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Abstract The study presents a systematic approach

for the evaluation of the compression strength of

masonry walls composed of heterogeneous mixes of

different types of blocks. First of all, the mechanics of

a compressed heterogeneous masonry stack is inves-

tigated through a series of experimental tests and

Finite Element models, then it is reviewed and

discussed. Then, the problem of deriving the necessary

material parameters entering the Hilsdorf formula is

addressed. Solutions for the correct evaluation of the

lacking data are presented based on the existing

literature data. Finally, the well-known Hilsdorf

formula is extended to the field of block blends with

different mechanical properties. A deep experimental

investigation on stacks and wallets made with fired

clay, limestone and sandstone blocks is introduced for

the first time. The comparison of the experimental data

with the proposed theory points out the very good

predictive capability of the extended Hilsdorf formula

derived herein.

Keywords Masonry � Brick blends � Compressive

strength � Hilsdorf formula � Poisson ratio � Mohr–

Coulomb plasticity

1 Introduction

The knowledge of the mechanical properties of an

existing building is at the base of its structural

assessment. Especially for masonry structures, several

models have been developed over the years trying to

predict their global capacity. The technological

improvement of the last twenty years led to the

development of sophisticated numerical models that

needs a large computational time to provide the

problem solution. Besides, sometimes it happens that

even no convergence or mindless results could be

achieved. Both numerical and analytical models are

often supported by experimental tests, which can

prove the accuracy of the proposed model. Lofti et al.

[1] and Lourenco et al. [2] reproduced numerically the

behaviour of a masonry panel considering the exact

geometry of both components by introducing the

concept of the interface model. However, the method

is nowadays far from practical use when a large

number of units is involved. A few years later,
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Zucchini and Lourenco [3] discussed several existing

results concerning methods for masonry homogeniza-

tion and validated experimentally their micro-me-

chanical model based on Representative Volume

Elements.

On the other hand, formulas and relations could be

even found experimentally from the observation of the

physical behaviour and regression analysis of the data

sets. Recently, Ferretti [4] calibrated a dimensionless

power model for predicting the compressive strength

of solid-clay-brick masonry walls by collecting a large

base of data from the available literature in which both

stacks and wallets were included. The calibration of

the model involving dimensionless parameters

extended the formula proposed by the EC6 [5] to

more general instances made of units of only one

material. However, it is to stress that, unlike some non-

European studies, the largest effort has been put in

masonry systems in which the mortar is weaker than

units, and therefore in the present study cases with

strong mortar and weak units will be disregarded,

although the proposed theory applies in principle even

to those sets.

Concerning the compressive strength of a layered

stack composed of two alternating materials, it has

been widely studied since the beginning of the

twentieth century (for a list of contributions see

Proske and Van Gelders [6]). The solution introduced

in 1969 by Hilsdorf [7] and partially described earlier

in a work of Haller in 1958 [8], based on the study of

the mutual horizontal stress under vertical compres-

sive loading, answers the question: ‘‘Why does a stack

of two materials fail under compression at a stress

larger than the minimum compressive strength of the

two materials?’’ A detailed discussion of the com-

pressive strength of brick and mortar stacks can be

found in Aprile et al. [9] and Como [10]. The

equilibrium and compatibility equations are:

rvm ¼ rvb ¼ rv ; rhbtb ¼ �krhmtm ; ehm ¼ ehb ð1Þ

where the subscript v and h stand for the vertical and

horizontal directions, b is for bricks, m is for mortar,

and t is the thickness of the material layers. In the case

of masonry wallets (Fig. 1A), the horizontal direction

is affected by the presence of the head joints. These

weak elements increase the tensile stress required on

bricks for fulfilling the equilibrium with the com-

pressed mortar layers, compared to the case of

masonry stacks (Fig. 1B). The resulting stress

increment is roughly proportional to the number of

mortar layers that interact with each brick. Therefore

an influence factor k (k = 2 for wallets and k = 1 in the

case of stacks) is added in the formula (1) stating the

horizontal equilibrium.

The solution of the problem gives the ratio of the

horizontal and vertical stresses:

rhm ¼ mm � mbq

1� mm þ 1� mbð Þ k
q g

rv ¼ Urv; rhb

¼ �kgrhm ð2Þ

In which m is the Poisson ratio, q is the ratio of the

elastic moduli Em/Eb and g is the ratio of the

thicknesses tm/tb. Finally, the masonry compressive

strength can be computed through the Mohr–Coulomb

criterion:

fcM ¼ 1

fcb
þ Ukg

ftb

� ��1

ð3Þ

where the subscriptM stands formasonry and fcb and ftb
are the compressive and tensile strengths of bricks. The

collapse is produced by vertical cracks running on the

blocks whilst the mortar is in a triaxial compression

state, whichmaintains it in an elastic rangewell beyond

the uniaxial compressive strength [11]. Several studies

[12–16] have demonstrated that a proportional loading

with confinement stresses of 30–40% of the vertical

compressive stress, can allow cement mortars to raise

stresses over 10 times the uniaxial strength.

