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Abstract:    The optimal arrangement of viscoelastic dampers (VEDs) used to link two adjacent shear-type structures under 
seismic excitation was investigated. A two-step optimal design method is proposed. First, optimal parameter expressions of the 
Kelvin model are used to calculate the optimal stiffness and damping coefficient of the VEDs. Then, using the two-step optimal 
design method, taking the quadratic performance index as the optimization objective, the optimal arrangement of the dampers is 
determined. General rules about the optimal arrangement of the VEDs were obtained. The results show that the placement of only 
one damper between two adjacent shear-type structures should be avoided; if more than one damper is used, they should be dis-
tributed on the top and lower floors of the structures. Optimization of the number of dampers had little effect on response reduction. 
The most important factor was the optimization of the placement of the dampers. Through comparative study, for buildings of 
equal and unequal heights, the optimal parameters of dampers from parametric studies were shown to match the theoretical results 
for different numbers and placements of dampers. The level of response reduction was shown to be sensitive to the damping 
coefficient of the dampers. 
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1  Introduction 

 
With rapid economic development, there are 

more large and high buildings in modern cities, re-
sulting in inadequate separation between adjacent 
buildings. When two closely spaced adjacent struc-
tures are subjected to strong earthquakes, they may 
collide (Kasai and Maison, 1997; Abdullah et al., 
2001). Using energy dissipation devices to connect 
adjacent structures has proved to be an effective 
measure to avoid collisions between such buildings 
and to absorb some seismic energy (Bhaskararao and 

Jangid, 2006a; 2006b; 2006c; Takewaki, 2007; Bharti 
et al., 2010; Patel and Jangid, 2011; Roh et al., 2011). 
Passive control devices are efficient for energy dis-
sipation (Lavan and Levy, 2006; Trombetti and 
Silvestri, 2006; Silvestri and Trombetti, 2007). 
Trombetti and Silvestri (2007) investigated the ap-
plicability of a novel scheme for inserting viscous 
dampers in shear-type systems, and provided insights 
for the effective addition of viscous dampers in me-
chanical dynamic systems. Viscoelastic dampers 
(VEDs) are an efficient kind of passive control device 
for suppressing vibration and dissipating energy, with 
the advantages of simple installation, low cost and 
stable performance. There has been a series of studies 
on adjacent structures coupled with VEDs under 
seismic excitation. Xu et al. (1999) carried out a 
theoretical investigation of earthquake-resistance 
performance of adjacent buildings connected by VEDs 
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defined by the Kelvin model, and obtained the optimal 
parameters of dampers through extensive parametric 
studies. Kim et al. (2006) investigated the effect of 
installing VEDs in places such as seismic joints or 
building-sky-bridge connections, and found that the 
displacements of structures were significantly reduced. 
Zhu and Iemura (2000) studied 2-single-degree-of- 
freedom (SDOF) structures connected by VED under 
white noise excitation, and gave the analytical formu-
las for determining the optimal parameters of VED, 
which were determined from the mass ratio and the 
natural frequency ratio of 2-SDOF structures. Zhu et 
al. (2011) and Ge et al. (2010) extended the analytical 
formulas based on 2-SDOF structures to those of 
2-multiple-degree-of-freedom (MDOF) structures, and 
found that total optimal parameters of VEDs between 
2-MDOF structures were determined by the total mass 
ratio and the modal frequency ratio of the structures. 
Thus, the total optimal parameters of VEDs between 
2-MDOF structures can be directly calculated using 
theoretical expressions. However, the controlling ef-
fect of dampers depends not only on the optimization 
of the output forces, but also on the placement of the 
dampers. Where and how many dampers are placed on 
the structures will have a significant effect on their 
ability to reduce the responses of structures (Singh and 
Moreschi, 2002). Ok et al. (2008) studied the optimal 
design of hysteretic dampers that enhance the seismic 
performance of two adjacent structures. However, 
there have been few studies of the optimal arrangement 
of VEDs between adjacent structures. In previous 
studies, dampers have generally been placed on one 
floor (Kim et al., 2006) or uniformly placed on all 
floors (Xu et al., 1999; Ge et al., 2010; Zhu et al., 
2011). According to Zhu et al. (2011), the total optimal 
parameters of VEDs can be easily obtained. If general 
methods for determining the optimal arrangement of 
dampers can also be defined, this will be very useful 
for the application of VEDs. 

