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Abstract To check the shrinkage of the concrete

considered for a design and construction project, only a

limited time such as 1–3 months is usually available.

So, a short-time shrinkage test must be extrapolated to

much longer times, which has been known to be a

difficult problem. To obtain a dependable extrapola-

tion, it was proposed to use weight measurements of

the water loss of the test specimens. However, recently

some problems with this concept have been identified.

The present article proposes another concept relying on

the diffusion size effect in shrinkage. In a much smaller

companion specimen, it is possible to reach within 1–3

months the concave part of the shrinkage curve plotted

in logarithmic time scale, in which the asymptotic

value is closely approached. The method is examined

using the available published data on the shrinkage of

specimens of different sizes. Because the size differ-

ence in the available data is too small, the method is

also examined using artificial small-size data obtained

by scaling according to the diffusion theory. Both cases

indicate overall improvement in predicting the final

asymptotic values. However, although the extrapola-

tion is clearly better than the traditional extrapolation

‘‘by eye’’ or by fitting a formula to one-size data, some

non-negligible discrepancies are still observed, and it

is not clear whether the size effect method is better than

the water loss method. In the face of this reality, further

studies are recommended using tests of combined

drying and autogenous shrinkages, with greater size

differences of drying specimens and a refined evalu-

ation taking into account secondary influences such as

differences in cracking, hydration aging, and the

inevitable effect of autogenous shrinkage in the

specimen core before it is reached by the drying

front. Until such studies clarify the problem, taking the

more conservative result from the extrapolations by the

size-effect and weight-loss methods is recommended

as better than intuitive extrapolation ‘‘by eye’’.

Keywords Concrete shrinkage � Drying � Creep �
Short-time tests � Extrapolation � Size effect �
Diffusion � Optimization

1 Introduction and nature of problem

Because of the tremendous variety of concrete com-

positions, prior to designing or building a structure it is

often necessary to perform short-time creep and
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shrinkage tests of the concrete to be used. Typically,

the acceptable test duration, te, is 1–3 months.

Extrapolation of the basic creep test (i.e., the test of

a sealed specimen) is relatively easy [1–3] since the

compliance curve of concrete is, in the logarithmic

time scale, rising at nearly constant slope and no final

asymptotic final value exists. However, extrapolation

of the drying shrinkage test is far more difficult (so is

the extrapolation of the additional creep due to

simultaneous drying, called the drying creep).

The difficulty is made clear in Fig. 1 (adapted from

Fig. 2c in [1] and Fig. 1.4 in [3]). It shows three curves

plotted in the logarithmic time scale according to the

drying shrinkage formula of models B3 [1, 3] and B4 [4]

with different parameter values (see Eqs. 9–14 in [1]).

Curve c is almost identical to curve a for the duration of

the short-time test but leads to a much higher final

shrinkage. Mathematically it means that the shrinkage

extrapolation problem is ill-conditioned, leading to a

nearly singular system of equations. In other words, a

very small change in short-time data can cause a very

large change in the optimum fit by the shrinkage formula

(this is true not only for the B3 or B4 formula but also for

the formulas of ACI-209, fib and other codes or

recommendations). Furthermore, curve b, for modern

concrete of very low diffusivity, gives a much lower

short-time shrinkage than curve a for normal concrete,

but may eventually lead to a much higher final shrinkage.

Why the basic creep extrapolation does not suffer

from this problem?—The basic creep curve has no

characteristic time, called the halftime, and no final

asymptotic value (if one uses a realistic formula with a

logarithmic terminal trend, such as that from B3 or B4

models). For shrinkage, these two characteristics are

essential but can be determined only if the shrinkage test

is long enough for the slope in the logarithmic time plot

to approach closely the horizontal asymptote (Fig. 1).

In [1] it was proposed to aid shrinkage extrapolation

by carrying out simultaneous measurements of weight

loss, i.e., loss of water from the pores, which drives the

drying shrinkage. The motivation was that, in contrast

to shrinkage, the final water loss can be estimated in

advance, either from the water-cement ratio of the

concrete mix, or by drying the specimen in the oven

and then interpolating the water loss from perfect

dryness in the oven to the given environmental

humidity. Initial studies [5, 6] indicated some good

results but, unfortunately, some recent studies have

shown poor extrapolations [7]. One problem has been

that the estimate of the final water loss is often not

good enough. Other problems may be that the aging

due to hydration and the development of shrinkage

cracks affect the shrinkage curve and the water loss

curve somewhat differently. Therefore, a different

method is suggested now for consideration.