However, real ancient masonry panels include

normally several types of bricks, due to the reuse of

demolition parts of other buildings. Stonemasonry

walls include often layers of fired clay bricks [10].

Even adobe brick walls show inclusions of fired bricks,

mainly on the lower storeys or around the openings. It

is thus necessary to understandwhat is the compressive

capacity of a wall containing brick blends.

A first experimental and theoretical study was

presented in Benedetti [17], in which tests conducted

on model wallets made with mixed adobe and fired

bricks were presented and analysed. Afterwards,

several experiments were performed at the University

of Firenze [18, 19] by mixing three different types of

materials (namely fired bricks, limestone and sand-

stone blocks), but the relevant interpretation theory

was not set out.

In what follows the experiments are reconsidered

and a general theory able to interpret the behaviour of
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walls with general brick admixtures is presented and

verified against the experimental data.

1.1 Outline of the study, objective and original

contribution

The research is based on the following steps:

(1) Definition of the material parameters and the

type of analysis relevant for the problem under

study,

(2) Presentation of the experimental results of two

wide investigations on the compressive strength

of masonry stacks and wallets including brick

admixtures,

(3) Set up of the Hilsdorf Extended Theory (HET)

and its verification against the presented exper-

imental data.

This work wants to provide an analytical tool for a

rapid and direct evaluation of the strength of hetero-

geneous masonry walls. Assorted brick materials and

their random position in the same wall are typical of

old masonry buildings for which the manufacturing

followed the local availability of the materials,

especially after exceptional events, like earthquakes

or floods, when the reconstruction needs to be fast for

restoring the normal life quickly. The local behaviour

of blended masonry observed in some specimens can

be extended to existing blended walls explaining local

failures or estimating their mechanical properties

having the wall pattern.

Most of the experimental studies presented in the

literature use only a reduced set of mechanical

parameters for mortars and bricks. Therefore the first

contribution of this study is aimed at introducing rules

for the derivation of the missing data and the selection

of the structural problem type.

Then, the second contribution is the extension of

the Hilsdorf formula to general compositions of bricks

with different properties and dimensions. In most of

the numerical benchmark and case history analyses

present in the literature, the masonry properties are

assumed constant over the whole structure, and

sometimes extracted by similarity from other studies.

The proposed approach fills the gap of finding

homogenized materials’ properties to be assigned to

local elements in most of the mesoscale and large scale

numerical models built for a close structural assess-

ment of real heterogeneous structures. However, to

maintain the study relevant for practical applications,

in this first derivation, the effect of the wall spatial

organization and brick clustering is introduced

through the scalar influence factor k introduced in

Eq. (2), which involves only the number of mortar

courses interacting with each bricklayer.

Fig. 1 Horizontal stress distribution along the vertical direction for wallets (A) and stacks (B)
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2 Parameters influencing the brick–mortar

interaction problem

2.1 Definition of the elastic interaction problem

Masonry walls can be organised with many different

bonding patterns, which in principle could produce

varying levels of mortar confinement, but in any case,

a set of parallel stacks can be identified in every wall.

Therefore, even if the problem is intrinsically 3D, it

can be studied as a 2D problem either for in-plane

stress or in-plane strain condition.

A detailed elastic study has been worked out,

assuming perfect bonding between brick and mortar

layers, for a 2D infinite masonry stack and a 3D

crossing bond column of the same size. Since the

problem is assumed linear elastic, no interface consti-

tutive laws were considered for the connection zones

of the different material layers. The used material data

are:

• Brick: Eb = 10,000 MPa, mb = 0.125, hb = 60 mm

• Mortar: Em = 2000 MPa, mm = 0.250,

hm = 15 mm

In Fig. 2 the Finite Element Models used in this

study are presented, in which a quarter of a 3D column

with a section of 250�250 mm2 has been modelled,

together with the equivalent 2D stack of the same size.

Concerning the 3D model, 8-nodes solid brick

elements were used either for mortar or masonry

units, while 4-nodes elements were chosen in the case

of the 2D FEmodel, leading to the linear description of

the stresses as the best compromise between the model

accuracy and the computational cost. In detail, 3 and

12 solid bricks layers are used for modelling the

thickness of mortar and brick courses in the 3D model,

while 24 and 5 plane elements layers are used in the

2D model. Both models were created by using the

Italian release of the STRAND Finite Element soft-

ware. Figure 3 shows the comparison among the

horizontal stresses obtained in 3D, 2D plane stress and

2D plane strain models under the same unitary load

pressure equal to 1 MPa at the top and the bottom of

the stacks. Since the two models are self-balanced

along with the vertical direction, only lateral restraints

have been considered. In particular, the 2D mesh is a

subset of an infinite stack with a whole model width of

250 mm, and a thickness of 250 mm. The restraints

simply eliminate the possible rigid body motions of

the 2D displacement field. The 3Dmodel is split by the

two symmetry planes and includes, in addition to the

restraints eliminating the rigid body motions, the

horizontal restraints forcing a zero displacement

across those planes.