The optimal arrangement of VEDs between ad-
jacent structures under seismic excitation was inves-
tigated. A two-step optimal design method is pro-
posed. Optimal parameter expressions of VEDs were 
used to calculate the optimal stiffness and damping 
coefficients of VEDs. Using the two-step optimal 
design method, first the number of dampers was as-
sumed to be a certain value, and an enumeration 
method was used to deal with their optimal place-
ment; then by a comparison method, the number of 

dampers was optimized. General rules for the optimal 
arrangement of dampers were obtained based on the 
above studies, enabling engineers to select directly 
the optimal parameters and arrangements of VEDs. 

 
 

2  Problem formulation 

2.1  Equation of motion 

The 2-MDOF buildings are assumed to be sym-
metric with their symmetric planes aligned. The 
ground motion is assumed to excite in the symmetric 
planes of the buildings, so that the problem can be 
simplified as a 2D problem. Due to the added damp-
ers, the energy absorbing capacity of the buildings is 
enhanced, so buildings are assumed to remain in a 
linear elastic state.  

Fig. 1 illustrates a structural system consisting of 
two adjacent shear-type structures with n1 and n2 
storeys, connected by VEDs at some storeys. The 
research was focused on adjacent shear-type struc-
tures, i.e., structures for which shear-type behavior is 
predominant with respect to flexural-type deforma-
tion. The VED is represented by the Kelvin model; 
that is, a linear spring and a viscous dashpot are 
combined in parallel. The force-deformation rela-
tionship of the VED is expressed as follows: 

 

d d( ) ( ) ( ),f t k x t c x t                        (1) 

 
where kd and cd are the stiffness and damping coeffi-
cients of the damper, respectively, and ( )x t and 

( )x t  are the relative displacement and relative speed 

respectively, between the two damper ends. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Simplified model of adjacent structures 
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The equation of motion of the coupled structural 
system under seismic excitation can be written as 

 

g( ) ( ) ( ) ( ) ( ),t t t t u t      MX CX KX HU MI   (2) 

 
where M, K and C are nn (n=n1+n2) dimensional 
mass, stiffness, and internal damping matrices of the 
adjacent buildings, respectively; X(t) is the n dimen-
sional relative displacement vector with respect to the 
ground; U(t) is the damper force vector; H is the lo-

cation matrix of the dampers; g ( )u t  is the accelera-

tion of ground motion; and I is the n dimensional unit 
vector. 

2.2  Control strategy 

To numerically identify optimized systems of 
added VEDs, as applied to shear-type structures, it is 
necessary to introduce a constraint upon the total size 
of the added VEDs, and to select a control index ca-
pable of capturing the overall dissipative capacity of 
the system. 

Supposing only one damper is installed on each 
floor. The total amount of dampers, s, can be 
changed from 1 to m where m is the total number of 
storeys of the lower structure. The constraints of the 
optimization problem are the equal total stiffness 
kdopt and equal total damping coefficient cdopt of the 
VEDs, which can be calculated directly using opti-
mal parameter expressions (section 3). The above 
constraint mathematically translates into the fol-
lowing formula: 

 

d dopt d dopt
1 1

, .
s s

i i
i i

k k c c
 

                 (3)
 

 
The aim of the control strategy is to reduce the 

motion of the adjacent structures as much as possi-
ble. The total vibration energy of the adjacent 
structures is chosen as the objective function, similar 
to the quadratic performance index of a linear con-
trol system. This objective can be achieved by 
minimizing the total vibration energy of the coupled 
structures at entire time steps during seismic excita-
tions. Suppose that the objective function is denoted 
by D. The optimal arrangement problem of dampers 
can be described by the following mathematical 
formula: 

e
T T

0

1
min min [ ( ) ( ) ( ) ( )] ,

2

t

t

D t t t t


 
  

 
  X MX X KX   (4) 

 
where te is the duration of the ground motion. 

