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Abstract Fly ash geopolymers are a relatively new

class of binders with the potential to reduce the CO2

emissions associated with Portland cement based

construction materials. This paper reports on the

organic acid resistance of fly ash geopolymers

following exposure to acetic and lactic acid. Organic

acids are prevalent in many circumstances including

agriculture, production processes and waste manage-

ment. These findings demonstrate that the surface of

fly ash geopolymers had superior resistance to organic

acids when compared with traditional Portland

cement, evidenced by smaller mass losses. This was

attributed to the formation of reaction products which

were less susceptible to acid attack than those formed

in Portland cement systems due to their lower calcium

content. However, despite the surface of fly ash

geopolymers appearing less deteriorated due to

organic acid attack, they were found to have a higher

porosity than their Portland cement counterparts

making them more susceptible to acid ingress.

Keywords Geopolymer � Fly ash � Acetic acid �
Lactic acid � Porosity � Corrosion

1 Introduction

Organic acids, such as acetic, lactic propionic and

butyric acid, can be particularly aggressive to cemen-

titious materials. It is especially significant, as they can

often come into contact with agricultural infrastruc-

ture and sewage systems [1, 2]. Despite organic acids

often being described as weak acids compared with

strong mineral acids (e.g. sulfuric and hydrochloric

acids), the attack on cementitious materials is not

necessarily less aggressive. This is due to buffer

effects (i.e. slower increase in the pH of the acid

solution for weak acids allowing increased degrada-

tion potential) and the high solubility of the organic

salts produced following organic acid attack [3–6]. In

agriculture, organic acids occur from a range of

sources including animal feed [7–9], animal waste

[10–12], anaerobic digestion [13, 14] and crop storage

[15–18]. When grass is stored as winter feed for

livestock, it undergoes a fermentation process con-

verting sugar to acids thus producing silage effluent

which contains acetic and lactic acids [17, 19–21].

Figure 1 shows typical damage observed on concrete

walls in a silage effluent storage tank. At the average

level of silage effluent in the tank, significant damage

is visible (Fig. 1b). Large portions of cement paste and

mortar have been removed and coarse aggregates

have been exposed (Fig. 1c). These concrete walls

have been in place for approximately 10 years and are

only exposed to silage effluent for a few months per

year. Despite this, significant damage has occurred
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and remedial works are necessary to avoid further

breakdown and corrosion of steel reinforcement if the

depth of cover for reinforcement has been reduced

significantly. Silage effluent also poses a considerable

environmental risk. If it leaks into watercourses it can

have a detrimental effect on aquatic life due to its high

biochemical oxygen demand [22]. Therefore, silage

effluent storage facilities need to be watertight to

ensure no environmental contamination occurs. Such

pollution can incur significant financial penalties

alongside the cost of repairing or reconstructing

damaged systems which allowed the silage effluent

to escape [22].

In sewage systems, biogenic sulfuric acid is typi-

cally formed and known to be corrosive to concrete.

However, the organic fraction of sewage also com-

monly contains volatile organic acids such as acetic,

propionic and butyric acid [2, 23]. The wine, sugar and

dairy industries also produce a wide range of organic

acids which are corrosive to cementitious materials

[24]. Therefore, the organic acid resistance of a

relatively new class of fly ash geopolymer binders is

of upmost importance in several industries.

Fly ash geopolymers are ceramic-like materials

produced by the chemical activation of an aluminosil-

icate source such as fly ash with alkali to form a

hardened binder [25–29]. The most commonly used

chemical activators are alkali hydroxide/silicate solu-

tions or a combination of both. The chemical structure

of fly ash geopolymers is similar to that of the zeolite

except they are amorphous [27]. Geopolymerisation

models have been proposed by Fernandez-Jimenez

et al. [30] and Duxson et al. [31]. Both models describe

dissolution of the aluminosilicate source due to the

high pH of the alkali solutions. This leads to the

formation of Si-rich and Al-rich gels, followed by

reorganising and polycondensation increasing net-

work connectivity and resulting in the three-

Fig. 1 Photograph of a silage effluent storage tank, b concrete wall showing damage around average effluent level and c damaged

concrete close up
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dimensional aluminosilicate network commonly

attributed to geopolymers [30–33].

Fly ash is a residue obtained from coal combustion

in coal-fired electricity power stations [34]. On the

other hand, the production of traditional Portland

cement is an energy intensive process involving the

calcination of limestone at high temperatures emitting

huge amounts of CO2 [35, 36]. In fact, the production

of 1 tonne of Portland cement emits approximately 0.8

tonnes of CO2, which varies slightly depending on the

efficiency of the production facility [37–39].

