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Numerical analysis of a nonlinear double disc rotor-seal system*
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Abstract: Based on the finite element method (FEM) and the Lagrange equation, a novel nonlinear model of a double disc 
rotor-seal system, including the coupled effects of the gravity force of the discs, Muszynska’s nonlinear seal fluid dynamic force,
and the mass eccentricity of the discs, is proposed. The fourth order Runge-Kutta method is applied to solve the motion equations 
of the system and numerically determine the vibration response of the center of the discs. The dynamic behavior of the system is 
analyzed using bifurcation diagrams, time-history diagrams, axis orbit diagrams, Poincaré maps, and amplitude spectrums. With 
the rotor speed increasing, the system presents rich forms including periodic, multi-periodic, quasi-periodic, and chaotic motion. 
We also discuss the effects of the distance between the two discs, the mass of the discs, seal clearance, seal length, and seal drop 
pressure on the dynamic behavior of the system. The numerical results demonstrate that a symmetrical disc structure, small disc 
mass, proper seal clearance, long seal length and high seal drop pressure can enhance the stability of a double disc rotor-seal 
system. The results provide a theoretical foundation for the design of multi-stage sealing systems.
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1  Introduction

External excitations, such as the oil-film force of 
journal bearings or the fluid exciting force inside the 
seal structure between a stator and rotor, are important 
factors that may induce instability in modern rotating 
machinery. The effect of the fluid exciting force in a 
multi-stage centrifugal pump, shrouded turbine, 
steam turbine, and other rotating machinery that in-
cludes a multi-level sealing structure can be very 
significant (Yuan et al., 2007; Megerle et al., 2013). 
Research on the mechanisms of fluid-solid interaction 
and the influence of nonlinear seal force on rotor-seal 
systems has become a priority for the safe operation 
of rotating machinery.

Many experimental studies have been carried out 

on the dynamic characteristics of various seals 
(Kaneko et al., 2003; Smalley et al., 2006; Childs et 
al., 2007). Muszynska (1988) and Muszynska and 
Bently (1990) proposed a nonlinear seal fluid dy-
namic force model that considered the circulating 
velocity as the key factor affecting the stability of the 
rotor system. Fei et al. (2013) developed a procedure, 
based on the finite element method (FEM), which can 
calculate the dynamics of dual rotor systems and 
obtain the coupling motion equations of the subsys-
tems. Li et al. (2011) applied the Hamilton principle 
and the FEM to establish a new dynamic model of a 
rotor system. The model was used to analyze the 
dynamic behavior of a rotor system based on the 
Timoshenko model, with the coupled effects of the 
nonlinear oil film force, the nonlinear seal force, and 
the mass eccentricity of the disc. Ding et al. (2002) 
investigated the Hopf bifurcation behavior of a 
symmetric rotor-seal system using Muszynska’s non-
linear seal fluid dynamic force model. They discov-
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ered that for a perfectly balanced system, the insta-
bility from certain critical equilibrium positions 
proved to be the result of Hopf bifurcation and only 
the supercritical type was found for a specific rotor 
system using Poore’s algebraic criteria. Li et al.
(2007) analyzed the influence of a labyrinth seal on 
the nonlinear characteristics of a rotor-
labyrinth seal system with a sliding bearing, and 
judged the system’s stability using the Floquet theory 
and the bifurcation theorem. Wang and Wang (2010) 
researched the nonlinear coupling vibration and bi-
furcation of a high-speed centrifugal compressor with 
a labyrinth seal and two air-film journal bearings 
under different conditions of pressure drop and seal 
length. The Muszynska nonlinear seal model was also 
used successfully by Hua et al. (2005) to investigate 
the Hopf bifurcation and stability of a rotor-seal sys-
tem using a high-precision direct integration method. 
Wang et al. (2009a; 2009b) established a nonlinear 
mathematical model for orbital motion of a rotor 
under the influence of leakage flow through a laby-
rinth seal. They found that the destabilization speed of 
the rotor was reduced due to the aerodynamic force 
induced by the leakage flow through the interlocking 
seal.