2 Shrinkage formula and diffusion size effect

The formula for the drying shrinkage strain used in

Model B3 [1, 3] as well as the improved model B4 [4]

may be written in the form:

�sh ¼ �s1r tanh

ffiffiffiffiffiffi

t̂

ssh

s

ð1Þ

where ssh ¼ k1k
2
sD

2 ð2Þ

D ¼ 2v=s; t̂ ¼ t � t0 ð3Þ

r ¼ kh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:99 þ 4:63

t0 þ ssh

r

: ð4Þ

• t; t0 ¼ current time and concrete age at exposure to

drying (all times are in days);

• ssh ¼ shrinkage halftime;

Fig. 1 Three examples of possible very different shrinkage

evolutions demonstrating the difficulty of extrapolating short-

time data
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• D = 2v/s = effective thickness of specimen, also

called the size, where v/s = ratio of specimen’s

volume v to its exposed surface area s (factor 2 is

used to make D equal to the actual thickness when

an infinite flat slab is considered);

• �s1 ¼ final shrinkage strain for reference condi-

tions h = 0, t0 ¼ 7 days and ssh ¼ 600 days;

• kh ¼ 1 � h3 ¼ empirical correction factor for

environmental relative humidity h (if h\0:98);

• k1 ¼ empirical factor depending on concrete

strength;

• ks ¼ correction factor (theoretically derived from

diffusion theory) for the cross section shape, equal

to 1 for an infinite slab, 1.15 for an infinite

cylinder, and 1.25 for an infinite square prism.

In contrast to other shrinkage functions used in design

codes and recommendations, the form of Eq. (1) was

theoretically derived by asymptotic matching, based

on three physical requirements (of which the first two

follow from the diffusion theory):

(1) the shrinkage halftime must initially increase as

D2;

(2) �sh must initially evolve as
ffiffi

t̂
p

; and

(3) the approach to the final value must be asymp-

totically much closer to a decaying exponential

than to a power law.

The first two requirements have also been well verified

by shrinkage tests [10, 11].

Eq. (4) is derived by substituting the empirical

formula for aging of elastic modulus,

EðtÞ ¼ ½E28t=ð4 þ 0:85tÞ�1=2
, into the equation

�sh1 ¼ �s1Eð607Þ=Eðt0 þ sshÞ, which introduces the

hypothesis that shrinkage is caused by a compressive

stress increment in the solid microstructure generated

by an increase in solid surface tension and drop in

disjoining pressure. It reflects the fact that an older and

stiffer concrete shrinks less.

3 Extrapolation via least-square optimization

We want to extrapolate the short time data on �sh for

specimens of size D1, typically cylinders of diameters

d = 6 in. or 1 in. (for which D ¼ 2v=s ¼
2ðpd2=4Þ=ðpdÞ ¼ d=2 = 3 in. or 0.5 in.), or for square

prisms of side c = 1 in. or 3 in. (for which D ¼
2v=s ¼ 2c2=ð4cÞ ¼ c=2 = 0.5 in. or 1.5 in.). The data

terminate at not too long test duration t1 such as 3

months or 1 month, causing a tolerable delay.

Given that the short-time data for specimens of one

size alone cannot be extrapolated (because of the afore-

mentioned ill-conditioning), and that the use of water

loss data might be questionable, it is proposed to exploit

the diffusion size effect on shrinkage. This size effect

has been derived theoretically and verified experimen-

tally; see, e.g., [8, 9]. Its characteristic is a quadratic size

dependence of shrinkage halftime, as in Eq. (2).