To date, the majority of research carried out on the

acid resistance of fly ash geopolymers has focused on

mineral acids such as hydrochloric, sulfuric and nitric

acid [40–44]. A previous study by Koenig et al. [1] did

study the resistance of a fly ash geopolymer mix to a

solution containing various organic acids. The find-

ings demonstrate that exposure to this acid solution

resulted in an increased compressive strength and in

general good resistance. This performance was

attributed to the formation of anorthite in the near

surface region of the fly ash geopolymer. Anorthite

was formed due to the incorporation of calcium ions in

the acid solution. Calcium ions appear to have been

present in the acid solution because they leached from

other calcium rich binders stored in the same acid

solution. As Koenig et al. [1] suggest the incorporation

of calcium could be a promising binder specific curing

method for fly ash geopolymers. However, in service it

is unlikely that organic acid solutions will contain

surplus calcium ions to allow the formation of

anorthite. Therefore in this study samples from each

mix were stored in its own individual container to

avoid other samples cross-contamination, i.e. leached

ions interacting with other samples and affecting

performance. This study focused on the acid resistance

of two fly ash geopolymer mortars, with different

alkaline activator dosages, when exposed to two

organic acids, i.e. acetic and lactic acid. A range of

acid concentrations have been considered to ascertain

the effect of acid concentration. A comparison of

performance has also been carried out with traditional

Portland cement mortar. Furthermore, the organic acid

resistance of equivalent paste mixes has been studied

to gain an understanding of the mechanism of attack

on each binder.

2 Experimental methods

2.1 Materials

Fly ash conforming to BS EN 450-1:2012 [45] was

supplied by Power Minerals Ltd., Drax Power Station,

North Yorkshire, UK. Portland cement, CEM I 42.5N

was supplied by Quinn Cement in Northern Ireland

and conformed to BS EN 197-1:2011 [46]. The oxide

compositions and loss on ignition (LOI) for both fly

ash and Portland cement were obtained by X-ray

fluorescence and are shown in Table 1. Previous

publications [47, 48] showed the main crystalline

phases identified by X-ray diffraction (XRD) present

in the fly ash and Portland cement. In the fly ash they

are quartz, mullite and hematite, whereas in the

Portland cement they are alite, belite, aluminate,

brownmillerite and gypsum. The particle size distri-

bution of fly ash, Portland cement and sand are given

in Fig. 2.

The activators used were solutions of sodium

hydroxide and sodium silicate. The sodium hydroxide

solution was prepared at 30% w/w by the dissolution

of solid commercial grade (99% purity) sodium

hydroxide which was allowed to cool to room

temperature prior to sample preparation. Sodium

silicate solution containing, 12.8% Na2O, 25.5%

SiO2 and 61.7% H2O was supplied by Fisher

Scientific.

Locally sourced sand, abundant in quartz and also

containing albite, muscovite and clinochlore was used

Table 1 Oxide composition and LOI of fly ash and Portland

cement

Composition (%) Fly ash Portland cement

SiO2 46.78 20.21

Al2O3 22.52 4.79

Fe2O3 9.15 2.78

K2O 4.09 0.59

CaO 2.24 63.01

MgO 1.33 1.93

TiO2 1.05 0.27

SO3 0.90 2.60

Na2O 0.89 0.19

MnO 0.05 0.08

LOI (%) 3.57 3.16
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as aggregate [49]. The water absorption of the sand

was 0.92 and 1.1% after 1 and 24 h, respectively. The

oven dry particle density was 2695 kg/m3. Both water

absorption and density weremeasured according to BS

812-2:1995 [50]. The sand was dried at 105 ± 5 �C
for a minimum of 48 h and allowed to cool to room

temperature before mixing. Laboratory grade acetic

(99–100%) and lactic acid (C 85%) were used to

prepare 0.10, 0.31 and 0.52 mol/L acid solutions for

each acid type by mixing in the required proportions

with distilled water. Bertron and Duchesne [21] have

compiled tables showing the typical concentrations of

acetic and lactic acid found in real world scenarios.

These typically range between 0.02 and 0.2 mol/L.

Acetic and lactic acids have dissociation constants

pKa of 4.76 and 3.86, respectively at 25 �C [21].

2.2 Mix proportions

The mix proportions used are presented in Table 2.

The fly ash geopolymer mixes were based on initial

mix design optimisation carried out by Rafeet et al.

