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Abstract:    Based on consolidation equations proposed for unsaturated soil, an analytical solution for 1D consolidation of an 
unsaturated single-layer soil with nonhomogeneous mixed boundary condition is developed. The mixed boundary condition can be 
used for special applications, such as tests occur in laboratory. The analytical solution is obtained by assuming all material pa-
rameters remain constant during consolidation. In the derivation of the analytical solution, the nonhomogeneous boundary con-
dition is first transformed into a homogeneous boundary condition. Then, the eigenfunction and eigenvalue are derived according 
to the consolidation equations and the new boundary condition. Finally, using the method of undetermined coefficients and the 
orthogonal relation of the eigenfunction, the analytical solution for the new boundary condition is obtained. The present method is 
applicable to various types of boundary conditions. Several numerical examples are provided to investigate the consolidation 
behavior of an unsaturated single-layer soil with mixed boundary condition. 
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1  Introduction 

 
The application of a load to an unsaturated soil 

specimen will result in the generation of excess 
pore-air and pore-water pressures. The excess pore 
pressures will dissipate with time and eventually 
return to their initial values. The dissipation processes 
of excess pore pressures are called consolidation and 
result in a volume decrease (Fredlund and Rahardjo, 
1993). Many different consolidation equations have 
been proposed to describe the consolidation behavior 
of unsaturated soil. Biot (1941) and Scott (1963) 
proposed consolidation equations for unsaturated soil 
with occluded air bubbles. Blight (1961) derived a 
consolidation equation for the air phase of a dry, rigid, 
and unsaturated soil. Barden (1965; 1974) presented 

an analysis of the consolidation of compacted and 
unsaturated clay. Assuming that the air and water 
phases are continuous, Fredlund and Hasan (1979) 
proposed a 1D consolidation theory, now widely ac-
cepted, in which two partial differential equations are 
employed to describe the dissipation processes of 
excess pore pressures in unsaturated soil. This theory 
was later extended to the 3D case by Dakshanamurthy 
et al. (1984). 

The consolidation equation for saturated soil 
proposed by Terzaghi (1943) is a linear equation, 
while the consolidation equations given by Fredlund 
and Hasan (1979) and Dakshanamurthy et al. (1984) 
are nonlinear. Therefore, the consolidation problems 
for unsaturated soil are solved via integral transform 
method or numerical methods involving the discreti-
sation of both spatial and temporal domains (Wong et 
al., 1998; Conte, 2004; 2006; Geng et al., 2006). For 
simplicity, assuming all the soil parameters remain 
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constant during consolidation, Fredlund and Rahardjo 
(1993) presented 1D consolidation equations in the 
form of linear equations. 

Using the simplified consolidation equations, 
several analytical solutions for the 1D consolidation 
of unsaturated soil have been published. Qin et al. 
(2008) adopted the Laplace transform method and 
gave an analytical solution for an unsaturated  
single-layer soil subjected to a large-area uniform 
load, with the top surface being permeable and the 
bottom surface being impermeable to air and water. 
Qin et al. (2010) obtained an analytical solution for 
unsaturated single-layer soil subjected to a gradu-
ally-increasing load using the same method and em-
ploying the same boundary condition as Qin et al. 
(2008). Shan et al. (2012) used the separation of 
variables method to give exact solutions for unsatu-
rated single-layer soil subjected to an arbitrary load 
and with three types of boundary conditions. 

These analytical solutions are for unsaturated 
single-layer soil with boundaries that are permeable 
or impermeable to both air and water phases. How-
ever, lab-testing equipment is commonly designed 
such that air flows upwards and water flows down-
wards during a test, i.e., the top boundary is perme-
able to air and impermeable to water, while the bot-
tom boundary has the reverse condition. Fredlund and 
Rahardjo (1993) named this type of boundary condi-
tion a mixed boundary condition, the analytical solu-
tion for which has not been published. 