Although previous studies paid much attention 
to the dynamic behavior of rotor-seal or rotor-
bearing-seal systems, only the Jeffcott rotor system 
was considered. No model was developed for a non-
linear double disc rotor-seal system with a coupled 
effect between the two discs based on the Lagrange 
equation and FEM. There is an urgent need to re-
search the mechanisms of interaction of different 
levels of the impeller seal force in multi-stage sealing 
systems. In this paper, a nonlinear double disc rotor-
seal system model is established, based on the 
Lagrange equation and FEM. Equations of motion, 
considering the Muszynska nonlinear seal force, are 
solved by the fourth-order Runge-Kutta method. The 
nonlinear characteristics of the double disc rotor-seal 
system are presented in the form of bifurcation dia-
grams, time-history diagrams, axis orbit diagrams, 
Poincaré maps, and amplitude spectrums. The effects 
of the distance between the two discs, the mass of the 
discs, seal clearance, seal length and seal drop pres-
sure on the dynamic behavior of the system are also 
studied, and linear and nonlinear seal models are 

compared.
2 Model of a double disc rotor-seal system

A typical double disc rotor-seal system, con-
sisting of a rotating shaft, wheel, nonlinear seal force 
and clamped support at each end of the shaft, was 
modeled (Fig. 1), where L1 is the length between the 
left edge of the shaft and the left disc, L2 is the length 
between the left and right discs, L3 is the length be-
tween the right disc and the right edge of the shaft, dd

is the diameter of the disc, md1 is the mass of the left 
disc, and md2 the mass of the right disc.

A finite element model of the system was estab-
lished (Fig. 2). The system is divided into a total of 
four nodes and three shaft elements. Each node has 
four degrees of freedom, including two translational 
and two rotational motions. Nodes 1 and 4 are the 
supporting points, which are allowed only rotational 
motions, and nodes 2 and 3 bear both the gravity force 
of the disc and the nonlinear seal force, where Fsx is 
the seal force in the x-direction, and Fsy the seal force 
in the y-direction. The subscripts 1 and 2 denote the 
left and right discs, respectively, where the subscript 
‘s’ denotes the seal.
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Disc Disc
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Fig. 1  Double disc rotor-seal system

Fig. 2  Finite element model of a double disc rotor-seal
system
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3 Component equations and system motion 
equations

Considering the double disc rotor-seal system is 
a multi-degree of freedom and non-conservative 
system, the Lagrange equation was applied to estab-
lish the motion equation of the double disc rotor-seal 
system. The non-conservative system Lagrange 
equation usually can be described in the following 
form:

d ( ) ,
d j

j j

T T V Q
t u u

(1)

where T is the kinetic, V is the strain energy, uj are 
independent generalized coordinates, and Qj are gen-
eralized forces.

3.1 Rotating coordinate

The kinetic energy and strain energy of the 
components, shaft units and disc, can be derived using 
the projected angle method (Li et al., 2011). Fig. 3 
shows a schematic map of a rotating coordinate and 
A-xyz is the fixed coordinate. Because of the unbal-
anced force of the disc, at a certain rotation speed ,
deformation of the shaft would occur, causing the 
center line of the disc to be no longer collinear with 
the undeformed rotor center line. A rotating coordi-
nate system o - , is attached to the disc and rotates 
synchronously with the rotor. is the angle between 
the and z axes, and x, y are the angular displace-
ments, defined as the angles between the z axis and 
the projection of the axis onto the x-z and y-z planes, 
respectively. L is the length of the shaft, Ld is the place 
of disc center in the z direction, and r is the distance of 
disc center in x-y plane.

The absolute angular speed in the o - co-
ordinate can be transformed to be rotation speed, 
expressed by the A-xyz coordinate (Zhong, 1987). The 
relationship between the fixed A-xyz coordinate and 
the o - coordinate attached to the disc can be de-
scribed as follows:

cos cos sin

sin cos cos ,

sin

y

y

y

(2)

where , are relative rotation angles between the 
o - coordinate and the A-xyz coordinate when the
-axis and -axis are respectively, fixed in turn. , ,

and are the components of in o - coordinate.
Considering x and , Eq. (2) can be 

written as

cos cos sin 0
sin cos cos 0 .