 
 

3  Optimal parameter expressions of VEDs 

3.1  Reduced order model of adjacent structures 

To approximate the motion of structure 1 or 2 
(Fig. 1) with a SDOF, assume that the deformation is 
in only a single shape (Clough and Penzien, 2004). 
The shape functions of structures 1 and 2 are desig-
nated i (i=1, 2), which must satisfy the displacement 
boundary conditions. The amplitude of the motion 
relative to the moving base is represented by the ge-
neralized coordinate zi(t), which represents the gen-
eralized displacements. Thus, 

 

( ) ( ).i i iu t z tψ                                 (5) 

 
By the principle of virtual displacement, the 

generalized SDOF system of structure 1 or 2 is ob-
tained (Clough and Penzien, 2004; Basili and De 
Angelis, 2007). The generalized equation of motion is 
expressed as follows: 

 
* * *

g( ) ( ) ( ) ( ),i i i im z t c z t k z t L u t                 (6) 

 

where i=1, 2, *
im  and *

ik  are the generalized mass and 

generalized stiffness of structure i. * T ,i i i im  ψ M ψ  
* T ,i i i ic ψ C ψ  * T ,i i i ik ψ K ψ  T ;i i i iL ψ M I  Mi, Ki and 

Ci are the mass, stiffness, and damping matrices of 
structure i; and Ii is a unit vector. 

Considering a model of 2-SDOF structures 
(Fig. 2) connected by a VED, the equations of motion 
are written as 

 
 

 
 
 
 
 
 

Fig. 2  2-SDOF structures linked by VED
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1 1 1 1 1 1 d 1 1 g( ) ( ) ( ) ( ) ( ),m x t c x t k x t f t m u t           (7) 

2 2 2 2 2 2 d 2 2 g( ) ( ) ( ) ( ) ( ),m x t c x t k x t f t m u t        (8)
 

 
where mi and i are the total mass and the first modal 
damping ratio of structure i, respectively; 

2 ,i i i ic k m  * */ ,i i i ik m k m  */ ,i i iL m   i=1,2; 

and d ( )f t  is the output force of a VED.  

3.2  Optimal parameters of VEDs 

Zhu et al. (2011) regarded two adjacent struc-
tures as 2-SDOF systems, and represented the VED 
by the Kelvin model. The optimal parameters of the 
VED are determined under the two objectives that 
minimize the vibration energy of the primary struc-
ture or the total vibration energy of two adjacent 
structures under stationary white-noise ground mo-
tion. In this study, structures 1 and 2 are equally im-
portant, and the control target is minimization of the 
total vibration energy of the two structures. Structure 
1, whose stiffness is lager, is seen as the main struc-
ture; structure 2 is seen as a secondary structure. The 
modal frequency ratio of structure 2 to structure 1 is 
represented by β, and β should be no more than 1; if 
β>1, the roles of structures 1 and 2 must be ex-
changed. The optimal stiffness coefficient βopt and 
optimal damping coefficient opt have the following 
expressions: 

when <1, 

 
2 2

opt opt 2

1 1
0, ;

2(1 ) (1 )( )

  
   

 
 

  
     (9) 

 
when ≥1, 
 

2

opt 2

2

opt 2

( 1)(1 )
,

(1 )

1 2
,

2(1 ) (1 )( )

 


 
   

 







  

          (10) 

 
where =m1/m2 is the total mass ratio of structure 1 to 
structure 2, and β=ω2/ω1 is the modal frequency ratio 
of structure 2 to structure 1. In fact, ω1 and ω2 are the 
best approximate results of the lowest frequencies of 
structures 1 and 2, since the generalized-coordinate 

concept is used to reduce the structure to a SDOF. As 
the first vibration mode is dominant in the horizontal 
movement of the structure, the first order mode shape 
is chosen as the shape function in this study. The total 
optimal parameters of stiffness and damping are ex-
pressed as 

 
2

dopt opt 1 1 dopt opt 1 1, 2 .k m c m               (11) 

 
The total optimal coefficients of VEDs inter-

connecting 2-MDOF structures are obtained by op-
timal parameter expressions. Then, the total optimal 
coefficients should be divided among the dampers. 
Suppose the attributes of the dampers are identical. 
On each floor, only one damper is installed, and the 
total amount of dampers is s. The optimal stiffness 
and optimal damping coefficients of each damper are 
kdopt/s and cdopt/s, respectively. 