As is fairly evident, the 3D and 2D plane strain

analyses match very well, while 2D plane stress has a

large error in the mortar confinement estimation. This

result is well documented in the literature [20].

Therefore, in the study of the interaction in brick

blends a 2D plane strain analysis will be carried out.

Fig. 2 View of the FEM models for 3D and 2D elastic interaction analyses
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2.2 Extracting the missing material parameters

The definition of compressive strength for stacks of

brick blends requires not only a precise knowledge of

the compressive and tensile strength of the involved

bricks but also representative values of mortar and

brick Poisson’s ratios, very elusive and difficult to be

measured experimentally.

Concerning the tensile strength of the bricks, it is to

cite that at least three different values can be obtained

from laboratory tests, namely flexural, splitting, or

direct tensile strengths. Thus, conversion rules are

necessary, since the flexural strength is larger than the

uniaxial tensile strength, while the splitting strength is

smaller.

The flexural strength depends on the shape of the

specimen, but generally, its value is 50% above the

uniaxial tensile strength. Regarding the splitting

strength ft,sp, by assuming a ratio z of the vertical to

horizontal stresses in the cylinders subject to splitting,

a Mohr–Coulomb criterion can allow defining the

strength conversion [21]:

ft ¼
fcft;sp

fc � z � ft;sp
ð4Þ

According to Li [22], the factor z can be computed

in the centre of the cylinder as a function of the loading

arc opening h, normally resulting in values very near

to 3.0:

z ¼ sin 2hþ h
sin 2h� h

ð5Þ

However, in many studies, the tensile strength of

bricks is not even taken into consideration, though it is

fundamental for a Mohr–Coulomb analysis. Many

studies can be found in the literature dealing with the

ratio of tensile to compressive uniaxial strength of

mortars, bricks and stones [23, 24]. A wide and

detailed analysis of experimental data led to defining a

very typical functional form that links the two

strengths:

ft ¼ af bc ð6Þ

Usually, the coefficient a seems to vary with the

material type (lime mortar, concrete, brick, stone,

etc.), the coefficient b is almost constant among

materials and holds 2/3 [25].

As an example, in the following Table 1 the

specimens’ geometry and the results of an experimen-

tal campaign, done in Forlı̀, Italy [26] on XVII century

bricks, are presented. In particular, two specimens

were collected for each brick of interest: a solid prism

was cut from the original brick and then tested in

compression evaluating its compressive capacity fc,

while a brick core was drilled from the same unit

estimating its tensile strength through the splitting test

fsp. The compressive and splitting strength are used in

defining the pure tensile strength of the brick as in

formula (4). Then this value is compared with formula

(6). The agreement between the two values is

noticeable.

The evaluation of the Poisson ratio is problematic

by either using experimental data or looking at the

results of mechanical theories. A deep and detailed

discussion of the importance and the criteria for the

evaluation of this parameter can be found in rock

mechanics contributions [16, 27]. Zhang presented in

Chinese [28] a detailed discussion of the relationship

of the Coulomb friction angle /, the rigidity R and the

Poisson ratio m, which was later reconsidered by Logo
[29]. It is to point out that the rigidity ratio has values

fairly equal to the Hoeck-Brown constant mi [30]:

0

50

100

150

200

250

300

350

400

450

500

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1

El
ev

at
io

n 
[m

m
]

Horizontal stress ratio [-]
 Mortar Plane Stress  Brick Plane Stress
 Mortar Plane Strain  Brick Plane Strain
Mortar 3D - XX  Brick 3D - XX
 Mortar 3D - ZZ  Brick 3D - ZZ

Fig. 3 Stress ratios of brick and mortar for the three examined

models (plain strain, plain stress, and solid)

Materials and Structures (2022) 55:71 Page 5 of 17 71



R ¼ mi ¼
fc
ft
¼ 1þ sin/

1� sin/
ð7Þ

Anson and Newman [31] discussed the difference

between Poisson ratio values obtained through static

and dynamic experiments and the effect of the porosity

on the detected values. In fact, tensile and compressive

strengths, elastic moduli and Poisson ratio are all

approximately inversely proportional to the porosity

of the material.

It is well known that in uniaxial compression tests

the Poisson ratio (measured as the ratio of the

horizontal to the vertical strains), is weakly decreasing

in the elastic range, and then is rapidly increasing with

the onset of the microcracking, finally even overpass-

ing the limit value 0.5 near the collapse [21, 32].

However, as discussed before, the masonry mortar

courses are mainly in a triaxial compression state in

which microcracking is hindered so that the Poisson

ratio has only marginal variations with the confine-

ment ratio [15, 33].

Therefore, since the mortar-brick interaction is

effective until the cracking of bricks or the crushing of

mortar, it is natural to assume that the Poisson ratio is

holding constant in this pre-failure range, and its value

is linked (through porosity) to the strength ratio R.