0 sin 1

xx

x y

x

(3)

3.2 Rigid disc

For a rigid disc, the strain energy would be ig-
nored and its degrees of freedom can be expressed by 
two translational displacements x, y and two rota-
tional displacements x, y. Let

T T
d dy[ , ] [ , ], ,y xx x yu u

then the kinetic energy of the disc for lateral motion is 
given by (Zhong, 1987)
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where Jd is the diametric moment, and Jp is the polar 
Fig. 3  Schematic map of rotating coordinates
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moment of inertia of the disc.
Substituting Eq. (4) into Eq. (1), the motion 

equations of a rigid disc can be obtained as

d d d d

d d d d

,

,
x y x

y x y

M u Ju q
M u Ju q

    (5)

where the subscript ‘d’ denotes the disc and qdx, qdy are 
generalized forces corresponding with udx, udy,
respectively.

3.3 Elastic shaft element

Fig. 4 shows an elastic shaft element, including 
two nodes A and B, i.e., with eight degrees of free-
dom. Define the generalized coordinates

T
e [ , , , ] ,A yA B yBx x xu

and
T

e [ , , , ]A xA B xBy y yu .

The generalized coordinates of a typical point 
internal to the element can be described by the end-
point of the shaft (Nelson and McVaugh, 1976; 
Zhang, 1990):

e e, ,x yx Nu y Nu                              (6)

e e, ,y x x yN u = N u                (7)

where

1 2 3 4[ ],N N N NN 1 2 3 4 ,N N N NN
N1 s/l)2+2(s/l)3, N2=l[s/l 2(s/l)2+(s/l)3],
N3=3(s/l)2 2(s/l)3], and N4=l s/l)2+(s/l)3].

Similarly, the kinetic energy and strain energy 

also can be described as a function of the displace-
ments and velocity of the elastic shaft element nodes 
and obtained by computing an integral over the length 
of the element (Zhong, 1987). The kinetic energy and 
strain energy can be calculated as follows:

T T
e e e e

T
e e

e eT eR eT eR

e pe ,

1 1( ) ( )
2 2

1
2

x x y y

x y

T

j l

u u u u

u u
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J
(8)

T T
e e e ee e e ,1 1

2 2x x y yV u u u uK K                       (9)

where

T T
p0 0eeT d , d ,

l l
z j zM N N J N N

T T
d0 0eR d , d ,

l l
j z EI zeM N N K N N

where is the mass of shaft element unit length.
Substituting Eqs. (8) and (9) into Eq. (1), the 

motion equations of the elastic shaft element can be 
obtained as

e e e e e e e

e e e e e e e

,

,
x y x x

y x y y

M u J u K u q
M u J u K u q

             (10)

where subscript ‘e’ denotes the elastic shaft element
and qex, qey are generalized forces corresponding with 
uex, uey, respectively, which are always ignored.

3.4 Nonlinear seal force model

Muszynska’s nonlinear seal fluid dynamic force 
model was adopted to describe the nonlinear seal 
force acting on the discs. Muszynska’s model has 
been widely used to describe the nonlinear charac-
teristic of seal force and can be expressed as follows 
(Muszynska, 1988; Hua et al., 2005):

2 2
s s s s

2 2
s s s s

s s

s s
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s

2

2

0

0
,

x

y

F K m C x
F yC K m
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m C y

m x
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(11)

Fig. 4  Elastic shaft element
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where 
12

s 0 (1 ) ,nK K 12
s 0 (1 ) ,nC C 2

0 (1 ) ,n

n1=0.5–3, n2=0–1, 0<0.5, =(x2+y2)1/2/c, c is the ra-
dial clearance of the seal, and K0, C0, and ms are ex-
pressed through the short bearing model of Childs 
(1983).

3.5 System motion equations

For a double disc rotor-seal system, the motion 
equations of the system can be derived by assembling 
the motion equations of all elastic shaft elements and 
discs as follows:

de de de d

de de de d

,

,
x y x x

y x y y

M u J u K u = Q
M u J u K u = Q

(12)

where ux=[x1, y1, x2, y2, x3, y3, x4, y4]T, uy=[y1, x1,
y2, x2, y3, x3, y4, x4]T, Mde, Jde, and Kde are the 
mass matrix, gyroscopic matrix, and stiff matrix,
respectively, including all elastic shaft elements and 
discs. Qdx and Qdy are generalized force vectors of 
discs.