As an extension of Shan et al. (2012), this paper 
presents an analytical method which can be used to 
solve various kinds of boundary value problems. As 
an example, an analytical solution for an unsaturated 
single-layer soil with mixed boundary condition is 
presented. Note that the material parameters in the 
consolidation equations are assumed to be constant 
during consolidation. This state may not be practical. 
However, the analytical solution of the simplified 
consolidation equation gives a preliminary descrip-
tion of the dissipation laws of the air and water 
pressures, and enables the study of the evolution law 
of the volume change of an unsaturated single-layer 
soil. Moreover, the analytical solution can be used to 
validate the accuracy of various numerical results. 
Section 2 outlines the consolidation equations for 
unsaturated soil, as proposed by Fredlund and Hasan 
(1979). The associated initial condition and mixed 

boundary condition are imposed in section 3. In sec-
tion 4, the derivation of the analytical solution is 
presented in detail. In section 5, several examples are 
given to illustrate some interesting features of un-
saturated single-layer soil with mixed boundary  
condition. 

 
 

2  Consolidation equations for unsaturated 
soil 

 
Fredlund and Hasan (1979) developed the basic 

equations for the 1D consolidation of unsaturated soil 
in the Cartesian coordinate system, based on the as-
sumption that the air and water flows are continuous 
and interdependent. These equations are employed 
here to study the consolidation behavior of unsatu-
rated soil. Assuming all variables depend on the z 
direction only, the consolidation equations are: 
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where uw and ua represent the excess pore-water and 
pore-air pressures, respectively, and q(t) is the exter-
nal load. In addition 
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where kw is the water permeability coefficient, ka is 
the air permeability coefficient and g is the accelera-

tion due to gravity. w
1km  and a

1km  are the coefficients 
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of the water and air volume changes, respectively, due 
to the net normal stress −ua for a K0-load condition; 

w
2m  and a

2m  are the coefficients of the water and air 

volume changes, respectively, due to the matrix suc-
tion ua−uw.  is the total stress, S is the saturation of 
water, n is the porosity, γw is the unit weight of water, 
and ωa is the molecular mass of air. au  is the absolute 

pore-air pressure which can be expressed as 

a a atm ,u u u   where atmu  is the atmospheric pres-

sure. When ua is small or dissipates rapidly in the 
process of consolidation, au  can be considered to be 

constant (Conte, 2004), and let a atmu u  in this study. 

R is the universal gas constant, and T is the absolute 
temperature which can be expressed as T=(t+273.16) 
K, where t is the temperature, °C. 

The compression of unsaturated single-layer soil 
(Shan et al., 2012) can be obtained by 

 
s
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where H is the thickness of the layer, s w a
1k 1k 1km m m   

and s w a
2 2 2m m m  . If the external load is constant, 

Eq. (4) can be simplified as the expression for com-
pression given by Ausilio and Conte (1999).  

 
 

3  Initial and boundary conditions 
 
To address the consolidation of an unsaturated 

single-layer soil (Fig. 1), associated initial and 
boundary conditions must be imposed. The following 
initial condition is employed: 

 
( ,0) ( ),z zu g                           (5) 

 
where g(z)={g1(z), g2(z)}T, with g1(z) and g2(z) being 
arbitrarily specified functions. 

The following boundary condition is considered: 
 

w, 1(0, ) ( ),zu t f t  a 2(0, ) ( ),u t f t  

w 3( , ) ( ),u H t f t  a, 4( , ) ( ),zu H t f t             (6) 

where fj(t) (j=1, 2, 3, 4) are arbitrarily specified func-
tions. When fj(t) (j=1, 2, 3, 4) is equal to zero, 
boundary condition Eq. (6) becomes the mixed 
boundary condition as proposed by Fredlund and 
Rahardjo (1993). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4  Derivation of the analytical solution 

 
The method of Shan et al. (2012) can address 

problems with three types of boundary conditions, but 
cannot solve problems with mixed boundary condi-
tions. By incorporating some improvements to the 
method of Shan et al. (2012), the present method can 
be used to solve various kinds of boundary value 
problems. The solution procedure is illustrated below. 