In particular, the Poisson ratio can be obtained by

the following approximations [29]:

m ¼ 1

2
ffiffiffi
R

p ;
1

1þ
ffiffiffi
R

p ;
2

Rþ 3
;

4R

1þ 6Rþ R2

� �

ð8; a; b; c; dÞ

The proposed formulas are compared with some

literature experimental values in Fig. 4 [31–36].

Equation (8b, c) give values that better represent the

behaviour detected with the experiments.

Therefore, even when only the compressive

strength is known, it is possible to gather the complete

set of brick and mortar parameters by the following

procedure:

(a) The tension strength is evaluated from splitting

tests or by using Eq. (6);

(b) The Coulomb friction angle is determined from

the ratio R;

(c) The Poisson ratio is obtained from Eq. (8b).

Finally, once the U factor is computed, the com-

pressive strength of masonry is obtained via the

Hilsdorf theory.

Table 1 Geometry and strengths of the old bricks tested in Forlı̀ [26]

Specimen Prisms compressive test Cores brazilian test Brick tensile strength

Length

[mm]

Height

[mm]

fc
[MPa]

Diameter

[mm]

Length

[mm]

fsp
[MPa]

ft
a

[MPa]

ft
b

[MPa]

Error [-]

(%)

A4 41 82 30.40 75 90 1.86 2.28 2.44 - 6

B4-1 45 90 23.05 44 70 1.60 2.02 2.02 0

B4-2 45 90 32.93 44 44 2.83 3.81 2.57 48

C2-2 45 90 39.93 44 44 2.64 3.29 2.92 13

C5 37 81 26.36 75 85 1.76 2.20 2.21 - 1

C6 40 82 25.47 75 90 1.51 1.84 2.16 - 15

D1 43 75 30.64 44 54 1.86 2.27 2.45 - 7

D2 36 71 28.53 44 77 1.30 1.51 2.33 - 35

D4-2 37 80 37.82 44 80 2.40 2.96 2.82 5

E1 44 86 21.82 44 80 1.28 1.55 1.95 - 20

F1 41 80 35.52 44 73 2.50 3.17 2.70 17

G2 38 81 32.08 75 85 1.84 2.22 2.52 - 12

aThe value is computed with formula (4) by using z = 3
bThe value is computed by using formula (6) with a = 0.25
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3 Elastic analysis of heterogeneous masonry stacks

A masonry stack composed of a blend of different

bricks is neither a random material nor a regularly

layered composite. It is thus significant to examine

horizontal stress values arising from the interaction of

mortar with blends of different bricks, which can lay

either as staggered clusters or in interspersed

sequences.

In what follows, according to the previous results of

the finite element investigations, several plane strain

stacks composed of ten courses of three typical brick

materials will be investigated. The mechanical prop-

erties are chosen, on average, according to Augenti

et al. [37]:

(a) Mortar: Em = 2000 MPa, mm = 0.250

(b) Fired clay bricks: Ec = 10,000 MPa, mc = 0.125

(c) Limestone bricks: El = 4000 MPa, ml = 0.175

(d) Sandstone bricks: Es = 25,000 MPa,

ms = 0.075

The selected thickness of the layers produces two g
values, namely 0.364 (blocks 55 mm, mortar 20 mm),

and 0.25 (blocks 60 mm, mortar 15 mm). In the

following Fig. 5, the stacks are presented.

The nomenclature is as follows: A stands for

alternate units and B for clustered sets (sequence of

clusters of the same brick type), C for clay units, L for

limestone units and S for sandstone units. The number

is the percentage of every material composing the

stack, 2.75 and 4.00 are the unit/mortar thickness

ratios used for the simulation.

Even some compositions of three materials were

examined. In Fig. 5d the three studied sample block

sequences are listed.

Since the bonding pattern could be different

according to the content of different bricks and their

position, the analysis of any possible combination is

not achievable. Therefore, considering alternated and

clustered brick distributions as the two limit bounds of

all the possible configurations, other layouts are surely

included in the study.

The analysis was carried out as plane strain on finite

element models with unitary vertical stress. The

models were composed of 4000–7000 square four-

node finite elements with a side of 5 mm belonging to

the whole model side of 120 mm, and then the

symmetry conditions were set at the two end faces.

To compare the horizontal stress in mortar courses

and different brick materials, the stress values at the

symmetry plane of the stacks were extracted from the

models. However, due to the local combinations of

block types, the horizontal stresses are mildly varying

among different mortar and block positions, and even

in different layers of the same course.

Therefore average stress values were obtained by

summing up the stress resultants for every material

and dividing it by the given material area crossing the

symmetry plane.
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Materials and Structures (2022) 55:71 Page 7 of 17 71



Fig. 5 The layouts of the

investigated stacks

(Red = Clay,

Yellow = Limestone,

Blue = Sandstone). (Color

figure online)
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The effectiveness of the averaging procedure has

been checked by computing the equilibrium on the

symmetry plane of the stress resultants of the different

material groups. A fairly good error of less than 0.1%

of the tension and compression resultants has been

obtained.

