
ORIGINAL ARTICLE

An image analysis procedure to quantify the air void system
of mortar and concrete

P. C. Fonseca • G. W. Scherer

Received: 21 January 2014 / Accepted: 8 July 2014 / Published online: 29 August 2014

� RILEM 2014

Abstract The entrained air void system in cement

paste and concrete directly affects both the fresh-state

workability and the freeze-thaw durability of concrete

pavements and structures. In order to effectively study

the air void system, the volume, spacing, and size

distribution of the air bubbles must be quantified. This

manuscript describes an inexpensive and effective

procedure to quantify the air void system using

automatic image analysis. We compare various mate-

rials used for sample preparation and recommend a

procedure to create more accurate images. We further

implement a stereological analysis method in the form

of a user-friendly and customizable Matlab script. The

script was verified by comparing bulk density measure-

ments between air-entrained and control samples with

the air content computed by image analysis. As a result,

the user can quantify the air void system in a variety of

samples by computing the air content, specific surface,

spacing, and size distribution of the bubbles.

Keywords Image analysis � Stereology � Air voids �
Air content � Bubbles

1 Introduction

The resistance of concrete to frost damage is largely

controlled by its air void system. This air void system is

created by deliberately incorporating air into the fresh

mix using an air-entraining agent. The resulting air

bubbles are characterized by their volume, size, shape,

specific surface, frequency, and spacing. These quan-

tities can be estimated by applying the principles of

stereology on a statistically representative two-dimen-

sional plane through a sample. Traditionally, the air

bubble system is quantified by using either the linear

traverse method or point counting method described in

ASTM C457 [1]. These methods require manually

counting bubbles and measuring chord lengths on a

sample surface with a stereoscopic microscope. How-

ever, the ASTM C457 method is time consuming,

requiring several hours of measurement to gain a

statistically representative amount of information.

As an alternative, we developed a procedure to

rapidly quantify the air void system of a mortar or

concrete sample using automatic image analysis. This

manuscript recommends an improved sample prepa-

ration method and then implements an image analysis

procedure using a customizable Matlab script. This

script obtains more complex information from a

sample surface than what is described in ASTM
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C457. As a result, the accuracy of the computed air

void properties ought to improve. Further, new

information is computed, such as the shape and size

distribution of the bubbles.

The method of using automatic image analysis to

determine the air void system of concrete was first

reported in 1977 by Chatterji and Gudmundsson [3],

who proposed a sample preparation technique that

would provide contrast to illuminate the air voids. This

technique involved darkening the sample background

with black ink and pressing white powder into the

voids prior to scanning the surface with a microscope.

This method of providing contrast is still used today,

however, the most commonly used materials to

prepare the sample surface are not always effective.

We compare the effectiveness of various darkening

agents and white powders and recommend a sample

preparation procedure for more accurate results.

Advancements have been made toward developing

commercial software to analyze the air void system of

hardened concrete [13, 30], [16], including the intro-

duction of a flatbed scanner for capturing digital images

[14]. Because commercial software packages are based

on automation, its use can minimize user error. We

build upon this work, including the use of a high-

resolution, flatbed scanner. However, unlike current

available commercial code, our image analysis method

is delivered as a platform-independent, Matlab script

that can be downloaded and modified by the operator.

Our script implements image processing methods and

computes properties of the air void system using

stereological analysis described in this manuscript. As a

result, the user is able to quantify the air void system by

computing the total air content, specific surface,

spacing, and size distribution of the bubbles.

2 Sample preparation

Mortar specimens were cast and wet-cured into

6-in. 9 3-in. (15-cm 9 7.6-cm) cylinders with both

air-entrained and non-air-entrained Portland cement

mix proportions. The air entraining agent used in these

tests was manufactured by Sika Air. Curing times

varied from 3 days to 6 months. Ottawa sand, con-

forming to ASTM C778, was chosen as the only

aggregate because it is particularly useful when

studying small samples. Approximately 4-cm 9 4-

cm 9 1-cm samples were cut from the cylinders with

a diamond saw. To compare the entrained air content

with that determined by image analysis, the bulk

density was computed for both air-entrained and

control samples in the saturated surface dry (SSD)

condition by weighing and measuring the sample

dimensions. The computed percent difference in

density indicated the percent of entrained air. This

estimation is based on the assumption that the

entrapped air content for both air-entrained and

control samples was the same.