Thus it is proposed that, in addition to measuring

the shrinkage strains, �1ðt̂Þ, of standard specimens of

size D1, one should also measure the shrinkage strains,

�ðt̂Þ, of companion specimens of a much smaller size

D2. According to the diffusion theory, the shrinkage

curves of both should be mutually shifted by distance

D ¼ 2 logðD1ks;1=D2ks;2Þ when plotted in the loga-

rithmic time scale. The standard short-time shrinkage

test of 1 or 3 months duration typically reaches up to

only 20–40 % of the final shrinkage, �1ð1Þ of the

standard specimen. But if the companion size D2 is

small enough, the measured companion data should

reach up to about 95 % of the final shrinkage, �2ð1Þ.
Due to inevitable experimental scatter, a number of

specimens should be tested. To deal with the scatter,

statistical optimization of data fits must be used. How

many parameters of Eq. (1) should be optimized? Only

two, x and y, because for more the optimization

problem would become ill-conditioned. And which

parameters should be optimized? One must be a

parameter controlling the final asymptotic value, and

the other controlling the halftime. So we set

x ¼ �s1; y ¼ k1 ð5Þ

The objective function to be minimized by least-

square optimization may now be formulated as

follows:

Uðx; yÞ ¼ w1w0

X

N

i¼1

�1i � xr tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t̂i

k2
s;1yD

2
1

s
 !2

þ w2

X

n

j¼mþ1

�2j � xr tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t̂j

k2
s;2yD

2
2

s !2

ð6Þ

w1 ¼ 1

N
; w2 ¼ 1

n� m
ð7Þ
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• �1i for i ¼ 1; 2; . . .N are the data measured at

increasing discrete times t̂i on the standard-size

specimens;

• �2j for j ¼ 1; 2; . . .n are the data measured at

increasing discrete times t̂j on the reduced-size

companion specimens;

• �2j for j ¼ 1; 2; . . .m are those data for which

�2j\�1N . These data are excluded from the opti-

mization to prevent them from modifying the fit of

the data measured on the standard-size specimens,

which are the shrinkage data to be extrapolated

(however, should an overall optimum fit be

desired, then these data may be included, in which

case m ¼ 0).

• w1;w2 are the chosen bias-countering weights for

the standard and companion specimens, ensuring

that both sums in U have equal total weights. The

weight values chosen in Eq. (7) prevent. e.g., the

second sum from dominating when it contains

many more data points than the first sum.

• wi is a chosen importance weight. To ensure a very

close fit of the data measured on the standard-size

specimens that are to be extrapolated, a large value

may have to be used; here wi ¼ 5 or 1,000 has been

used (however, if the sole objective were the best

fit of all the data, then wi would have to be chosen

as 1).

• ks;1; ks;2 are the values of shape parameter ks for

specimens of sizes D1 and D2.

Upon identifying parameters x and y by optimization,

there is enough information for extrapolation. The

objective function is not a quadratic form in terms of

the unknown parameters x and y. So the optimization

problem is nonlinear; it cannot be reduced to linear

equations for x and y. Nevertheless, easy and fast

solution is obtained by means of the Levenberg–

Marquardt algorithm, which also gives the coefficients

of variation of x and y. Once x and y are known, Eqs.

(1) and (2) deliver the extrapolation. Furthermore, the

coefficient of variation (CoV) of the extrapolations

can be calculated from those of x and y.

4 Test data used for evaluation

Although thousands of measured shrinkage curves

are available in the new NU database of creep and

shrinkage [10], only the shrinkage data sets of Burg

and Ost [11] and of Wittmann and Bažant [8, 9]

feature the minimal range of different specimen

sizes, necessary to appraise the proposed method.

The tests of Wittmann and Bažant were intended

to study the random scatter of shrinkage among

identical specimens. They included one group of 36

identical cylinders of diameters 83 mm, one group

of 35 identical cylinders of diameters 160 mm, and

one group of 3 identical cylinders of diameters 300

mm. The length of each cylinder was double the

diameter. The ends always remained protected

against drying. The mean standard 28-day cylindri-

cal strength was �fc = 33.2 MPa (4815 psi) and the

28-day E-modulus was 36.3 GPa (5,265,000 psi).

The water-cement ratio was 0.48, which was

probably high enough to ensure that the autogenous

shrinkage in the wet portion of the cross section was

not too large. No admixtures, plasticizers or air-

entraining agents were used. All the specimens were

cast from one batch of concrete, and the coefficient of

variation of measured shrinkage values was mostly

between 6 and 9 % with outliers up to 47 %. The

specimens were cured in molds for 7 days, until the

instant of exposure to controlled environment of

relative humidity 65 ± 5 % and temperature was

18 ± 1 �C. The shrinkage was measured as the change

of distance between the ends of specimens along the

axis, and the readings began within one minute after

the stripping of the mold.