 
 

4  Optimal arrangement of VEDs 
 
The following two pairs of adjacent shear-type 

structures are considered. Structure 1 is a 10-storey 
building; structure 2 is either a 10-storey or 16-storey 
building. All structures are considered as linear 
MDOF flexible shear-type structures with lumped 
mass at the floor levels. 

Example 1: Structures 1 and 2 are equal-height 
buildings and both are 10 storeys, with the same floor 
elevations. The mass and shear stiffness of structures 
1 and 2 are uniform for each storey. For structure 1, 
the mass of each storey is 1.35×106 kg, and the shear 
stiffness is 1.96×109 N/m. For structure 2, the mass of 
each storey is 1.18×106 kg, and the shear stiffness is 
8.3×108 N/m. Rayleigh proportional damping is used, 
and the first and second modal damping ratios of each 
structure are 0.02. The first natural frequencies of 
structures 1 and 2 are 5.69 and 3.96 rad/s, respec-
tively. Using optimal parameter expressions, the total 
optimal stiffness is 7.07×106 N/m, and the total op-
timal damping is 1.5×107 N·s/m. 

Example 2: Structures 1 and 2 are unequal height 
buildings. The parameters of structure 1 are the same 
as those of Example 1. Structure 2 is a 16-storey 
building; the mass of each storey is 1.56×106 kg, and 
the shear stiffness of each storey is 3.0×109 N/m. 
Using optimal parameter expressions, the total  
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optimal stiffness is 0, and the total optimal damping is 
2.04×107 N·s/m. 

Two earthquake records are used: the NS com-
ponents of the 1940 EI Centro record and the N21E 
components of the 1952 Taft earthquake. The maxi-
mum acceleration is scaled to 0.2g. 

4.1  Two-step optimal design method 

After the total optimal parameters of the dampers 
have been determined, the optimal arrangement of the 
dampers must be solved, as this may have an effect on 
their ability to reduce the responses of the structures. 
A two-step optimal design method is used to solve the 
optimization problem. The first step is to obtain the 
optimal placement of the dampers. The second step is 
to obtain the optimal number of dampers. 

In the first step, assume that the number of 
dampers is a certain value, denoted by s. s should 
change from 1 to m where m is the total number of 
storeys in the lower structure. For each case, there are 

s
mC  kinds of different combinations of the dampers. 

Then, calculate the quadratic performance index for 
each kind of combination of dampers. By compari-
son, select the combination of dampers which mini-
mizes the corresponding value of the quadratic per-
formance index as the optimal placement of dampers. 
In this step, an enumeration method is used and all 
kinds of combinations of the dampers are considered. 
If an artificial intelligence algorithm is used, the op-
timal placement of dampers can only be searched and 
the general rules about the optimal placement of 
dampers cannot be obtained. Thus, an enumeration 
method, using numerous calculations, is used to deal 
with the optimal placement of dampers. 

In the second step, select the number of dampers 
for which the corresponding value of the quadratic 
performance index is the minimum, and that is the 
optimal number of dampers. Through these two steps, 
the optimal arrangement of dampers, including the 
optimal placement and optimal number of dampers, 
can be solved. What’s more, some useful rules about 
the optimal arrangement of dampers can be obtained. 

4.2  Optimal placement of dampers 

Now the first step of the two-step optimal design 
method is used to obtain the optimal placement of the 
dampers for different numbers of dampers. In Exam-
ple 1, the total vibration energy of the two structures 

with the change of placement of the dampers under 
two different earthquakes excitations are as follows. 

When only one damper is placed between the 
two structures, there are a total of 10 different 
placements. Fig. 3 shows that the total vibration en-
ergy of the two structures changes with the placement 
of the damper under EI Centro and Taft earthquake 
excitation. In Fig. 3, ‘placement 1’ represents place-
ment of the damper on the first floor; ‘placement 2’ 
represents placement on the second floor, and so on. 
When the placement of the damper is changed from 
the first floor to the tenth floor, the total vibration 
energy of the two structures decreases quickly in the 
lower floors and then slightly increases, and shows 
little change in the upper floors. Thus, if there is only 
one damper, it should be placed on the upper floors of 
the structures. When the damper is placed on the fifth 
floor, the control effect of the damper is the best, and 
the values of D are 5.28×106 J and 6.35×106 J, re-
spectively; when the damper is placed on the first 
floor, the control effect of the damper is the worst, and 
the values of D are 1.36×107 J and 1.51×107 J, 2.57 
times and 2.38 times the respective values for 
placement on the fifth floor. 