4.1  Transformation of nonhomogeneous bound-
ary conditions 

Boundary condition Eq. (6) is nonhomogeneous, 
while the traditional eigenfunction expansion method 
can deal only with problems with homogeneous 
boundary conditions. To solve Eq. (1) subject to 
boundary condition Eq. (6) and initial condition 
Eq. (5), the vector u  is divided into 

 
d s u u u ,                             (7) 

 
where us is a function which is specified to satisfy the 
nonhomogeneous boundary condition Eq. (6), and 
can be chosen simply as 
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Fig. 1  An unsaturated single-layer soil with mixed 
boundary condition 
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By substituting Eq. (7) into Eq. (1), initial con-
dition Eq. (5), and boundary condition Eq. (6), the 
governing equation in terms of ud is obtained as  
follows: 

 
d d s
, , ,zz t t  Ku Cu Q Cu ,

                       
(9) 

 
which is subject to the following initial condition and 
homogeneous boundary condition: 
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Thus, the nonhomogeneous boundary value 

problem (i.e., Eq. (1) subject to initial condition 
Eq. (5) and boundary condition Eq. (6)) has been 
successfully transformed into a homogeneous 
boundary value problem (i.e., Eq. (9) subject to initial 
condition Eq. (10) and boundary condition Eq. (11)), 
which can be solved by the eigenfunction expansion 
method. 

4.2  Eigenfunction and eigenvalue 

To solve the nonhomogeneous partial differen-
tial Eq. (9), the following characteristic equation is 
first considered to derive the corresponding eigen-
function and eigenvalue: 

 
d d
, , .zz t  0Ku Cu                           (12) 

 
The solution of Eq. (12) has the following form: 

 
d d 2( )exp( ),z t u X                   (13) 

 
where d d d T

w a( ) { ( ), ( )} ,z x z x zX  and ω is the eigen-

value which is a non-negative real number. By sub-
stituting Eq. (13) into Eq. (12) and boundary condi-
tion Eq. (11), we obtain 
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The solution of Eq. (14) under Eq. (15) will be de-
scribed when ω=0 and ω>0. 

When ω=0, Eq. (14) can be simplified as 
 

d
, ( ) .zz z  0KX                                (16) 

 
As the determinant of matrix K is not equal to zero, 
the general solution of Eq. (16) is as follows: 
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where c01, c02, d01, and d02 are constants. By substi-
tuting Eq. (17) into boundary condition Eq. (15), 
these constants in Eq. (17) can be determined, and 
thus we can obtain: 
 

 d
0 ( )z  0X  (ω=0), (18) 

 
which can be eliminated. 

When ω>0, the general solution of Eq. (14) can 
be chosen simply as 

 

 d
d( ) exp( ),z zX F  (19) 

 
where βd is an unknown constant, and F is an unde-
termined second-order vector. Substituting Eq. (19) 
into Eq. (14), the following equation in terms of F is 
obtained: 
 

 2 2
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If, and only if, the determinant of the above coeffi-
cient matrix is equal to zero, Eq. (20) has a nonzero 
solution, and thus we obtain the following equation in 
terms of βd: 
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To solve Eq. (21), we first obtain the two expressions 
of y2, labeled A and B, respectively, i.e., 
 

 ( ) / 2,A b    ( ) / 2,B b    2 4 .b c    (23) 
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According to the signs (positive or negative) and the 
size relation of the constants Δ, b, and c, the solution y 
of Eq. (21) has different expressions, which should be 
discussed in detail from a mathematical point of view. 
The case Δ>0, c>0, and b>0 is studied in this paper 
because most unsaturated soils satisfy this situation, 
including the five groups of material parameters of 
Kaolin soil described by Fredlund and Rahardjo 
(1993). For other cases, the solution y can be obtained 
using the same method. 

When Δ>0, c>0, and b<0, we know that A<0 and 
B<0; thus, the four roots of Eq. (21) can be written as 

 

1 1i i ,y A    2 2i i ,y B    

3 1i ,y    4 2i .y                            (24) 

 
Substituting yi (j=1, 2, 3, 4) into the first equation of 
Eq. (22), βdj is first obtained. Then, by substituting βdj 
into Eq. (20), the corresponding Fj can be obtained as 
follows: 
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where Aj (j=1, 2, 3, 4) are constants, and 
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Therefore, the solution of Eq. (14) can be written as 
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If, and only if, Aj are conjugate complex numbers, X(z) 
is a real function. We thus set A1=(b1−ib2)/2, 

A2=(b3−ib4)/2, 3 1,A A  and 4 2.A A  Eq. (27) can be 

transformed into: 
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where ω>0 and bj (j=1, 2, ,3, 4) are real numbers.  