The following Fig. 6a, b present the results for the

mortar horizontal stress and the clay brick horizontal

stress, as it is computed in the various models by

varying the sandostone or limestone content and the

ratio h = tb/tm. Given the stresses from the FE model,

the adimensional stress ratios are then obtained by

dividing by 1 MPa as a reference stress value.

The numerical results clearly point out that the

mortar horizontal confinement stress rhm is approxi-

mately independent of the bond layout of the stacks,

while the average stiffness of the blocks, given as the

homogenized elastic modulus of the components

through their volumetric ratios, is resulting in a linear

influence on it. Thus, since clay is stiffer than

limestone but softer than sandstone, the two diagrams

of Fig. 6a show respectively ascending and descend-

ing paths with the increase in brick content. On the

other hand, the brick tensile stress rhb is depending

strongly on both the bonding pattern and the thickness

ratio h, even if the stress ratios are contained in a

narrower range.

Since the collapse of masonry is mainly linked to

the combined compressive—tensile biaxial stress of

the blocks, obtaining a well-approximated evaluation

formula for the block horizontal stress is an important

task.

The performed numerical experiments point out

that the mortar stress ratio U is strongly dependent on

the homogenized properties of the block blend, while

the block distribution has almost no influence. There-

fore it is a realistic assumption that the collapse of a

heterogeneous panel will be driven by the averaged

equilibrium of the horizontal stresses in the elastic

range until a diffused cracking of the blocks will affect

the local stability of the separated stacks, leading to

failure.

Therefore, in the following, the extended Haller-

Hilsdorf theory (HET) will be discussed and verified

avoiding any complex non-linear numerical simula-

tion and considering only an elastic-brittle behaviour

for the bricks. The proposed extension of the theory

and the procedure for the statement of the missing

parameters will be verified against experimental

results of masonry panels realized with both homoge-

neous and heterogeneous blended block systems.

4 Experimental compressive strength of wallets

with blended blocks

In what follows, the results of a large experimental

investigation carried out at the University of Firenze is

discussed [18, 19]. The results concern mainly the

compressive strength of scaled-down stacks and

wallets (Figs. 7 and 8) composed of fired clay bricks

(C) and units sawn from lime-(L) and sandstone

(S) blocks. The mortar used for building each stack is a

weak lime mortar according to what is typically

present in historical constructions.
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Fig. 7 View of the Clay-Sandstone (CS), Sandstone-Limestone (SL) and Clay-Sandstone-Limestone (CLS) panels

Fig. 8 View of the Clay (C), Sandstone (S), Limestone (L), Clay-Sandstone (CS), Sandstone-Limestone (SL) and Clay-Sandstone-

Limestone (CSL)panels at the end of the tests
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The stacks were composed of 6 blocks of

30�30�14 mm3 sawn bricks, and 7 layers of mortar of

2.5 mm thickness, obtaining thus scaled down 1:4

models of half brick stacks.

The wallets had dimensions of 225�63 mm2 and a

height of 264 mm and were built in a running bond

pattern, with 16 layers of bricks and 17 mortar courses

of 2.5 mm thickness. Displacement-controlled com-

pressive tests were performed up to the panels’ failure

collecting the load, the four corner vertical displace-

ments, and six vertical strains on both faces. The

strains were measured by placing X strain gauges on

each sample according to the setup illustrated in

Fig. 8. Table 2 lists the mechanical data of the used

materials.

In blended panels, since the block distribution can

affect the results, similar panels were erected by

interchanging the block type (CS-SC, CL-LC, SL-LS).

Two batches of three stacks (sets I and III, samples

1–3) and two sets of single or two wallets (sets II and

IV, samples 1–2) were built and then tested in

compression. The two sets III and IV aimed at

completing and checking the findings of the previous

series with some more combinations. The following

Table 3 lists the results of the compression tests.

In what follows the theory extending the Hilsdorf

formula to wallets with every blend of blocks will be

presented in detail, and the comparison with the

experiments will allow checking its effectiveness in

predicting the strength of real walls.

Several techniques exist concerning the assessment

of existing masonry walls, and usually, minor destruc-

tive tests are preferred to other methods due to their

low invasiveness. For instance, Pelà et al. [38, 39] and

Segura et al. [40] inferred the strength of existing walls

or masonry panels by testing under compression

masonry cores and stacks even considering samples

with different shapes and sizes. Concerning the

experimental campaign discussed in this work, while

the effects of a scaling procedure on the mechanical

properties can be considered negligible for pure

compressive tests [41], a linear relation was found

among the strengths of stacks and wallets by Thamboo

et al. [42], showing a ratio near to 4/3 which can be

explained in term of the influence factor k already

introduced and discussed. Thus, direct comparisons

among the results of different test setups should be

done with great caution.