  
 
 
 
 
 
 
 

 
 

 
 

 
 
 
When four dampers are placed between the two 

structures, there are 210 different placement combi-
nations of dampers. Fig. 4 shows that the total vibra-
tion energy of the two structures changes with the 
placement combinations of dampers under EI Centro 
and Taft earthquake excitation. In Fig. 4, ‘placement 
1’ represents placement of dampers on the first, sec-
ond, third and fourth floors, denoted by ‘1, 2, 3, 4’; 
“placement 2” represents ‘1, 2, 3, 5’, and so on. The 
optimal placement is ‘2, 3, 9, 10’ for both 
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Fig. 3  Total relative vibration energy changes with place-
ment of dampers (one damper) 
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earthquakes, and the values of D are 5.32×106 J and 
6.26×106 J, respectively. When the placement of 
dampers is ‘1, 2, 3, 4’, the control effect is the worst, 
and the values of D are 7.45×106 J and 8.65×106 J, 
1.40 times and 1.38 times the respective values for the 
optimum placement. There are some peak values in 
the curves of Fig. 4, for which the corresponding 
placements are ‘1, 2, 3, 4’, ‘1, 2, 4, 5’, ‘1, 3, 4, 5’, ‘2, 
3, 4, 5’ and ‘7, 8, 9, 10’. So, when dampers are placed 
centrally on the lower or upper floors, the control 
effect is reduced; thus, the control effect of the 
dampers which are distributed on the top and lower 
floors is better than that of centrally placed dampers. 

When seven dampers are placed between the two 
structures, there are 120 different placement combi-
nations of dampers. Fig. 5 shows that the total vibra-
tion energy of the two structures changes with 
placement of dampers under EI Centro and Taft 
earthquake excitation. ‘Placement 1’ represents ‘1, 2, 
3, 4, 5, 6, 7’; ‘placement 2’ represents ‘1, 2, 3, 4, 5, 6, 
8’, and so on. The optimal placements are ‘2, 3, 4, 5, 
7, 9, 10’ and ‘2, 3, 4, 5, 6, 9, 10’ for the two earth-
quakes with little difference between them, and the 
values of D are 5.38×106 J and 6.31×106 J respec-
tively. When the placement of dampers is ‘4, 5, 6, 7, 
8, 9, 10’, the control effect is the worst, and the cor-
responding values of D are 5.61×106 J and 6.62×106 J, 
only 1.04 times and 1.05 times the respective optimal 
placements. By comparing these three conditions, we 
conclude that the higher is the number of dampers, the 
smaller is the difference in the control effect between 
the optimal and the worst placements of dampers. 
That is, optimal placement of dampers is more im-
portant when fewer dampers are used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3  Optimal number of dampers 

On the premise of the above results, the second 
step of the two-step optimal design method is con-
ducted. For different numbers of dampers, Tables 1 
and 2 list the optimization results, the corresponding  
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Table 1  Results of placement optimization (Example 1) 