[51–54] and Vinai et al. [55]. The Portland cement mix

proportions were obtained from work carried out by

Kwasny et al. [56–58]. The paste content of all mortar

mixes was fixed at 50% and the equivalent pastes were

identical, except without the presence of sand. The

water/solid ratio was fixed at 0.37 for both fly ash

mixes (FA1 and FA2) and the water cement ratio was

0.60 for the Portland cement mix (PC). The absorption

water is the amount of water needed to bring the sand

to saturated surface dry condition. The total added

water is the total amount of water needed plus the

absorption water, less the water contained within

activating solutions. The 28 day compressive strength

of FA1 was 21.5 MPa whereas the compressive

strength of FA2 and PC were similar, 55.5 and

53.0 MPa, respectively. FA1 is suitable for low

strength applications whereas FA2 and PC are suit-

able for high strength applications. Alkali dosage and

alkali modulus were the parameters used to proportion

the quantity of each activating solution used in the

geopolymer mixes. The alkali dosage is defined as the

percentage of Na2O in the binder and the alkali

modulus is the ratio of Na2O and SiO2 (sometimes

referred to as silica modulus). FA1 had an alkali

dosage of 7.5% and an alkali modulus of 1.25. FA2

had an alkali dosage of 11.5% and an alkali modulus of

0.95. This resulted in an increased content of both

activating solutions in FA2, particularly sodium

silicate. These alkali dosages and alkali moduli were

chosen based on mix optimisation carried out by

Rafeet et al. [51–54] and Vinai et al. [55], aiming for

28-day compressive strength of approximately

20 MPa (FA1) and 50 MPa (FA2 and PC). FA1 had

relatively low activator content and is more environ-

mentally friendly than FA2 which had similar com-

pressive strength as that of the PC mix.

2.3 Sample preparation

Both mortar and paste samples were prepared with a

10 l capacity planar-action high-shear mixer using a

similar procedure as that of Kwasny et al. [58]. Firstly,

the oven dried sand was placed in the mixing bowl

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000 10000

C
um

ul
at

iv
e 

pa
ss

in
g 

%
 b

y 
w

ei
gh

t

Particle size (μm)

Fly ash

Portland cement

Sand

Fig. 2 Particle size distribution of fly ash, Portland cement and

sand

Table 2 Mix proportions (kg/m3) for geopolymer and Portland cement mortars

Mix Fly ash Portland cement Sodium silicate Sodium hydroxide Absorption water Total added water Sand

FA1 577 – 136 111 12 93 1348

FA2 538 – 256 126 12 13 1348

PC – 544 – – 12 326 1348
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along with half of the total added water and mixed

together for 1 min. After 15 min the powder compo-

nent (fly ash or Portland cement) of each mix was

added. Finally, the remaining water (and activating

solutions if appropriate) was added and mixing

continued for 6 min before casting.

The samples were cast in two layers into 50 mm

three-gang cubic moulds and each layer was com-

pacted using a vibrating table. After casting the

samples were wrapped in cling film to prevent

moisture evaporation and placed in the appropriate

curing conditions depending on sample type. FA1 and

FA2 were cured in a laboratory oven at 70 �C for

7 days and then placed in the conditioning room at

20 ± 1 �C and 50 ± 5% relative humidity. PC was

cured at 20 ± 1 �C and stored on 15 mm high spacers

above 5 mm of water in sealed containers throughout

where the relative humidity was[ 90%. Samples were

demoulded after 24 h and returned immediately to the

appropriate curing conditions.

2.4 Testing procedures

Resistance to organic acid attack was determined

using an accelerated method, based on the guidelines

provided in ASTM C267 [59] and previous studies

[47–49, 60]. The mass loss of 50 mm mortar cubes

following immersion in acid solutions was investi-

gated. After 21 days curing the cubes were placed into

a water bath (20 ± 1 �C) until 28 days when the mass

of each cube was recorded. Subsequently sets of four

cubes from each were placed into plastic boxes

containing acid solutions with concentrations of

0.10, 0.31 and 0.52 mol/L of acetic and lactic acid.

The acid solution to sample volume ratio was main-

tained at approximately 0.9 throughout. Every 7 days,

visual inspection was carried out, the mass of the

mortar cubes was recorded and the acid solution

replenished. Additionally the pH of the acid solution

was recorded before replenishment. After 56 days (8

cycles), the average compressive strength was

obtained by testing three cubes from each box with a

constant loading rate of 50 kN/min. The loading zones

were protected with softboard to reduce the effect of

uneven surfaces. This method was used instead of

capping or grinding to allow immediate testing

following acid attack, avoiding testing delays which

would have caused issues regarding intermediate

sample storage conditions and drying during

processing. Control samples which were not exposed

to acid were also tested for comparison. The remaining

fourth specimen was used to visually inspect the

alkalinity loss. This was achieved by splitting the

cubes and applying phenolphthalein solution on the

split surface which highlights (deep pink/purple) the

region where the pH is greater than approximately 9

[61–63].

