Skip to main content
Log in

Experimental adsorption equilibrium study and comparison of zeolite with water and ethanol for cooling systems

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Two adsorption refrigeration working pairs of zeolite with water and ethanol were studied and the parameters of Dubinin-Astakhov model were regressed using the experimental data of equilibrium. The coefficient of heterogeneity varied from 1.305 to 1.52 for the zeolite-water pair and from 1.73 to 2.128 for zeolite-ethanol pair. The maximum adsorption capacity varied from 0.315 to 0.34 for zeolite-water and 0.23 to 0.28 for zeolite-ethanol, respectively. The results showed that the zeolite-water pair is suitable for solar energy cooling not only because of the high latent heat of vaporization of water but also because of the better equilibrium performance. On the other hand, zeolite-ethanol gives a high adsorption capacity at high regeneration temperature, which means it can be used in heat engine systems like buses and cars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bidyut, B.S., Atsushi, A., Takao, K., 1997. Silica gel water advanced adsorption refrigeration cycle. Energy-The International Journal, 22(4):437–447.

    Article  Google Scholar 

  • Breck, D.W., 1974. Zeolite Molecular Sieves. John Wiley, New York.

    Google Scholar 

  • Cassioa, G., Cammarata, G., Fichera, A., Restuccia, G., 1992. Advances on Innovative Heat Exchangers in Adsorption Heat Pumps. Proc. Symp. le Froid a Sorption Solide, Paris.

  • Critoph, R.E., 1994. Forced convection enhancement of adsorption cycles. Heat Recovery System and CHP, 14(4):343–350. [doi:10.1016/0890-4332(94)90038-8]

    Article  Google Scholar 

  • Cui, Q., Tao, G., Chen, H.J., Guo, X.Y., Yao, H.Q., 2005. Environmental benign working pairs for adsorption refrigeration. Energy, 30(2–4):261–271. [doi:10.1016/j.energy.2004.05.005]

    Article  Google Scholar 

  • Douss, N., Meunier, F., 1989. Experimental study of cascading adsorption cycles. Chem. Eng. Sci., 44(2):225–235. [doi:10.1016/0009-2509(89)85060-2]

    Article  Google Scholar 

  • Gregg, S.J., 1986. Sixty years in the physical adsorption of gases. Colloids and Surfaces, 21(1):109–124. [doi:10.1016/0166-6622(86)80086-5]

    Article  Google Scholar 

  • Lu, Y.Z., Wang, R.Z., Jianzhou, S., Zhang, M., Xu, Y.X., Wu, J.Y., 2004. Performance of a diesel locomotive waste-heat-powered adsorption air conditioning system. Adsorption, 10(1):57–68. [doi:10.1023/B:ADSO.0000024035.57025.97]

    Article  Google Scholar 

  • Marsh, H., 1987. Adsorption methods to study microporosity in coals and carbons. Carbon, 25(1):49–57. [doi:10.1016/0008-6223(87)90039-X]

    Article  Google Scholar 

  • Ramos, M., Rafael, L.E., Manfred, J.H., 2003. Evaluation of a Zeolite-Water Solar Adsorption Refrigerator. ISES Solar World Congress 2003, Sweden.

  • Rockenfeller, U., Kirol, L.D., Sarkisian, P., Ryan, W., 1992. Advancing Heat Pump Staging for Complex Compound Chemisorptions System. Proc. Symp. le Froid a Sorption Solide, Paris.

  • Rodrigez-Reinoso, F., 1997. Activated Carbon Structure, Characterization, Preparation and Applications. In: Marsh, H., Heintz, E.A., Rodrigez-Reinoso, F. (eds.), Introduction to Carbon Technologies. Edward Arnold, Great Britain, p.35–101.

    Google Scholar 

  • Rudzinski, W., Everett, D.H., 1992. Adsorption of Gases on Heterogenous Surfaces. Academic Press Inc., San Diego, CA.

    Google Scholar 

  • Shelton, S.V., Wepfer, W.J., Miles, D.J., 1990. Ramp wave analysis of the solid-vapor heat pump. J. Energy Res. Technol., 112:69–77.

    Article  Google Scholar 

  • Spinner, B., 1992. Les Transformations Thermochimiques a Ammoniac. Proc. Symp. le Froid a Sorption Solide, Paris.

  • Wang, R.Z., Oliveira, R.G., 2005. Adsorption Refrigeration—An Efficient Way to Make Good Use Waste Heat and Solar Energy. International Sorption Heat Pump Conference, Denver, CO, USA.

    Google Scholar 

  • Wang, R.Z., Wang, Q.B., 1999. Adsorption mechanism and improvements of adsorption equation for adsorption refrigeration pairs. International Journal of Energy Research, 23(10):887–898. [doi:10.1002/(SICI)1099-114X(199908)23:10<887::AID-ER527>3.0.CO:2-N]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Guang-ming.

Additional information

Ph D student at Zhejiang University from Mali

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiga, A.S., Chen, Gm. & Wang, Q. Experimental adsorption equilibrium study and comparison of zeolite with water and ethanol for cooling systems. J. Zhejiang Univ. - Sci. A 8, 216–220 (2007). https://doi.org/10.1631/jzus.2007.A0216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2007.A0216

Key words

CLC number

Navigation