Considering the constrained translational dis-
placements in the x-axis and y-axis of nodes 1 and 4 
respectively, the effect of gravity force and seal ex-
citing force, but ignoring tiny rotational displace-
ments, the motion equations of a double disc rotor-
seal system can be expressed as follows:

,Mu Cu Ku Q G                    (13)

where
Q=[Qd1x+Fsx, Qd2x+Fsx, Qd1y+Fsy, Qd2y+Fsy]T,
Qd1x=md1ed1

2cos( t), Qd1y=md1ed1
2sin( t),

Qd2x=md2ed2
2cos( t), Qd2y=md2ed2

2sin( t),
u=[x2, x3, y2, y3]T, G=[0, 0, md1g, md2g]T.

Introducing the following non-dimensional 
transform:

X=x/cs, Y=y/cs, t = t,

s ,Xx c s ,y c Y

s
2 ,Xx c s

2 ,y c Y

where cs is the radial clearance of the seal.
Substituting the expressions into Eqs. (11) and 

(13), the dimensionless system motion equation can 
be obtained as

2 2
s

,
c

C K G
U U U

M M M
Q (14)

where

Q=[md1ed1
2cost +F sx, md2ed2

2cost +F sx, md1ed1
2

×sint +F sy, md2ed2
2sint +F sy]T,
2 2

s s s

2 2
s s s
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s s s

2
s s

s
s

s

2 0

2 0
,

x

y

C m mX X
c c

m C Y m Y

F K m C X
c

F YC K m

U=[X2, X3, Y2, Y3]T.

Eq. (14) is a second-order differential equation
including coefficient matrices, which describes the 
nonlinear motion of the double disc rotor-seal system. 
The dimensionless equation of motion is difficult to 
solve by conventional perturbation methods (Li, 
2011). Therefore, the fourth-order Runge-Kutta 
method was applied to obtain the numerical response 
solutions of the system.

4 Numerical results and discussion

Considering the seal parameters Ks, Cs, and are 
nonlinear functions of displacements of the two discs, 
the motion equation, Eq. (14), shows strongly non-
linear characteristics. The bifurcation diagrams show 
the variation course of the motion of the system. 
Time-history diagrams, axis orbit diagrams, Poincaré 
maps and amplitude spectrums are also presented to 
analyze the nonlinear vibration of the double disc 
rotor-seal system. The main parameters and values of 
the seals, and of the discs and shaft used in the nu-
merical calculation, are shown in Tables 1, 2, and 3,
respectively. The experimental coefficients of the seal 
are listed in Table 4.

Table 1  Main parameters and values of seals

Seal Radius 
(m)

Clearance 
(mm)

Length 
(m)

Pressure 
drop (MPa)

Viscosity 
(Pa s)

Left 0.5 0.4 0.06 0.05 0.001

Right 0.3 0.8 0.06 0.05 0.001
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4.1 Influence of the rotor speed 

Rotor speed is an important parameter of rotat-
ing machinery which significantly influences the
vibration characteristics and dynamic response of 
rotor-seal systems. To investigate bifurcation, we 
chose the rotor speed (changing from 500 r/min to 
9200 r/min) as abscissa and the dimensionless dis-
placements X2 and X3 as ordinates. The dimensionless 
time ranged from 0 to 600 and every period was 
divided into an average of 256 parts considering the 
fast Fourier transform (FFT). To ensure accuracy of 
the results, the preceding half iterative results were 
discarded. The results showed that the double disc
rotor-seal system would exhibit periodic, double-
periodic, multi-periodic, and quasi-periodic motion as 
the rotor speed increases (Fig. 5).

The bifurcation diagrams show that the vibration 
amplitude at a rotor speed of about 1050 r/min is 
higher because of the occurrence of primary reso-
nance. When the rotor speed is less than 2180 r/min, 
there is just one solution, which indicates that the
system is in period-one motion, that is, the motion of 
the two discs occurs with the same frequency as the 
rotor speed. However, once the rotor speed runs over 
2180 r/min, the system loses stability and turns into 
period-two motion. In the range [2320, 2610] r/min, 
quasi-periodic, period-four, and period-eight motion 

appear. With increasing rotor speed, the period-two 
motion appears again until the rotor speed reaches 
3120 r/min. Quasi-periodic, multi-periodic (including 
period-six and period-three motion), and chaotic mo-
tion are found in the range [3120, 5290] r/min. Then, 
the motion of the two discs returns to period-
one bifurcation and subsequently changes from 
period-one motion to quasi-periodic and chaotic mo-
tion as the rotor speed increases. Finally, chaotic 
motion is encountered when the rotor speed is greater 
than 8310 r/min. The motion status of the two discs is
also represented by the time-history diagrams, the 
axis orbit diagrams, the Poincaré maps and amplitude 
spectrums (Figs. 6–9, p.45-46).