Mercury intrusion porosimetry (MIP) was used to

assess the pore structure of each mortar mix. At

28 days mortar fragments measuring approximately

8 9 8 9 20 mmwere sectioned from the core of each

cube using a diamond saw. Hydration/reaction was

stopped by oven drying the samples for 24 h at

60 ± 1 �C, then immersing them in acetone for 4 h

and subsequently drying them in a desiccator

(20 ± 1 �C) for a further 24 h. The pore structure of

the samples was determined using a Pascal 140/240

mercury intrusion porosimeter from ThermoFisher

Scientific. The mercury contact angle was taken to be

140�.
Equivalent paste samples were exposed to the same

cyclic exposure regime for 21 days (3 cycles) for the

highest concentration (0.52 mol/L) of both acetic and

lactic acid. Inductively coupled plasma mass spec-

troscopy (ICP) was used to analyse the acid solution at

the end of each exposure cycle (every 7 days). At the

end of 21 days exposure (3 cycles), the paste samples

were used for microstructural analysis. They were

compared with control pastes which were submerged

in water instead of acid but otherwise processed in the

same way. Powdered samples were obtained by

crushing and grinding the outside layer of the paste

samples in a pestle and mortar. The powders were

dried in a desiccator at 35 �C for 24 h prior to analysis.

X-ray diffraction (XRD) was carried out with a

PANalytical X’Pert PRO diffractometer applying

CuKa radiation of wavelength 1.54 Å. Diffraction

patterns were collected between 5 and 65� 2h with a

step size of 0.017�. PANalytical X’Pert Highscore

software with the powder diffraction file (PDF)

database was used to analyse the diffraction patterns.

Fourier transform infrared spectroscopy (FTIR) data

was obtained using Jasco 4100 series FTIR Spectrom-

eter with attenuated total reflectance attachment. The

spectra were gathered between 650 and 2000 cm-1

wavenumber at 8 cm-1 resolution.
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3 Results and discussion

The pore structure and porosity results obtained for

unexposed mortar samples are discussed first followed

by the findings on mass loss, compressive strength loss

and alkalinity loss of mortar samples exposed to

organic acids. Finally the tests carried out on paste

samples are presented including assessment of leach-

ing behaviour (pH change of acid solutions due to acid

attack of mortars is also monitored) and microstruc-

tural changes due to organic acid attack.

3.1 Porosity and pore structure

Figure 3 shows the pore size distribution, while

Table 3 summarises the pore structure properties

obtained by MIP for each mix. It should be noted that

Diamond [64] reported that MIP is not always a

suitable method for the characterisation of pore size

distributions in cementitious materials. This is due to

the misallocation of pore sizes related to accessibility

and connectivity of the pore network [64] and has been

named as the ‘ink-bottle’ effect [65]. However,

Diamond also acknowledged that MIP measurements

are useful for comparative purposes of the pore

systems in cementitious materials [64], which is the

main focus of the MIP measurements reported in this

study.

FA1 had a porosity of 19.2% which was reduced to

16.9% for FA2 when the alkaline activator dosages

were increased. Similarly the average pore diameter

was much smaller for FA2 compared with FA1. This

was likely to be due to a more complete activation of

fly ash in FA2 resulting in a more dense microstructure

[66, 67]. This can be explained by the nature of fly ash

particles and the reaction process as discussed below.

Fly ash consists of censospheres which are lightweight

spherical particles that can either be hollow or contain

smaller spheres called plerospheres [68–71]. The

activation process begins with the dissolution of the

outside layer of fly ash particles. This uncovers smaller

embedded particles which then undergo consecutive

dissolution. This results in the inside of larger particles

being filled with reaction product, forming a dense

matrix [30, 31]. This type of activation process is

easily identified in FA2 as shown in Fig. 4. On the

other hand, FA1 had a greater number of unreacted

spherical fly ash particles (Fig. 4) compared with FA2

due to the lower activator dosages used.

The porosity of the PC mortar (12.0%) was lower

than both FA1 and FA2 (19.2 and 16.9%) and the

average pore diameter of PC (0.034 lm) was smaller

than both FA1 and FA2 (0.111 and 0.043 lm). This is

likely due to the more space filling calcium silicate

hydrate (C–S–H) formed in Portland cement systems

(Fig. 4) compared with the less dense and more porous

sodium aluminium silicate hydrate (N–A–S–H) gel

formed in fly ash geopolymers [54, 72–75].

3.2 Mass loss

Figure 5 shows the mass losses of FA1, FA2 and PC

mortar mixes during 56 days exposure to 0.10, 0.31

and 0.52 mol/L solutions of acetic and lactic acids.