Optimization results Value of D (J) Ratio of D  
Number 

EI Centro Taft EI Centro Taft EI Centro Taft 

1 5 5 5.28×106 6.35×106 2.57 2.38 

2 2,10 2,10 5.26×106 6.22×106 2.11 2.01 

3 3,4,10 3,4,10 5.30×106 6.25×106 1.70 1.65 

4 2,3,9,10 2,3,9,10 5.32×106 6.26×106 1.40 1.38 

5 2,3,4,9,10 2,3,4,9,10 5.33×106 6.29×106 1.21 1.20 

6 2,3,4,5,9,10 2,3,4,5,9,10 5.35×106 6.30×106 1.10 1.06 

7 2,3,4,5,7,9,10 2,3,4,5,6,9,10 5.38×106 6.31×106 1.04 1.05 

8 1,2,3,4,5,8,9,10 1,2,3,4,5,6,9,10 5.39×106 6.34×106 1.02 1.02 

9 1,2,3,4,5,6,8,9,10 1,2,3,4,5,6,8,9,10 5.40×106 6.35×106 1.01 1.01 

10 1,2,3,4,5,6,7,8,9,10 1,2,3,4,5,6,7,8,9,10 5.42×106 6.38×106 1.00 1.00 
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values of D, and the ratios of D when the worst and 
the optimal placements are considered. The optimal 
placements of dampers are all distributed placements 
on the top and lower floors corresponding to different 
numbers of dampers. The ratio of D decreases with 
the increase in the number of dampers; that is, the 
difference in the control effect between the optimal 
and the worst placements of dampers is smaller when 
more dampers are used. Under the two kinds of 
earthquakes, there is a slightly difference in the op-
timization results. This is very favorable for the ap-
plication of the VEDs. 

From the placement optimization results, for 
Example 1, the optimal number of dampers is two, 
and their optimal placement is on the second and tenth 
floors; for Example 2, the optimal number of dampers 
is three, and their optimal placement is on the third, 
fifth and tenth floors. But for different numbers of 
dampers, when optimal placements are made, the 
levels of reduction in total vibration energy are nearly 
the same. So, optimization of the number of dampers 
has little effect on the control performance of damp-
ers, and optimization of the placement of a certain 
number of the dampers is the most important. 

4.4  Optimal parameters of VEDs 

For Example 1, Fig. 6 shows the variations in 
total vibration energy of two structures with stiffness 
kd and damping coefficient cd of a VED under the Taft 
earthquake excitation, when one damper is placed on 
each of the second and tenth floors. The sum of the 
stiffness and damping coefficient of the dampers are 
2kd and 2cd, respectively. When the stiffness kd is less 
than 5.0×106 N/m, the effect of the stiffness on the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
performance of the dampers is negligible; but when 
the stiffness kd is more than 5.0×106 N/m, the control 
performance of the dampers soon deteriorates 
(Fig. 6a). So the linear spring of the VED has little 
positive effect on the response reduction of the 
structures. In Fig. 6b, the optimal damping coefficient 
cd is 7.5×106 N·s/m, and the level of response reduc-
tion is sensitive to the value of the optimal damping 
coefficient cd. The theoretical results of the optimal 
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Fig. 6  Vibration energy of two structures changes with 
stiffness (a) and damping coefficient (b) of VED (two 
dampers) under the Taft earthquake excitation 

(a)

(b)

Table 2  Results of placement optimization (Example 2) 