Fig. 6 illustrates the dynamic response of the 
double disc rotor-seal system at =1200 r/min. The 
system has the same whirl frequency as the frequency
of excitation force and has an isolated point in the 
Poincaré map corresponding to one part of the fre-
quency of the amplitude spectrum, collectively 
demonstrating that the system exhibits stable syn-
chronous vibration. The axis orbits of the two discs 
are clearly elliptical, whirling around the points (0.42, 

, respectively. When the rotor 
speed increases to =4420 r/min (Fig. 7), the time-

Table 2  Main parameters and values of the discs

Disc Mass (kg) Dentist (kg/m3) Mass eccentricity 
(mm)

Left 120 7830 0.27
Right 180 7830 0.25

Table 3 Main parameters and values of the shaft

Parameter Value Parameter Value
L1 (m) 0.7 Diameter (m) 0.5
L2 (m) 0.3 Dentist (kg/m3) 7830
L3 (m) 1.0 Elastic modulus (Pa) 2.078 1011

Table 4 Experimental coefficients of seal

Parameter Value Parameter Value
n0 0.079 n1 2
m0 0.25 n2 0.5

0 0.4

(r/min)

X
2

(a)

(r/min)

X
3

(b)

Fig. 5 Bifurcation diagrams of left (a) and right (b) discs
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history shows the system no longer has stable 
synchronous vibration. The vibration period becomes 
three times greater than the period of the excitation 
force at this rotor speed and the axis orbits begin to 
diverge. Three isolated points in the Poincaré maps 
and three isolated frequency parts indicate period-
three motion. Fig. 8 shows the numerical analysis 

results at =6150 r/min, representing the quasi-
periodic motion. The axis orbits of the two discs show 
irregular motion and no obvious period can be found 
in the time-history diagrams. There is a closed curve
in the Poincaré maps and some frequency parts have 
no common divisor in the amplitude spectrum, clearly

Fig. 6  Numerical analysis of left (a) and right (b) discs at =1200 r/min
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indicating that the motion of the system is quasi-
periodic. At =8650 r/min, the vibration amplitudes 
of the two discs are much higher than previously. The 
axis orbits are becoming completely disorganized. 
The Poincaré point no longer has finite isolated points 
or a closed curve, and in the amplitude spectrum di-
agram, continuous spectrum occurs, collectively 
demonstrating that the system exhibits chaotic 
motion.

To study the specific effects of other key pa-
rameters on the double disc rotor-seal system, we 
obtained the bifurcations of both discs, in which the 

distance of the right disc L3, the mass of disc md2, the 
seal clearance cs2, and the seal clearance Ls2 are la-
beled as the abscissa, i.e., as variable parameters.

4.2 Influence of the distance of the right disc L3

The bifurcation behavior diagrams are presented
in Fig. 10 for when the distance of the right disc L3 is 
employed as the variable parameter, ranging from 
0.2 m to 1 m. The distance between the left and right 
discs also varies with L3 because the distance of the 
right disc L1 is fixed. The other main parameters are 
L1=0.6 m, md2=180 kg, cs2=0.8 mm, Ls2=0.06 m, and
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Fig. 9 Numerical analysis of left (a) and right (b) discs at =8650 r/min
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Fig. 10 Bifurcation diagrams of left (a) and right (b) discs with increasing L3
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=4000 r/min. Other parameters remain unchanged. 
The main motion characteristics can be summarized 
from Fig. 10. As L3 increases: multi-periodic motion

quasi-periodic motion multi-periodic motion
quasi-periodic motion periodic motion multi-

periodic motion periodic motion. Note that the 
system shows stable synchronous vibration when L3

ranges from 0.52 m to 0.66 m, which reveals that the 
stability of a symmetrical double disc rotor-seal sys-
tem is better than that of an asymmetrical system. 
When L3 is higher than 0.76 m, stable synchronous 
vibration becomes the main motion, though period-
two motion occurs within a narrow range.