The shrinkage tests of Burg and Ost used high-

strength concretes with water-cement ratios ranging

from 0.26 to 0.43; and water-to-cementitious

material ratios ranging from 0.22 to 0.32. The

concretes used contained either no mineral admix-

tures except silica fume, or both fly ash and silica

fume, and were delivered to the laboratory by a

ready-mix supplier. The compressive strength val-

ues ranged from 69 to 138 MPa (10,000–20,000

psi). The environmental relative humidity was

50 ± 4 % and the temperature 23 ± 1.7 �C. The

ASTM C157 and C512 procedures were followed,

i.e., the environmental conditions were the same

for all the drying shrinkage specimens. The curing

period was 28 days. Creep and many other

properties were also tested. The autogenous shrink-

age was not measured.
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5 Optimal fitting, extrapolation and evaluation

of actual data

The data points in Figs. 2, 3 and 4 represent the

averages of the measured data for each time and each

specimen size D, plotted in the logarithmic scale of the

time t � t0 elapsed from the moment t0 of exposure to

drying (all the times are in days). There are two kinds

of data points: (1) The circle points are those that have

been used in the optimization of the shrinkage

formula; and (2) the cross points are those that have

not been used and are intended for comparison with

the optimum fit of the circle points.

In Figs. 2a, 3a and 4a all the data points are used in

calculations. These figures document that Eq. (1) can

fit the test data as well as can be expected in view of the

inevitable experimental scatter (6–9 %).

The durations te of the short-time shrinkage tests to

be extrapolated are here considered to be either 90

days or 30 days. These times are marked in all the

Fig. 2 a–d Various shrinkage data of Burg and Ost [12] for

water-cement ratio 0.28 and their extrapolations; C.o.V =

coefficient of variation of the errors (root mean square of the

errors divided by the average of data used); wx, wy ¼ coefficient

of variations of parameters x and y, obtained by optimization
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figures by vertical lines. All the data points beyond the

duration te are crosses, which means they are not used

for fitting and serve only for evaluating the extrapo-

lations. The shrinkage strain reached in these large

specimens at time te is denoted as �e and is marked in

the figures by a horizontal line.

The smaller-size companion specimens to aid the

extrapolation reach much higher shrinkage strains

before time te and their sizes should obviously be so

small to their strain attained at time te would be at the

beginning of the terminal concave portion of the

shrinkage curve revealing approach to the final

shrinkage value. The strains of the companion spec-

imens that are smaller then �e (and are shown by

crosses below the horizontal line) are not considered

for data fitting by shrinkage formula (1) because the

aim is to extrapolate only the shrinkage test of the

larger, standard size, specimen. Nevertheless, the

early companion specimen strains, which are smaller

than �e, can be used to judge the quality of fit. Also, it

Fig. 3 a–d Further shrinkage data of Burg and Ost [12] for water-cement ratio 0.34 and their extrapolations

416 Materials and Structures (2016) 49:411–420



has been checked that if these early strains were

included in the data fitting, the resulting fits would be

almost the same.

For Wittmann–Bažant data, the main tests to be

extrapolated are considered to be the tests of cylinders

of diameter either 160 mm (6.30 in.) (for which D =

3.15 in.) or 83 mm (or 3.27 in.) (for which D = 1.63

in.). For Burg–Ost data, the main tests are assumed to

be the tests of cylinders of diameter 152 mm. (6 in.)

(for which D = 3 in.) or prisms of side 76 mm (or 3 in.)

(for which D = 1.5 in.).

Figs. 2a–d, 3a–d and 4a–d show a number of

different combinations of test sizes and durations of

exposure. First we consider the test pairs for actually

measured shrinkage curves in Figs. 2a, b, 3a, b, and 4a,

c, d. As seen in the figures, in some cases the

extrapolations of the measured data aided by the

small-size specimens agree well with the subse-

quently measured data marked by the crosses; see

Figs. 2b and 3b.

In other cases, however, the agreement is not too

good and, more seriously, the extrapolation seems not

to give the correct final shrinkage value, which is of

main interest. The cause of these poor results is

thought to be that the smaller specimen sizes consid-

ered were not small enough, and particularly that their

shrinkage curves did not extend within time te into the

concave approach to the final shrinkage value.