Optimization results Value of D (J) Ratio of D   
Number 

EI Centro Taft EI Centro Taft EI Centro Taft 

1 7 7 9.59×106 1.56×107 4.60 3.50 

2 5,10 3,10 9.25×106 1.42×107 3.66 3.09 

3 3,5,10 3,5,10 9.24×106 1.41×107 2.77 2.45 

4 4,5,9,10 3,5,9,10 9.26×106 1.42×107 2.12 1.93 

5 4,5,6,9,10 3,4,5,9,10 9.27×106 1.43×107 1.70 1.58 

6 4,5,6,8,9,10 3,4,5,8,9,10 9.28×106 1.44×107 1.42 1.36 

7 4,5,6,7,8,9,10 2,3,4,5,8,9,10 9.30×106 1.45×107 1.24 1.19 

8 3,4,5,6,7,8,9,10 2,3,4,5,6,8,9,10 9.33×106 1.46×107 1.13 1.08 

9 2,3,4,5,6,7,8,9,10 2,3,4,5,6,7,8,9,10 9.43×106 1.47×106 1.05 1.04 

10 1,2,3,4,5,6,7,8,9,10 1,2,3,4,5,6,7,8,9,10 9.60×106 1.48×107 1.00 1.00 
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stiffness kd and damping coefficient cd are 7.07×106/2 
=3.54×106 N/m and 1.5×107/2=7.5×106 N·s/m, re-
spectively. Thus, the optimal values from the para-
metric studies are consistent with the theoretical re-
sults based on the 2-SDOF damper system. Fig. 7 
shows the variations in total vibration energy of two 
structures with stiffness kd and damping coefficient cd 
of the VED under the Taft earthquake excitation, 
when one damper is placed on each of the third, fourth 
and tenth floors. When the stiffness kd is less than 
3.0×106 N/m, the effect of the stiffness on the per-
formance of the dampers is negligible (Fig. 7a). The 
optimal damping coefficient cd is 5.0×106 N·s/m 
(Fig. 7b). The theoretical results for the optimal 
stiffness kd and damping coefficient cd are 7.07×106/3 
=2.36×106 N/m and 1.5×107/3=5.0×106 N·s/m, re-
spectively. The optimal values from the parametric 
studies are consistent with the theoretical results. 
Fig. 8 shows the variations in total vibration energy of 
the two structures with stiffness kd and damping co-
efficient cd of the VED under the Taft earthquake 
excitation, when one damper is placed on each of the 
second, third, fourth, ninth and tenth floors. When the 
stiffness kd is less than 2.0×106 N/m, the effect of the 
stiffness on the performance of the dampers is negli-
gible (Fig. 8a). The optimal damping coefficient cd is 
3.0×106 N·s/m (Fig. 8b). The theoretical results for 
the optimal stiffness kd and damping coefficient cd are 
7.07×106/5=1.41×106 N/m and 1.5×107/5=3.0×106 
N·s/m, respectively. The optimal values from the 
parametric studies are again consistent with the 
theoretical results. 

For Example 2, Fig. 9 shows the variations in 
total vibration energy of two structures with stiffness 
kd under the Taft earthquake excitation, when two, 
three or five dampers are placed between two adjacent 
structures. For two dampers, one is placed on the third 
floor and the other on the tenth floor; for three dam-
pers, one is placed on each of the third, fifth and tenth 
floors; for five dampers, one is placed on each of the 
third, fourth, fifth, ninth and tenth floors. When the 
stiffness kd is less than 1.0×106 N/m, the effect of the 
stiffness on the performance of the dampers is negli-
gible. So the optimal stiffness of the VEDs can be 
taken as 0, and this is consistent with the theoretical 
result. Fig. 10 shows the variations in total vibration 
energy of two structures with damping coefficient cd 
of a VED under the Taft earthquake excitation, when 
stiffness kd is 0. The optimal damping coefficients cd  
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Fig. 7  Vibration energy of two structures changes with 
stiffness (a) and damping coefficient (b) of VED (three 
dampers) under the Taft earthquake excitation 
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are 1.0×107 N·s/m, 7.0×106 N·s/m and 4.0×106N·s/m. 
The theoretical results are 2.04×107/2=1.02×107 

N·s/m, 2.04×107/3=6.80×106 N·s/m and 2.04×107/5= 
4.08×106 N·s/m, respectively. So it can be concluded 
that for buildings with equal or unequal height, the 
optimal values from the parametric studies are all 
consistent with the theoretical results based on the 
2-SDOF damper system with different numbers and 
placements of dampers. 

 
 

5  Performance of VEDs 
 
According to the results of Examples 1 and 2 in 

the subsection 4.3, each example has a total of ten 
kinds of optimal placements corresponding to dif-
ferent numbers of dampers, with little difference 
between them in their controlling effect on total vi-
bration energy. Thus, it is necessary to study the ef-
fect of the ten kinds of optimal placements on the 
response reduction of the two structures. Figs. 11–22 
show the peak floor displacement, peak inter-story 
drift, and peak floor acceleration curves of adjacent 
structures under the EI Centro and Taft earthquake 
excitation of Examples 1 and 2. The seismic re-
sponses of the two structures are mitigated signifi-
cantly, and the dampers perform very well.  

Figs. 11–14 show the peak floor displacement 
curves of adjacent structures of Examples 1 and 2. 
The peak floor displacement curves are nearly the 
same for the ten kinds of optimal placements. The 
change in the number of dampers has little effect on 
the peak floor displacement when the dampers are all 
placed in the optimal positions. 