Lactic acid caused increased mass losses compared

with acetic acid and is likely due to the lower

dissociation constant of lactic acid. Exposure to

0.10 mol/L resulted in small mass losses which were

negligible for the fly ash geopolymer mixes after

56 days of testing. For PC they were 1.2 and 0.7% for

lactic and acetic acid, respectively, while the mass

losses for the both FA1 and FA2 mixes were less than

0.3% for both acids. Following 56 days exposure to

0.31 mol/L of each acid, slightly larger mass losses
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Table 3 Pore structure properties of mortar mixes at 28 days

Mix FA1 FA2 PC

Porosity (%) 19.2 16.9 12.0

Average pore diameter (lm) 0.111 0.043 0.034

Total pore surface area (m2/g) 3.44 7.65 6.64
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were observed, particularly for PC. They had mass

losses of 5.5 and 2.8% for lactic and acetic acid,

respectively. The mass losses for the FA1 and FA2

were between 0.5 and 1.2%. Exposure to 0.52 mol/L

solutions of acetic and lactic acid caused larger mass

losses for each mix. PC had a mass loss of 12.9% due

to lactic acid and 5.0% due to acetic acid. The mass

losses for FA1 and FA2 were between 0.8 and 1.8%.

Furthermore, the rate of mass loss per cycle appears to

be constant or increasing for PC whereas the opposite

is true for the FA1 and FA2.

The fly ash geopolymer mixes exhibited relatively

similar performance, regardless of the alkaline acti-

vator dosages. However, at increased concentrations

of lactic acid, FA1 had marginally larger mass losses

than FA2. Additionally, the mass losses for FA1 and

FA2 are much less than that of PC indicating they are

less susceptible to organic acid attack.

Figure 6 shows the visual appearance of FA1, FA2

and PC mortar samples following 56 days exposure to

three concentrations of acetic and lactic acids. The fly

ash geopolymer mixes appear to become lighter in

colour following attack by increased concentrations of

both acetic and lactic acid. Apart from the colour

change it is difficult to see any signs of surface

deterioration. In the case of the PC, there is a visible

loss of cement paste from the surface of the samples

following exposure to 0.31 and 0.52 mol/L solutions.

The loss of cement paste also results in the exposure of

sand particles causing a rough surface to be observed.

More significant cement paste loss is apparent for

lactic acid exposure compared with that for acetic acid

exposure. These findings are in agreement with the

mass losses, i.e. lactic acid causes increased

deterioration compared with similar concentrations

of acetic acid, particularly for PC.

3.3 Compressive strength loss

Figure 7 shows the compressive strength of FA1, FA2

and PC mortar mixes after exposure to 0.10, 0.31 and

0.52 mol/L of acetic and lactic acids when tested at the

end of the 56 day exposure regime. The compressive

strength of samples kept in water (unexposed), tested

at the same age as the acid attacked samples is also

shown. Exposure to acid, regardless of type or

concentration causes a reduction in compressive

strength for each mix. Generally as the acid concen-

tration increases the compressive strength loss also

increases. Additionally, it appears that lactic acid

causes a larger reduction in compressive strength

compared with acetic acid. The percentage strength

losses demonstrate relatively similar performance for

each mix.

3.4 Alkalinity loss

Figure 8 shows photographs of the cross sections of

FA1, FA2 and PC mortar samples sprayed with

phenolphthalein solution. Samples were exposed for

56 days to 0.52 mol/L solutions of acetic and lactic

acids. Photographs of samples kept in water (unex-

posed) are included for comparison. The unexposed

samples appeared pink/purple across their entire cross-

section which indicates that the pH was above 9.0. It is

worth noting that although this shows that the pH was

above 9.0 for each mix, the specific pH for each mix is

not known. There may be some difference in the initial

pH values due to the different composition of each

FA2FA1 PC

Fig. 4 SEM images of hardened paste samples of FA1, FA2 and PC (91000)
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mix. Previous publications from this group [48, 60]

showed the evolution of the pH of water solutions

during immersion in water of the equivalent pastes of

these mortar mixes. Initially the pH of the water was

6.8 but increases over time during samples immersion.

Eventually the pH of the water solutions became

stable which may provide an indication of the pH of

the pore solution of each mix. We reported that there

was only a small difference between each mix, (values

ranged between 11.5 and 12.5 following 7 days of

immersion) [48, 60]. This suggests that the difference

in the pH of the pore solution for each mix was small.

However, it is expected that the pore solution of FA2

has a slightly higher pH than FA1 due to the increased

alkaline activator dosages. The pH of the acetic and

lactic acid solutions was relatively low (\ 3.0).

Therefore, the effect of the small difference in pH of

each samples pore solution should be almost

negligible.