4.3 Influence of the mass of disc md2

The bifurcation behavior diagrams are presented 
in Fig. 11 for when the mass of disc md2 is employed 
as the variable parameter, ranging from 20 kg to 
150 kg. The other main parameters are L1=0.7 m, 
L3=1 m, cs2=0.8 mm, Ls2=0.06 m, and =3000 r/min. 
The main motion characteristics can be summarized 
as follows. As md2 increases: periodic motion mul-
ti-periodic motion alternating with quasi-periodic 
motion. Clearly when the mass of disc md2 is less than 
34 kg, the system shows stable synchronous vibration.

But as md2 increases, the system not only loses its sta-
bility, but the vibration amplitude also becomes larger 
and the motion state changes frequently in certain 
zones, ranging from [54.5, 63] to [72.5, 85] kg. The 
results indicate that a small mass is good for the sta-
bility of a double disc rotor-seal system.

4.4 Influence of the seal clearance cs2

Fig. 12 shows the bifurcation behavior diagrams 
for when the seal clearance cs2 is adopted as the var-
iable parameter, ranging from 0.3 mm to 0.9 mm. The 
other main parameters are L1=0.7 m, L3=1 m, 
md2=180 kg, Ls2=0.06 m, and =3000 r/min. The 
main motion characteristics can be summarized as 
follows. As cs2 increases: multi-periodic motion
quasi-periodic motion multi-periodic motion
periodic motion multi-periodic motion quasi-
periodic motion multi-periodic motion. The dia-
grams indicate that a proper seal clearance cs2, rang-
ing from 0.376 mm to 0.54 mm, can make the double 
disc rotor-seal system stable. Quasi-periodic motion 
also occurs in narrow zones and as c2 increases, 
period-four motion emerges and changes to period-
two motion when cs2=0.617 mm and 0.662 mm,
respectively.

Fig. 11  Bifurcation diagrams of left (a) and right (b) discs with increasing md2
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4.5 Influence of the seal length Ls2

Fig. 13 shows the bifurcation behavior diagrams 
for when the seal length Ls2 is adopted as the variable 
parameter, ranging from 0.06 m to 0.15 m. The other 
main parameters are L1=0.7 m, L3=1 m, md2=180 kg, 
cs2=0.8 mm, and =3000 r/min. With increasing Ls2,
the main motion characteristics can be summarized as 
follows: period-two motion quasi-periodic motion

periodic motion. Fig. 13 shows that compared with 
the previous bifurcation diagrams, the vibration form 
is single and the system shows period-two motion 
over a large range as the seal length Ls2 increases, 
turning to quasi-periodic motion when Ls2 reaches 
0.121 m. The oscillating region of the system then 
starts to decrease and becomes periodic motion when 
Ls2 is larger than 0.13 m. The results indicate that a 
larger seal length is beneficial for improvement of the 
system.

4.6 Influence of the seal drop pressure P2

The bifurcation behavior diagrams are presented 
in Fig. 14 for when the seal drop pressure P2 is em-
ployed as the variable parameter, ranging from 
0.05 MPa to 0.4 MPa. The other main parameters are 

L1=0.7 m, L3=1 m, md2=180 kg, Ls2=0.06 m,

=3000 r/min, and cs2=0.8 mm. The main motion 
characteristics can be summarized as follows. As P2

increases: quasi-periodic motion multi-periodic 
motion periodic motion. The diagrams clearly in-
dicate that within the range [0.05, 0.4] MPa, the rotor-
seal system becomes more stable with a higher seal 
drop pressure than with a lower one. Unstable quasi-
periodic and multi-periodic motion occurs within the 
range [0.05, 0.104] MPa and the system becomes 
stable with increasing P2.