At this point, the eigenfunction of Eq. (9) under 
boundary condition Eq. (11) has been obtained as 
shown in Eqs. (18) and (28). As the next step, we start 
to determine the corresponding eigenvalue through 
boundary condition Eq. (15). By substituting Eq. (28) 
into Eq. (15), we obtain the following homogeneous 
system of linear equations: 
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If, and only if, the determinant of the coefficient ma-
trix is equal to zero, Eq. (29) has a nonzero solution, 
and thus we obtain the characteristic equation of   
as follows: 
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This is a transcendental equation which has infinite 
positive roots labeled ωk (k=1, 2, …) from the small-
est to the largest, respectively.  

Using Eq. (29), a set of b1, b2, b3, and b4 can be 
obtained as follows: 
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where the subscript k  indicates eigenvalue ωk. Con-
sidering Eqs. (18) and Eq. (28), the eigenfunction of 
Eq. (9) under boundary condition Eq. (11) can be 
written as 
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where the eignvalue ωk is determined by Eq. (30). 

4.3  Orthogonality of the eigenfunction 

In this section, we demonstrate the orthogonality 
of the eigenfunction, which will be used in the next 

section. Let p  and q  be eigenvalues and d ( )p zX  

and d ( )q zX  the corresponding eigenfunctions. Using 

Eq. (12), the following two equations are obtained: 
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By using the method of integration by parts and the 
symmetry of matrix K, the first integration in Eq. (34) 
can be rewritten as 
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Substituting boundary conditions Eq. (15) into Eq. (35), 

we know Eq. (35) equals zero. Eq. (34) can thus be 
simplified as follows: 
 

 
Td d

0

0, ,
( ) ( )d

,

H

p q
p

p q
z z z

G p q

     
 ,

X CX  (36) 

 

which indicates that d ( )p zX  is orthogonal to d ( )q zX  

with respect to matrix C, where Gp is a constant which 
can be expressed as 
 

 d 2 d d d 2 w
w w w a a0

a

( ) 2 ( ) d ,
H

p p p p p

C
G x C x x x z

C

 
   

 
  (37) 

 

where 1,2,p     . 

4.4  Analytical solution of the nonhomogeneous 
partial differential equation 

As the last step, we solve Eq. (9). By using the 
method of undetermined coefficients and the princi-
ple of linear superposition, the solution of Eq. (9) 
subject to initial condition Eq. (10) and boundary 
condition Eq. (11) can be written as 

 

 d d

1

( , ) ( ) ( ),k k
k

z t z T t




u X  (38) 

 

where d ( )k zX  are shown as Eq. (32). Tk(t) are unde-

termined scalar functions. Substituting Eq. (38) into 
Eqs. (9) and (10), we have 
 

d d s
, , ,

1 1

( ) ( ) ( ) ( ) ,k zz k k k t t
k k

z T t z T t
 

 

   K X C X Q Cu  (39) 

 

d s

1

( ) (0) ( ) ( ,0).k k
k

z T z z




 X g u
 

(40) 

 

Eqs. (39) and (40) can be simplified through the or-

thogonality of d ( )k zX  as shown in Eq. (36). 

Pre-multiplying Eqs. (39) and (40) by d T[ ( )] ,p zX  and 

then integrating Eqs. (39) and (40) with respect to z 
from 0 to H, we obtain 
 

2
, ( ) ( ) ( ),p t p p pT t T t S t                         (41) 

d T s

0

1
(0) [ ( )] [ ( ) ( ,0)]d ,

H

p p
p

T z z z z
G

  X C g u      (42) 

where 
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d T
,0

1
( ) [ ( )] ( )d

H s
p p t

p

S t z z
G

  X Q Cu .       (43) 

 
The solution of Eq. (41) under initial condition 
Eq. (42) is given as follows: 
 

2 2 2

0
( ) e (0) e e ( )d .p p p

tt t

p p pT t T S                (44) 

 
By substituting Eq. (44) into Eq. (38), ud(z, t) can be 
obtained. Substituting ud(z, t) and us(z, t) into Eq. (7), 
the expression of u(z, t) is finally obtained. 
 