Following 56 days exposure to acetic and lactic

acid the pH of the entire cross-section of FA1 was

reduced below 9.0 as no pink/purple region was

observed following application of phenolphthalein

solution. This suggests that the acid solution had either

reached the centre of the sample or caused significant

ion exchange throughout the entire sample. In the case

of FA2, the central region of the sample appeared

pink/purple meaning the pH remained above 9.0 in

this region. This suggests the acid did not ingress or

cause significant chemical alteration to the centre of

FA2. The superior performance for FA2 was likely

related to the reduced porosity of 16.9%, compared

with 19.2% for FA1 (Table 3). The large pores

observed in FA1 may also have allowed the acid to

ingress rapidly (Fig. 3). This could prove an issue for

the use of fly ash geopolymer concrete mixes to protect

steel reinforcement from corrosion. The high pH of

concrete is crucial for protecting steel reinforcement

from corrosion as it provides a protective layer

inhibiting the commencement of corrosion [76].

The performance of PC was vastly different.

Almost the entire cross-section of the samples turned

pink/purple following the application of phenolph-

thalein solution. Only the outside layer (\ 2 mm) had

a reduction in pH below 9.0. This suggests that the

core of PC remained relatively unchanged by the acid.

This may be related to the more dense microstructure

found in PC (Sect. 3.1). It is worth noting that these

results only provide an indication of the depth of acid

penetration. However, they do help in understanding

the nature of acid attack for each mix. PC suffered

much larger mass losses (Fig. 5) and appeared more

significantly damaged when samples were visually

assessed (Fig. 6). However, the internal core of the

samples remained largely unaffected. On the other

hand, FA1 and FA2 exhibited smaller mass loss and a

relatively undamaged outer surface but their internal
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core suffered from a reduction in pH suggesting

greater acid ingress compared with PC.

3.5 Leaching behaviour

Figure 9 shows the pH of the acid solutions at the end

of each exposure cycle during exposure of each mortar

mix to 0.10, 0.31 and 0.52 mol/L solutions of acetic

and lactic acids. The pH of each acid solution is also
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Fig. 6 Visual appearance of FA1, FA2 and PC mortar samples following 56 days exposure to three concentrations of acetic and lactic

acids
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Fig. 7 Compressive strength of FA1, FA2 and PCmortar mixes

after 56 days of exposure to 0.10, 0.31 and 0.52 mol/L solutions

of a acetic and b lactic acid. The compressive strength of

unexposed samples is also shown. The values above the strength

results of samples exposed to acid attack represent the

percentage strength loss (i.e. their strength is compared with

unexposed samples)

Unexposed Lactic acidAcetic acid

FA1

PC

FA2
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shown as a point of reference. At the end of each

exposure cycle the pH of each acid solution has

increased significantly due to the ion exchange

between the sample and acid solutions. The pH

increase is much higher for PC throughout which is

likely to be due to the availability of calcium which is

leached into the acid solution. For both fly ash

geopolymer and Portland cement mixes the pH of

the acid solutions used for storing the samples

generally decreased with each exposure cycle sug-

gesting fewer ions were available in the samples for

exchange. This is likely to be due to depleted (buffer)

layers remaining intact preventing heavy leaching to

occur from internal layers. For each mix the pH of the

acid solutions was greater for acetic acid compared

with lactic acid, this is likely due to the increased

initial pH of the acid solution (Fig. 9). For the PC mix

it could also be due to the increased solubility of the

calcium salt of acetic acid compared with that of the

calcium salt of lactic acid [21], allowing additional

OH- anions to go into solution following dissolution

of calcium rich phases. This shows the difference in

performance of cementitious materials when exposed

to different acid types and highlights the value in

understanding the performance of materials when

exposed to various types of acidic solutions.

Figure 10 shows the cumulative concentration of

(a) aluminium, (b) calcium, (c) sodium and (d) silicon

in 0.52 mol/L acetic and lactic acid solutions during

21 days of paste samples immersion. The main

leachate observed from FA1 and FA2 when exposed

to both acid types was sodium. This is in agreement

with Nguyen and Skvara [77] which found that sodium

from fly ash geopolymers naturally diffused slowly

into aqueous solutions. Smaller quantities of other

elements were also observed including aluminium,

calcium, silicon, potassium, magnesium and iron.

Concentrations observed were relatively similar for

both acid types. However, slightly more aluminium

was observed due to lactic acid exposure when

compared with acetic acid exposure. This is likely

due to lower dissociation constant of lactic acid and

the higher solubility of the aluminium salts of lactic

acid compared with the aluminium salts of acetic acid

[21]. Additionally, the complexation of cations and

anions may influence these mechanisms. It has been

reported that aluminium complexation by acetate may

have an effect on the proportion of aluminium inserted

into silica-rich gel formed after acid attack

[21, 78, 79]. The increased aluminium found in

solution would account for the larger strength losses

for FA1 and FA2 due to lactic acid exposure (Fig. 7),

and could be related to additional dealumination of N–

A–S–H gel. The main leachate from PC was calcium,

with slightly more leached due to acetic acid when
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compared with lactic acid. This is likely to be due to

the high solubility of calcium acetate which is the

calcium salt of acetic acid [78–80].