4.7 Comparing linear and nonlinear models

Noah and Sundararajan (1995) discussed the 
limitations of linearized analysis and the significance 
of considering nonlinear effects in predicting the 
dynamic characteristics of rotating systems. They 
pointed out that nonlinear analysis presents a more 
realistic representation of a rotating system than lin-
ear analysis. Fluid-film forces, including journal
bearings, squeeze-film dampers, and annular liquid/
gas seals, are highly nonlinear functions of journal 
displacement and velocity. The linear seal fluid dy-
namic force model proposed by Childs (1983) was 
adopted to describe the linear seal force. The linear 

Fig. 12  Bifurcation diagrams of left (a) and right (b) discs with increasing cs2
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model can be expressed as follows: s 1 2 1 2

s 2 1 2 1

s

s

0

0
,

x

y

F K K C Cx x
F K K y C C y

m x
m y
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Fig. 14 Bifurcation diagrams of left (a) and right (b) discs with increasing P2

Fig. 13 Bifurcation diagrams of left (a) and right (b) discs with increasing Ls2

Ls2 (m) Ls2 (m)

X
2

Y
2

(a)

Ls2 (m) Ls2 (m)

X
3 Y

3

(b)



Zhou et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2014 15(1):39-5250

where K1= 3( 0 2
2T2/4), K2= 1 3 /2, C1= 1 3T,

C2= 2 3 T2, ms= 1 3T2, 0, 1, 2, 3, and T are ex-
pressed through the short bearing model (Childs, 
1983).

The bifurcation diagrams of the system using a 
linear seal force model are shown in Fig. 15. The 
parameters used in the system are in accord with those 
of the nonlinear model. The bifurcation diagrams 
demonstrate that when the rotor speed is less than 
about 1000 r/min, the vibration amplitudes of the two 
discs are similar to those of the nonlinear model and 
the system exhibits stable motion. However, as the 
rotor speed continues to rise, the vibration amplitudes 
increase first, and then decrease until the rotor speed 
reaches 2400 r/min. When the rotor speed runs over 
2400 r/min, the system changes from stable period-
one motion to unstable motion. The system loses 
some vibration characteristics compared with the 
bifurcation diagrams in Fig. 5, which is consistent 
with the results of Noah and Sundararajan (1995). Not 
only are vibration characteristics lost, but also the rub 
phenomenon emerges. In fact, Child (1983)’s linear 
seal model strictly applies only for small motion 
about the centered position and the nonlinear seal 
force model can be transformed into a linear seal 
force model under specific conditions. Thus, Child
(1983)’s linear seal model is an instantiation of the 
nonlinear seal model of Muszynska (1988). Although 

the dynamic coefficients of the linear seal model 
consider the effects of seal clearance and fluid inertia, 
they are still far from the actual seal force compared 
with Muszynska (1988)’s nonlinear seal model, es-
pecially when solving nonlinear problems.

5 Conclusions

This paper deals with nonlinear vibration char-
acteristics of a double disc rotor-seal system with 
coupled nonlinear seal forces. The model and the 
motion equations of the double disc rotor-seal system 
are established by FEM and the Lagrange equation. 
Compared with traditional modeling methods, this 
method is more convenient for studying complex 
multi-stage rotor-seal systems. The fourth-order 
Runge-Kutta method is used to solve the motion 
equations of the system and numerically determine 
the vibration response of the two discs. The nonlinear 
dynamic characteristics of the double disc rotor-seal 
system are represented by bifurcation diagrams, 
time-history diagrams, axis orbit diagrams, Poincaré 
maps, and amplitude spectrums, with the rotor speed 
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Fig. 15 Bifurcation diagrams of left (a) and right (b) discs with a linear model
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increasing. The results show that the coupled seal 
force has great influence on the dynamic stability of 
the rotor-seal system. The effects of the key parame-
ters, including distance between the two discs, mass 
of the disc, seal clearance, seal length, and seal drop 
pressure, are also analyzed. The numerical results 
show that the system exhibits rich forms of periodic, 
multi-periodic, quasi-periodic, and chaotic motion, 
and that a symmetrical disc structure, small disc mass, 
proper seal clearance, long seal length, and high seal 
drop pressure are propitious for improving the stabil-
ity of the system and avoiding severe vibration. 
Compared with a linear seal model, the nonlinear seal 
model is more suitable for solving nonlinear vibration 
problems and analyzing actual situations. These re-
sults provide a theoretical foundation for further re-
search on multi-stage rotor-seal systems.

In actual structures of rotating machinery with 
multi-stage sealing, in addition to the sealing of the 
impellers, bearings are applied at both ends to support 
the rotor system. These have a significant impact on 
the vibration performance of the rotor system. For 
future research to improve multi-stage rotor-seal 
systems, further work is needed on the effect of such 
bearings.
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