 
5  Numerical examples 

 
All examples in this section adopt the following 

parameters (Qin et al., 2010): 
 

0.50,n   0.80,S   10 m,h   10
w 10 m/ s,k   

w 4 1
1k 0.5 10 kPa ,m      w 4 1

2 2.0 10 kPa ,m      
a 4 1
1k 2.0 10 kPa ,m      a 4 1

2 1.0 10 kPa ,m     (45) 

 
and the following necessary parameters: 
 

   3
w 10 kN/ m ,   a atm 101 kPa,u u   t=20 °C,  

 8.31432 J/ (mol K),R    ( 273.16) K,T t   
3

a 29 10 kg/ mol,     0 100 kPa,q   
 

(46) 
 

where q0 is the amplitude of the external load. 
It is assumed that the total stress (z, t) in un-

saturated soil is zero before external excitation is 
applied to the layer, and the initial conditions are as 
follows: 

 

w ( ,0) 0,u z   a ( ,0) 0.u z                    (47) 
 

Note that both uw and ua are excess pore pressures. 
Assume the external excitation is a step load or an 
exponential load, as shown in Fig. 2, and 

Step load: 

0( ) ,q t q  0.t                                (48) 

 
Exponential load: 

0( ) (1 e ),btq t q    0.00005,b   0.t         (49) 

5.1  Step load 

Assume an unsaturated single-layer soil is sub-
jected to a step load and has the following boundary 
condition: 

 

w, (0, ) 0,zu t   a (0, ) 0,u t   

w ( , ) 0,u H t   a, ( , ) 0.zu H t   (50) 

 
Boundary condition Eq. (50) indicates that the top 
boundary is permeable to air and impermeable to 
water, while the bottom boundary has the reverse 
condition.  

Fig. 3 shows the variation in the excess pore-air 
and pore-water pressures over time in z=5 m due to a 
step load. The application of the step load to the un-
saturated single-layer soil results in the generation of 
excess pore-air and pore-water pressures. The excess 
pore pressures dissipate with time and eventually 
return to zero, and the dissipation of ua is much faster 
than that of uw. Also, the uw dissipation curves show 
major differences for different ka, which means that 
variation in ua has a significant influence on that of uw. 
This is mainly because the dissipation of ua is much 
faster than that of uw. 

Fig. 4 illustrates how the excess pore-air and 
pore-water pressures vary with depth when ka/kw=1. 
The dissipation of ua starts from the top part of the 
layer and gradually extends to the bottom part, and ua 
eventually returns to zero. However, the dissipation of 
uw can be divided into two phases (Fig. 4). Due to the 
influence of ua, the decrease in uw in the top part is 
faster than that in the bottom part. But, after ua is 
diminished, the dissipation of uw in the bottom part is 
faster than that in the top part. 

Fig. 5 shows the variation in the excess pore-air 
and pore-water pressures over time in the middle of 
the layer for different water saturations, when ka/kw=1. 
Instantaneous excess pore-air and pore-water pressure 
increases occur at the time when the step load is 
applied. Moreover, these instantaneous increases are 
larger at higher water saturation levels. 

5.2  Exponential load 

Assume an unsaturated single-layer soil is 
restricted by boundary condition Eq. (50) and 
subjected to an exponential load as shown in Eq. (49). 
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Fig. 2  External excitation. (a) Step load; (b) Exponential load 

100 102 104 106 108 1010
-0.5

0.0

0.5

1.0

1.5

 Exponential load

E
xt

er
n

al
 lo

ad
, q

(t
)/

q 0

Time (s)

(a) (b)

100 102 104 106 108 1010
0.00

0.05

0.10

0.15

0.20

0.25

 k
a
/k

w
=0.1

 k
a
/k

w
=1.0

 k
a
/k

w
=10.0

 k
a
/k

w
=100.0

A
ir

 p
re

ss
ur

e,
 u

a
/q

0

Time (s)