Fig. 4 a–d Shrinkage data of Bažant and Wittmann [10, 11] and their extrapolations
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6 Optimal fitting, extrapolation and evaluation

of artificially shifted data

Unfortunately, no data pairs for companion speci-

mens of sufficiently small sizes are available in the

literature. Therefore, strictly for the purpose of

evaluating the method, it was decided to create

artificial data for smaller-size specimens according to

the assumption that Eq. (1) based on the diffusion

theory of shrinkage is sufficiently realistic [1, 2, 4, 5].

According to the diffusion theory, a decrease of

specimen size from D1 toD0
1 corresponds to a leftward

shift of the shrinkage curve in the logarithmic time

scale. The shift distance is D ¼ 2 logðD0
1k

0
s;1=D1ks;1Þ.

However, after the shift, the artificial data must also be

slightly scaled up vertically in the same ratio as the

final value �sh1, which is changing due to cement

hydration (aging). The vertical scaling ratio is

obtained from Eq. (4) as the ratio of the �sh1 values

corresponding to the ssh-values for the reduced size D0
1

and the original size D1.

While the standard size shrinkage specimens are

usually cylinders, for making specimens of greatly

reduced size it would be preferable to use square

prisms. Such specimens could be cast horizontally,

with one size open, and if the specimens are not wide

enough compared to the aggregate size, they could be

cut from a wider specimen by a saw (in that case, an

additional correction would be required for the wall

effect, which differs between cast and sawed surfaces

Fig. 5 a, b Comparison of

extrapolations in the linear

and logarithmic time scales

(the data points in both

diagrams are exactly the

same)
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and can be determined by diffusion and shrinkage

simulations with a lattice-particle model).

The shrinkage plots with the shifted data are shown

in Figs. 2c, d, 3c, d and 4b. They are again optimally

fitted in the same way as before. Comparing the fits to

those of the unshifted data confirms that if the smaller

companion specimen is small enough, the extrapola-

tion is improved.

However, the extrapolation is found not to improve as

much as might be desired. There are still cases in which

the final shrinkage value is not predicted correctly; see

Fig. 4c, d. Obviously, to get perfect extrapolations, the

B3 (or B4) Eq. (1) would need to be improved, or the

extrapolation would need to be made by inverse analysis

with a sophisticated three-dimensional finite element

code that simulates the diffusion of moisture, distributed

cracking and its localization, the aging due to hydration

and the creep due to shrinkage stresses. The autogenous

shrinkage in the parts of the cross section not yet reached

by the drying front would have to be considered, too. To

this end, tests of combined drying and autogenous

shrinkage, necessitating a sophisticated evaluation,

would have to be devised and carried out. This would

be a major task beyond the scope of this paper and would

require an extensive project.

The fact that neither the present method nor the water

loss method are completely satisfactory must be viewed

in the context of the present practice, whose errors are

even bigger. The short-time data are plotted graphically,

often in the linear scale (Fig. 5), and then an asymptote is

intuitively sketched by eye or obtained by fitting an

obsolete formula with poor asymptotics, such as that of

ACI-Committee 209. In the linear scale plots, it often

looks as if the final shrinkage value (such as that shown

by the dashed horizontal line in Fig. 5a) were close, even

though much more shrinkage is still to take place.

In view of the uncertainties about both methods, it

would make sense to use them both. If they happen to

agree, the extrapolation is more likely to be realistic. If not,

a conservative approach is to take the larger value, which

is still better than an intuitive extension of the curve.

7 Conclusions

1. Since the extrapolation of shrinkage aided by

weight loss measurement has recently been shown

to be insufficiently reliable, an alternative extrap-

olation may be based on testing the shrinkage of

small-enough companion specimens.

2. An alternative concept is to improve the long-time

extrapolation of shrinkage by adding a test of

companion specimen of sufficiently small size.

But again this concept is not sufficiently reliable.

The reality is that, in some cases, it can signifi-

cantly underestimate the long-time value. Further

research, which will require a properly designed

testing program and analysis, is needed.

3. Both the present method and the weight-loss

method are nevertheless better than the estimates

made by intuitive extrapolation by eye or by

fitting a formula to one-size data (especially if one

uses an outdated formula, such as the ACI-209

formula which has incorrect short- and long-time

asymptotics).
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