Figs. 15–18 show the peak inter-story drift 
curves of adjacent structures of Examples 1 and 2. For 
combination 1 when only one damper is used, there 
are protuberances on the peak inter-story drift curves. 
This is because when only one damper is used, the 
output force of the damper is big and centralized. In 
Figs. 16b and 18b, for combination 1, the peak inter- 
story drifts of some floors are greater than the original 
inter-story drifts with no damper; this situation should 
be avoided. For other combinations, the distribution 
of dampers become uniform, and the output forces of 
the dampers are reduced, so the peak inter-story drift 
curves are consistent, with few differences among 
them. 
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Fig. 9  Variations of total vibration energy of two structures 
with stiffness of VED under the Taft earthquake excitation 
(a) Two dampers; (b) Three dampers; (c) Five dampers  
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Fig. 14  Peak floor displacement curves of two structures 
under Taft earthquake excitation (Example 2) 
(a) Structure 1; (b) Structure 2 
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Fig. 13  Peak floor displacement curves of two structures 
under EI Centro earthquake excitation (Example 2) 
(a) Structure 1; (b) Structure 2 
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Fig. 12  Peak floor displacement curves of two structures 
under Taft earthquake excitation (Example 1) 
(a) Structure 1; (b) Structure 2 
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Fig. 11  Peak floor displacement curves of two structures 
under EI Centro earthquake excitation (Example 1) 
(a) Structure 1; (b) Structure 2 
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Fig. 18  Peak inter-story drift curves of two structures 
under Taft earthquake excitation (Example 2) 
(a) Structure 1; (b) Structure 2 
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Fig. 15  Peak inter-story drift curves of two structures 
under EI Centro earthquake excitation (Example 1) 
(a) Structure 1; (b) Structure 2 
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Fig. 16  Peak inter-story drift curves of two structures 
under Taft earthquake excitation (Example 1) 
(a) Structure 1; (b) Structure 2 
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Fig. 17  Peak inter-story drift curves of two structures 
under EI Centro earthquake excitation (Example 2) 
(a) Structure 1; (b) Structure 2 
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Fig. 22  Peak floor acceleration curves of two structures 
under Taft earthquake excitation (Example 2) 
(a) Structure 1; (b) Structure 2 
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Fig. 20  Peak floor acceleration curves of two structures 
under Taft earthquake excitation (Example 1) 
(a) Structure 1; (b) Structure 2 
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Fig. 19  Peak floor acceleration curves of two structures 
under EI Centro earthquake excitation (Example 1) 
(a) Structure 1; (b) Structure 2
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Fig. 21  Peak floor acceleration curves of two structures 
under EI Centro earthquake excitation (Example 2) 
(a) Structure 1; (b) Structure 2 
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Figs. 19–22 show the peak floor acceleration 
curves of adjacent structures of Examples 1 and 2. In 
Fig. 19b, for combination 1, the peak floor accelera-
tion of some floors is greater than the original accel-
eration with no damper. In Fig. 22a, the control of the 
damper in combination 1 is not as effective as in other 
combinations. 

 
 

6  Conclusions 
 
Optimal parameter expressions were used to 

calculate the optimal stiffness and damping coeffi-
cients of VEDs. The optimal arrangement of VEDs 
between adjacent structures under seismic excitation 
was then investigated. Two pairs of adjacent struc-
tures were considered: two equal-height buildings and 
two unequal-height buildings. The following results 
were obtained: 

1. The higher is the number of the dampers, the 
smaller is the difference in the control effect between 
the optimal and the worst placements of dampers. 
Thus, the optimal placement of dampers is more im-
portant when fewer dampers are used. 

2. Only one damper placed between two adjacent 
structures should be avoided. The output force of the 
damper is too big and centralized, resulting in detri-
mental effects on the structures. 

3. If more than one damper is used, they should 
be distributed and placed on the top and lower floors 
of the structures; when many dampers are used, the 
need for placement optimization is reduced, so they 
can be placed according to engineering requirements. 

4. Few differences in control performance were 
found in comparisons of optimization results corre-
sponding to different numbers of dampers. Thus, op-
timization of the number of dampers has little effect on 
control performance, and optimization of the place-
ment of a certain number of dampers is most important. 

5. Through comparative study, for buildings of 
equal and unequal heights, the optimal parameters of 
dampers from parametric studies are consistent with 
theoretical results for different numbers and place-
ments of dampers. The level of response reduction is 
sensitive to the value of the optimal damping coeffi-
cient of the dampers, and the linear spring of a VED 
has little positive effect on reducing the responses of 
the structures. 
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