5 The extended version of Hilsdorf masonry

compressive strength

Several studies have compared experimental values of

masonry wall compressive strength with available

prediction formulas. Drougkas [43] presented a list of

literature data and tested several formulas, including

the Hilsdorf one, but many of the lacking input data

were simulated by analogy. Boffill [44] considered

historic brickworks with low strength mortar. Even

some multiple leaf wallets were tested and discussed

[45, 46]. To point out the importance of the data

entering in the Hilsdorf formula, the analysis carried

out by Drougkas [43] has been considered again, by

deriving the missing data with the formulas proposed

in this study (Online Source 1) and plotting the

computed strength versus the experimental one

(Fig. 9). In the cases of Running, Flemish and English

bond, the ratio k = 2 of two mortar layers for every

block has been set out according to Aprile et al. [9],

due to the presence of the head joints.

The new analysis is worthy of only 34% average

error (coefficient of variation 1.27), while the numer-

ical analysis of Drougkas [43] is as high as 43%

average error (coefficient of variation of 1.77). Both

the analyses tend to overestimate (positive error) the

Table 2 Data of the

materials used in the

experimental investigation

at the Firenze University

[18, 19]

Material Code Test fc E ft,fl ft m

Mean

[MPa]

St. dev

[MPa]

Mean

[MPa]

St. dev

[MPa]

Mean

[MPa]

Eq. (6)

[MPa]

Eq. (7c)

[-]

Mortar m I-IV 2.05 0.14 621 173 0.853 0.569 0.304

Clay brick C I-IV 16.06 3.45 3357 1079 – 1.337 0.133

Sandstone S I-IV 81.76 8.71 11,919 2321 – 3.955 0.084

Limestone L1 I-II 3.36 0.95 758 174 – 0.471 0.197

Limestone L2 III-IV 4.73 0.61 1608 682 – 0.592 0.182
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experimental strengths of the masonry stacks, but,

except for a few samples with very uncommon

material combinations, the use of the proposed

formulas could certainly replace any complex FE

analysis with reasonable accuracy.

In particular, from Fig. 9 it is apparent that the

proposed formula does overestimate the resistance of

weak stacks, while it is certainly on the safe side for

strong stacks and wallets. The reason for this overes-

timation can be found in the premature collapse by

crushing of the mortar layers, which is not considered

in the proposed formula.

5.1 The failure of the mortar courses

In respect of the previous discussion, the mortar

plasticization and crushing in biaxial compression

rarely happens in the collapse of the masonry struc-

ture. This is consistent with the experiments of

Lumantarna [47], in which several combinations of

bricks and mortars have been tested on-site and in

reconstructed specimens in the laboratory. The aver-

age strength of masonry stacks tested is only 65% of

the uniaxial strength of blocks and 243% of the

uniaxial mortar strength. A rough analytical justifica-

tion can be obtained by examining the multi-axial

compression failure of the mortar in light of the

Coulomb criterion [48, 49].

Table 3 Results of the compression tests of batches I-IV [18, 19]

Test qC
[–]

qL
[–]

qS
[–]

fc,1
[MPa]

fc,2
[MPa]

fc,3
[MPa]

E1

[MPa]

E2

[MPa]

E3

[MPa]

fc,mean

[MPa]

Emean

[MPa]

I-C 1 0 0 7.77 7.81 7.62 1403 1950 1087 7.73 1480

I-L 0 1 0 1.92 2.14 2.07 287 614 504 2.04 468

I-S 0 0 1 50.80 51.00 40.70 5820 5187 3600 47.50 4869

I-CL 0.5 0.5 0 3.23 2.51 2.64 1180 962 1190 2.79 1111

I-CS 0.5 0 0.5 15.00 12.90 16.00 2170 2156 2282 14.63 2203

II-CSL 0.55 0.225 0.225 3.68 3.53 – 2098 2245 – 3.61 2171

II-CSL 0.225 0.55 0.225 3.04 2.69 – 1585 1544 – 2.87 1564

II-CSL 0.225 0.225 0.55 5.09 4.81 – 1986 2426 – 4.95 2206

II-CSL 0.334 0.333 0.333 4.08 4.04 3.36 1686 1440 1216 3.83 1447

III-C 1 0 0 10.49 12.67 10.85 3137 2880 1774 11.34 2597

III-L 0 1 0 2.28 3.12 4.12 1738 1995 1796 3.17 1843

III-S 0 0 1 29.90 28.70 30.00 2725 2274 2708 29.53 2569

III-LS 0 0.5 0.5 7.47 4.91 5.08 2347 1057 1383 5.82 1596

IV-C 1 0 0 6.37 – – 1915 – – 6.37 1915

IV-L 0 1 0 2.90 – – 1357 – – 2.90 1357

IV-S 0 0 1 15.30 – – 2176 – – 15.30 2176

IV-CS 0.5 0 0.5 11.50 9.89 – 2629 2405 – 10.70 2517

IV-SL 0 0.5 0.5 4.94 4.43 – 2039 1559 – 4.69 1799

IV-CL 0.5 0.5 0 4.67 4.24 – 1350 1360 – 4.46 1355

IV-CSL 0.334 0.333 0.333 4.95 – – 1852 – – 4.95 1852
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Fig. 9 Model strengths versus experimental strengths in

masonry stacks and wallets (Online Source 1)
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s ¼ rv � rh
2

¼ c cos/þ rv þ rh
2

sin/; rh ¼ U rv

ð9Þ

By using formula (7) and recognizing that:

2c cos/
1� sin/

¼ fc ð10Þ

The following result for the failure compression is

obtained:

rvð/;UÞ ¼
fc

1� U � R ð11Þ

In general, U is large when R is small, and the

reverse. In any case, the mortar will have a large

compressive resistance due to confinement, since the

denominator is small.