3.6 Microstructural changes

Figure 11 shows the XRD patterns of a) FA1, b) FA2

and c) PC pastes following 21 days of exposure to

0.52 mol/L acetic and lactic acid solutions. The fly ash

geopolymer and Portland cement pastes which were

not exposed to acid are also shown for comparison.

The main crystalline phases present in unexposed FA1

and FA2 were quartz (SiO2), mullite (Al6Si2O13) and

hematite (FeO2). Quartz was identified using PDF #

01-085-0504 and the main peaks were located at 20.8,

26.6, 50.2 and 60� 2h. Mullite was identified using

PDF # 01-083-1881 and the main peaks were located

at 16.4, 26.0, 26.3, 33.2, 39.3, 40.9, 42.6, 60.7� 2h.
Hematite was identified using PDF # 01-073-0603 and

the main peak was located at 35.6� 2h. The broad

hump in FA1 and FA2 between approximately 15 and

30� 2h indicates the presence of amorphous silicate

and aluminosilicate gel phases [75, 81], which in this

case was most likely N–A–S–H gel. Following

exposure to both acetic and lactic acids, the peaks

due to quartz, mullite and hematite remained and

appeared unaffected. The broad hump located between

15 and 30� 2h was still present which suggests that

some form of silicate or aluminosiliacte gel remained

following acid exposure. The only change being that

the broad hump appeared to shift to be centred at a

lower angle. Centring of the peak in this region is

typically observed for unreacted fly ash and may

suggest that some of the reacted aluminosilicate

phases have broken down leaving behind more

unreacted fly ash particles [75, 81, 82].

The main crystalline phases identified in PC were

calcium hydroxide and ettringite. Calcium hydroxide

was identified using PDF # 01-075-0571 and the main

peaks were located at 18.1, 34.1, 28.7, 47.1, 50.8, 54.4
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Fig. 10 Cumulative concentration of a aluminium, b calcium, c sodium and d silicon in 0.52 mol/L acetic and lactic acid solutions

following 21 days of FA1, FA2 and PC paste samples immersion
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and 62.6� 2h. Ettringite was identified using PDF #

00-041-1451 and the main peaks were located at 9.1,

15.8, 18.9 and 22.9� 2h. Following exposure to both

acetic and lactic acids, substantial changes were

observed. The peaks associated with calcium hydrox-

ide and ettringite were no longer present indicating

they have been removed due to acid attack. Instead

calcium carbonate (calcite) was identified by PDF #

01-086-2334 and the main peaks were located at 23.1,

29.4, 36.0, 39.4, 43.2, 47.5, 48.5, 57.4 and 60.7� 2h.
Calcite was also identified by other authors [4, 20, 83]

after Portland cement pastes were exposed to acid

attack and may be linked to the precipitation of

calcium and carbonate ions [10]. Calcium is available

from the dissolution of phases with high calcium

content such as calcium hydroxide, ettringite and C–

S–H. Carbonate may be present from small amounts of

carbon dioxide dissolved in solution [10]. In addition,

calcium lactate hydrate was observed following

exposure of PC to lactic acid. It was identified by

PDF # 00-005-0101 and the main peaks were located

at 7.5, 9.0, 15.0 22.1 and 27.4� 2h. De Belie et al. [7]
and Singh et al. [84] also reported the presence of a salt

of calcium lactate due to the interaction between lactic

acid and calcium hydroxide. This explains why less

calcium was observed due to lactic acid exposure for

PC (Fig. 10). The calcium salt of acetic acid was not

stable enough to avoid dissolution allowing additional

calcium to be observed in the acetic acid solution

(Fig. 10).

