0264 26.215 561 0.0281 15.792 39.8 2.73×10 2

Fig. 17 Convergence process for kinetic energy (KE) of the 
entire system
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following the proposed formulations and solution 
strategies. 

In FPM, the rigid body motion can be simply 
decomposed from the total displacement increments 
by fictitious reverse motion without complicated and 
time-consuming matrix operations, which makes it 
convenient to deal with nonlinear problems. At the 
same time, the modified explicit time integration 
strategy which is expressed in the form of momen-
tums in place of forces, can efficiently reduce the 
computational effort in search of a steady equilibrium 
shape. Besides, during the entire analysis, no global 
stiffness matrices need to assembled or solved, and no
iterations to follow nonlinear laws are necessary as 
well. Moreover, the effect of prestress can be readily 
exerted on the particles, and the final equilibrium 
shape can be naturally obtained as the limit of the 
pseudo oscillations without introducing any special 
treatment or modification to cope with the common 
numerical instabilities. Thus, it has inherent ad-
vantages in the shape analysis of tension membranes.

From the numerical examples, the ability of the 
proposed method to obtain the accurate minimal
surfaces of tension membrane structures has been 
verified by the comparisons with the analytical solu-
tions and the numerical solutions of the DRM. It also 
has been proved that the FPM is much more efficient, 
in terms of the total CPU time required for conver-
gence, than the DRM. In addition, no significant mesh 
distortion that may lead to poor representation of a 
surface occurs in this study. All these facts indicate a 
great promise for developing FPM into a general and 
effective method for shape analysis and further shape 
optimization of large-scale complex tensile structure 
systems that have potential applications in civil and 
aerospace engineering. 
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