5.2 A new formula for brick blends

The starting point for the HET formulation is again the

compatibility and equilibrium equations of the stack.

The solution is developed in a plane strain condition,

where mortar and blocks are defined by their thick-

nesses tm and tb, their elastic moduli Em and Eb,i, and

their Poisson’s ratios mm and mb,i, respectively, with a

given combination of volumetric fractions qi. In

particular, concerning a general masonry wall con-

taining randomly blended units, the volumetric frac-

tion of block type i is computed by considering the

number of blocks nb,i in the panel with their corre-

sponding thicknesses tb,i over the whole composition

of the wall.

qi ¼
tb;inb;iP
j tb;jnb;j

ð12Þ

The equilibrium equation in the horizontal and

vertical directions are easily written referring to the

mortar and block courses present in the wall:

rhmtmnm þ
X

j
rhb;jtb;jnb;j ¼ 0 ; rvm ¼ rvb;i ð13Þ

A non-dimensional formula is obtained by dividing

the horizontal stress by the vertical stress, and each

term by the total thickness of the block courses:

smkg ¼ �
X

j
sb;jqj ð14Þ

where s represents the ratio rh/rv, and kg is the ratio of
the mortar thickness to the total block thickness. In

practice, k represents the ratio of the number of mortar

courses over the number of blocks, while g is the ratio
of the mortar course average thickness, over the block

average thickness.

The horizontal strain of all the materials is defined

by the following formula, in which compression and

shortening were considered positive:

eh ¼
1� m2

E
� m
1� m

rv þ rh
� �

ð15Þ

The compatibility condition states that the hori-

zontal strain of the mortar and the linked bricks must

be the same. By denoting the constrained modulus as

D, and introducing the non-dimensional stresses shb,i
and shm, the compatibility equations hold:

ehm ¼ 1

Dm
� mm
1� mm

þ shm

� �

¼ 1

Db;i
� mb;i
1� mb;i

þ shb;i

� �
¼ ehb;i ð16Þ

The Eq. (16) encodes the compatibility equation of

the horizontal flexibilities eh of the two materials, and

can be solved by extracting shb,i as a function of shm.

By substituting all the block nondimensional stresses

in Eq. (13), the stress ratio shm in mortar is computed:

shm ¼ rhm
rv

¼
P

j
Dj

Dm

mm
1�mm

� mb;j
1�mb;j

� �
qj

kgþ
P

i
Di

Dm
qi

ð17Þ

Since mortar is considered not involved in the

failure process, it is necessary to introduce hypotheses

capable to split the horizontal stress resultant of the

mortar in the horizontal stresses acting on the different

blocks composing the blend. Failure can thus be set

either at the lower vertical stress, by producing

collapse in the weakest block type, or with a sort of

average stress which will bring all the blocks to the

limit cracked state at the same time. The first situation

can be thought of as a limit elastic brittle one, while the

second is a rigid plastic condition. In what follows the

two solutions are presented and discussed.

5.3 Limit elastic brittle condition for a brick blend

In this case, the block stresses are derived from the

mortar stresses by using the relative stiffness Hb,i in
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the horizontal direction of the blocks composing the

blend. Since:

rhb;i
ehb;i

¼ Eb;imb;i
ð1þ mb;iÞð1� 2mb;iÞ

¼ Hb;i ð18Þ

The mortar stress ratio shm is split using the

different block type stiffness ratios Kb,i computed in

terms of the material rigidities Hb,i of the blocks and

their volumetric fractions qi:

Kb;i ¼
qiHb;iP
j qjHb;j

ð19Þ

Then, the failure stress fM,EL is computed based on

the Coulomb formula (3) for all the present block

types, and the minimum strength is considered the

overall failure stress:

fM;EL ¼ min
i

1

fcb;i
þ shmkgKb;i

ftb;i

� ��1

ð20Þ

Thus, for a stack of blended blocks, the forecast

elastic stress ratios are shm for the mortar, and shm k g
Kb,i for the different block types. The effectiveness of

these formulas can be checked against the results of

the FEM simulations presented above. In the follow-

ing Fig. 10 the main results for the CL and CS

combinations are presented, by referring to the

average of interspersed and clustered patterns.