Figure 12 shows the FTIR spectra of a) FA1, b)

FA2 and c) PC paste samples following exposure to

0.52 mol/L acetic and lactic acid solutions. The fly ash

geopolymer and Portland cement pastes which were

not exposed to acid are also shown for comparison. For

each sample the small band at approximately

1640 cm-1 was related to vibrations of OH and H–

O–H groups indicting the presence of water molecules

[85–88]. For mixes FA1 and FA2, the main peak

which was observed at 997 and 991 cm-1, respec-

tively, is assigned to the presence of asymmetrical T–

O vibrations (T = Si or Al) indicating the presence of

N–A–S–H gel [89]. Following acid attack this main

peak shifted to higher wave numbers which indicates a

higher Si/Al ratio and is attributed to dealumination of

the binding gel [90]. The extent of the shift can also be

related to the degree of damage caused by acid attack

[83]. For FA1 the shift was from 991 to 1022 and

1051 cm-1 for acetic and lactic acid, respectively. For

FA2 the shift was from 997 to 1018 and 1049 cm-1 for

acetic and lactic acid, respectively. Therefore, the

extent of the shift was similar for both FA1 and FA2

suggesting the additional activator dosage in FA2 had
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no impact on the resistance of reaction products to acid

attack. It can also be noted that the shift was larger for

lactic acid for both FA1 and FA2 suggesting lactic acid

caused more dealumination. This is in agreement with

the leaching behaviour which found increased con-

centrations of aluminium in the lactic acid solutions

(Fig. 10a).

For PC, the main peak was located at 960 cm-1 and

shifted to 1018 and 1029 cm-1 for acetic and lactic

acid, respectively. This is likely due to the decalcifi-

cation of C–S–H gel [83], suggesting lactic acid caused

further decalcification compared with acetic acid,

which is in agreement with the mass losses observed

(Fig. 5). PC had a small shoulder at 1105 cm-1

associated with the presence of ettringite [91]. Fol-

lowing acid exposure, this shoulder at 1105 cm-1 was

no longer visible suggesting it has been removed due to

acid attack. Additional peaks observed at approxi-

mately 875 and 1425 cm-1 were due to carbonate

species and likely to indicate the presence of calcite

[92–94]. At around 1580 cm-1, an additional peakwas

observed in the PC sample exposed to lactic acid. This

peak has previously been related to carboxylic acid

salts, in particular calcium lactate hydrate [95–98].

These observations are in agreement with findings

from XRD analysis (Fig. 11c).

4 Conclusions

This paper investigated the potential of fly ash

geopolymers to be used in certain applications where

high resistance to organic acid is required. Compared

with Portland cement mortar, fly ash geopolymer

mortars appeared visibly less susceptible to organic

acid attack, i.e. lower degree surface spalling and

breakdown of paste was observed. These findings were

confirmed by the mass losses, which were significantly

larger for the Portland cement mortar. This was due to

the enhanced resistance of the reaction products

formed. The failure mechanism involved the dealu-

mination of N–A–S–H gel leaving behind a highly

siliceous product. On the other hand, the attack on the

surface of Portland cement samples was more aggres-

sive, mainly due to the availability of more phases

which are susceptible to organic acid attack. Calcium

hydroxide, C–S–H and ettringite were all found to be

vulnerable to degradation, mainly due to ion exchange

involving calcium. The formation of calcium salts was

also a factor. In the case of acetic acid attack, calcium

acetate was formed, which is highly soluble and

resulted in a high level of calcium being drawn into

solution. In the case of lactic acid attack, calcium
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Fig. 12 FTIR spectra of a FA1, b FA2 and c PC pastes stored
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lactate was formed due in part to the dissolution and

decalcification of phases such as calcium hydroxide,

C–S–H and ettringite. However, despite the reduced

mass losses for fly ash geopolymers they have a

considerable drawback. Their porosity was relatively

higher compared with Portland cement mortars,

making them susceptible to loss of alkalinity and

ingress of acid, which could be detrimental if used in

structures containing steel reinforcement. The per-

centage strength losses were similar for each mix

investigated. Therefore, depending on the indicators

considered and end use application, fly ash geopoly-

mer binders may be considered to have better or worse

resistance to organic acid than Portland cement

binders.

Increasing the alkaline activator dosage had no

influence on the resistance of the reaction products

formed in fly ash geopolymers, hence similar mass

losses were observed. However, a larger compressive

strength was obtained and a less porous microstructure

was formed, allowing a larger residual strength

following acid attack. Additionally, the mix with

higher activator dosages (FA2) was less susceptible to

alkalinity loss and appeared to prevent to some degree

the ingress of acid.

In applications where no structural reinforcement is

necessary, fly ash geopolymers have the potential to

improve service life due to the resistance of their

reaction products. It may be worthwhile to consider fly

ash geopolymers as a repair material for surfaces

which are experiencing organic acid attack or as a

layer of protective material for PC based systems.

Although due to the high temperature curing required,

attention should be given to develop further applica-

tions where some form of high temperature curing is

possible, i.e. precast elements. Additionally, consid-

eration should be given to improving the pore structure

of fly ash geopolymers making them less susceptible

to ingress of acidic solutions. If this can be achieved

without affecting the susceptibility of their reaction

products to organic acid attack, fly ash geopolymers

have the potential to provide enhanced organic acid

resistance compared with traditional Portland cement

based materials.
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