100 102 104 106 108 1010
0.0

0.1

0.2

0.3

0.4

0.5

W
a

te
r 

p
re

ss
u

re
, 

u w
/q

0

Time (s)

 k
a
/k

w
=0.1

 k
a
/k

w
=1.0

 k
a
/k

w
=10.0

 k
a
/k

w
=100.0

Fig. 3  Excess pore-air pressure (a) and pore-water pressure (b) over time in z=5 m 
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Fig. 5  Excess pore-air pressure (a) and pore-water pressure (b) over time for different water saturation levels 
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Fig. 6 shows the variation in the excess pore-air and 
pore-water pressures over time in z=5 m. The 
application of the exponential load results in gradual 
increases in uw and ua. When the external load tends to 
be constant, the excess pore pressures no longer 
increase but gradually decrease with time, eventually 
returning to zero. 

Fig. 7 shows typical plots of compressions of an 
unsaturated single-layer soil due to two different 

loads, where s
0 1k 0 .C m q H  The application of a step 

load (Fig. 7a) results in a “significant immediate 
compression”. The compression of the layer then 
gradually increases and eventually becomes constant. 
If an unsaturated single-layer soil is subjected to an 
exponential load (Fig. 7b), the compression of the 
layer gradually goes up with the rise in the external 
load. When the external load becomes constant and 
the excess pore pressures are diminished, the com-
pression becomes constant. 

5.3  External air pressure 

Assume an unsaturated single-layer soil is sub-
jected to a step load and has the following boundary 
condition:  

 

w, (0, ) 0,zu t   a 0(0, ) sin( ),u t q t  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

 
 

 w ( , ) 0,u H t   a, ( , ) 0.zu H t   (51) 

 
Boundary condition Eq. (51) means that the air 
pressure on the top boundary changes as a sine wave 
with time, and Ω denotes the frequency. 

Fig. 8 shows how the excess pore-air and 
pore-water pressures vary with time in z=5 m due to a 
step load. Comparison of Fig. 8 and Fig. 3 shows the 
influence of the excess pore-air pressure on the 
boundary on the excess pore-air and pore-water 
pressures in unsaturated soil. The variation in the 
excess pore-air pressure on the boundary has a great 
influence on the excess pore-air and pore-water 
pressures in unsaturated soil. This is due mainly to the 
fast spread of air in unsaturated soil.  

 
 

6  Conclusions 
 
The 1D consolidation of unsaturated single-layer 

soil with mixed boundary condition was studied 
based on the consolidation equations proposed by 
Fredlund and Hasan (1979), in which the material 
parameters are assumed to be constants during con-
solidation. The method described represents an ex-
tension of the method of Shan et al. (2012) and can be 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6  Excess pore-air and pore-water pressures over time in z=5 m 

100 102 104 106 108 1010
-1.0

-0.9

-0.8

-0.7

 k
a
/k

w
= 0.1

 k
a
/k

w
= 1.0

 k
a
/k

w
= 10.0

 k
a
/k

w
= 100.0

C
om

pr
es

si
on

, C
/C

0

Time (s)
100 102 104 106 108 1010

-1.00

-0.75

-0.50

-0.25

0.00

 k
a
/k

w
= 0.1

 k
a
/k

w
= 1.0

 k
a
/k

w
= 10.0

 k
a
/k

w
= 100.0

C
om

pr
es

si
o

n,
 C

/C
0

Time (s)

Fig. 7  Compressions of the unsaturated single-layer soil under step load (a) and exponential load (b) 
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used to solve various kinds of boundary conditions. 
An analytical solution for an unsaturated single-layer 
soil subjected to an arbitrary load was also obtained. 
The analytical solution reveals the dissipation rules of 
the excess pore-air and pore-water pressures, and can 
be used to validate the accuracy of various numerical 
results. The consolidation behavior of unsaturated 
soil was investigated through several numerical ex-
amples. We conclude that the dissipation of excess 
pore-air pressure is much faster than that of excess 
pore-water pressure, and that variation in the excess 
pore-air pressure has a great influence on that of ex-
cess pore-water pressure. 
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Fig. 8  Excess pore-air pressure (a) and pore-water pres-
sure (b) over time in z=5 m with Ω=2×10−6   
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