As is evident from the figures, the stress ratios are in

very good agreement over the whole range of volu-

metric ratios of the studied blends. Indeed, the

coefficient of determination R2 corresponding to the

prediction capability of the proposed formulas shows

values higher than 0.95 for quite all the numerical

investigations. However, lower values are found

dealing with the stresses associated either with lime-

stone blocks or thicker clay bricks in the brick-

sandstone blends.

5.4 Limit rigid plastic condition for a brick blend

If the collapse is postponed till cracks span all over the

vertical masonry length, the block blend components

are contributing to the final strength based on their

respective volumetric ratios, as a sort of strength

average. Therefore, the combination formula is

obtained from the strength of the various local single

block type strengths combined with their shares, so

that the wallet strength becomes equal to each

component’s strength if the volumetric ratio of this

component is unity:

fM;PL ¼
X

i

1

fcb;i
þ shmkg

ftb;i

� �
qi

	 
�1

ð21Þ

As will be evident in the comparison with the

experiments, the two hypotheses lead to similar

results, if the ductility of the system due to the

heterogeneity is limited.

6 Comparison of HET with experimental results

The proposed formulas were used in the interpretation

of the presented experiments. In addition to these

formulas, since in the literature the fractional power
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Fig. 10 Comparison of the

analytical and numerical

stress ratios for the Clay-

Sandstone (CS) blends

(a) and the Clay-Limestone

(CL) blends (b)
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formula proposed by EC6 [5] is widely used in

checking results (see for example Ferretti [4]), an

extended EC6 formula never proposed before in the

literature, is derived for the case of blended blocks:

fM; EC6 ¼ k � f acm �
X

i

qi
fcb;i

� ��b

¼ k � f acm �
X

i

qi
fcb;i

� ��b

ð22Þ

Suitable values for the parameters are

k = 0.6 7 0.7, a = 0.25 7 0.30, b = 0.75 7 0.70.

The formula (22) is based on the consideration that

in a stack of random elastic perfectly plastic blocks

which yield approximately at the same strain, the

strength can be computed as the average modulus

multiplied by the yielding strain, and therefore by the

weighted harmonic mean of the strengths of the

various components:

fb;h ¼ ey � Eh ¼ ey �
X

i

qi
Eb;i

� ��1

¼
X

i

qi
Eb;i � ey

� ��1

¼
X

i

qi
fb;i

� ��1

ð23Þ

(Online Source 2) shows the comparison with the

experiments, while Fig. 11 collects all the strength

value pairs comparing the performances of the

analytical formulas against the experimental out-

comes. Although the experiments are very complex,

with materials with very different and scattered

properties, the agreement of the proposed formulas

is considerable, and even the very simple Euro Code 6

power formula proves to be a good evaluation tool.

However, it is to mention that a correct evaluation of

the data like ft, /, m is of paramount importance in

deriving the mechanical parameters to be used in the

proposed formulas. Obviously, when only one type of

block is present, plastic and elastic masonry strengths

are exactly equal.

7 Conclusions

In this study, a systematic procedure, capable of

evaluating the compressive strength of masonry

wallets with blended blocks, has been presented and

checked against available experimental investigations.

Although the procedure is considering the collapse

as a limit elastic process ending with the onset of a

diffuse cracking in the block blend forming the

masonry, the result is a precise strength evaluation,

if the mechanical parameters of the materials com-

posing the walls are defined with care.

The mortar–unit interaction problem typical of Haller

Hilsdorf theory has been solved as a plane strain

equilibrium problem based on a wide numerical

investigation.

The importance of material parameters often lack-

ing in experimental studies, namely the tensile

strength and the Poisson ratio, has been stressed.

Some useful formulas able to fill the gap, allowing the

estimation of these values from the uniaxial compres-

sive strength, were reviewed.

From the analysis, it is clear that the heterogeneity

due to a dispersed distribution of blocks showing

different properties is producing a sort of apparent

ductility which comes out in a harmonic averaging of

the block strengths. Moreover, the horizontal compres-

sive stress in the mortar layers is mostly depending on

the mortar Poisson ratio only, while the horizontal

tensile stress in the blocks is even a function of the

stiffness ratio of each block type in turn.

A new analytical tool, namely the Hilsdorf

Extended Theory (HET) was derived in both the

elastic and plastic ranges. A wide experimental

investigation on 1:4 scale specimens carried out at

the University of Firenze is discussed in detail.

The comparison of the theoretical results with the

outcomes of the experimental investigation and the

corresponding R2 values point out the good predictive

capability of both the derived analytical formulas.

A further future step of the theoretical derivation

will concern the introduction of the effect of the

bonding pattern and the analysis of blended block
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Fig. 11 Model strengths versus experimental strengths in

masonry walls (Online Source 2)

Materials and Structures (2022) 55:71 Page 15 of 17 71



walls with multiple leaves. It is finally to cite that one

of the most important and disregarded components of

the real walls is the presence of voids, which is rarely

investigated although it constitutes a phase with a

significant strengthless volume fraction, introducing

in this way a consistent capacity reduction.
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