To achieve a flat surface, each sample was carefully

lapped on an Allied Multi Prep Polisher using succes-

sively finer silicon carbide grinding paper [320 grit

(40.5 lm), then 400 grit (25.8 lm), 600 grit (15.3 lm),

and finally 2400 grit (2.5 lm)]. The polisher was set to

hold the samples automatically, maintaining the abrasive

plane during polishing. Compressed air was used to

remove dust from the specimen between each lapping

stage. One of the challenges with grinding/polishing is to

prevent defects on the surface because these defects

could be mistaken for air voids. Another issue is that the

perimeter of the air voids can easily erode, causing an

overestimationof air void sizes and total air content.Both

problems were mitigated by applying a 3:1 mixture of

acetone and rednail polish (for visibility) to the surface as

reinforcement prior to grinding. Polishing was consid-

ered complete when the red nail polish was removed

entirely from the flat surface (but remained in the voids).

Acetone was used to remove the remaining nail polish.

The quality of polish was considered acceptable if the

reflectivity of the surface was uniform and there was an

absence of striations from the grinding paper.

The polished surfaces were then blackened using a

water-soluble acrylic ink applied with a rubber brayer

(Speedball Deluxe 3-inch Soft Rubber Brayer), a tool

conventionally used for inking blocks for print mak-

ing. Various brands of permanent marker (Sharpie,

Bic, and Sanford) were also tested as a surface

blackening agent, but it was found that while perma-

nent markers could effectively blacken the surface of

the paste and some types of large aggregate, it was

ineffective in masking the reflectivity of the Ottawa

sand used in our samples. The light source from the

scanner picked up on this reflectivity, causing the

corresponding pixels to look bright enough to be

mistaken for air voids. Furthermore, because perma-

nent markers typically contain resin, its ink was

somewhat sticky. This sticky surface prevented the

powder from being fully removed from the paste
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surface, causing an overestimation of the air content.

On the other hand, the acrylic ink provided a very thin,

dark matte black ink to the entire surface free of resin.

This ink was effective at masking the reflectivity of the

sand particles.

After the blackened mortar surfaces fully dried, a

barium sulfate powder with an average particle size of

3-lm was pressed into the air voids. The powder was

then wiped off with the edge of a a silicone spatula,

resulting in a black background with white air void

profiles. Other white powders were tested, including

0.5-lm titaniumdioxide, 2-lmsilicon oxide, and 9-lm
corn starch (mean particle sizes). As with any cemen-

titiousmaterial, grinding and polishing a ‘‘flat’’ plane is

an imperfect process since it is impossible to remove

all surface defects. As a result, the 0.5-lm titanium

dioxide particles were too small because the tiny

particles filledmany of these imperfections. This effect

was apparent because the particles would not wipe

away from the cement surface. In contrast, the corn

starch proved to be too coarse. These 9-lm particles

created a ‘‘wall effect’’ around the perimeter of the

bubbles, especially bubbles that were 50 lm in diam-

eter or smaller. The empty space between the starch

and the bubble perimeters resulted in an underestima-

tion of the air void content. The silicon oxide powder

was an acceptable powder choice, but the barium

sulfate was whiter and provided better contrast more

suitable for image processing. Figure 1 compares SEM

images of polished mortar samples containing barium

sulfate, silicon oxide, and corn starch showing the

suitability of each powder in terms of particle size.

3 Image capture

The inked and powdered samples were placed face

down on a Canon CanoScan 8400F flatbed scanner. To

prevent scratching of the platen (the glass flatbed), a

border made from electrical tape was placed along the

four edges of the sample surface, raising the sample

slightly from the glass. The scanner was set to capture

images at 3200 dpi resolution, corresponding to a 7.94-

lm pixel size. This resolution was the highest optical

scanning capability of the scanner. Each sample was

scanned using 8-bit grayscale digital imaging so that

each image was represented by a matrix of integers

corresponding to 256 different intensities ranging from

0 (pure black) to 255 (pure white).

The first step in image processing was converting

the grayscale image to binary format so that each pixel

was assigned either a value of 0 (black) representing a

background pixel, or a value of 1 (white), representing

an object pixel. Background pixels corresponded to

the paste/aggregate and object pixels corresponded to

air void. The threshold is the grayvalue between 0 and

255 that separates these two sets, or classes. It is

possible to select a thresholding algorithm that does

not rely on user input [13] [14]. Typically such an

algorithm involves a statistical analysis of the gray-

level data. Such algorithms are typically based on the

shape of the histogram, where graylevel data is

analyzed in clusters and the results depend on

statistical interpretation. These types of algorithms

can give satisfactory results, but depending on the

range of the graylevel pixels values for each set, the

results may not always be satisfactory.

Consider Otsu’s method, a commonly used thres-

holding algorithm. Otsu’s method minimizes the intra-

class variance of gray values [11]. The result is a

maximization of the separability of the two resultant

classes: the class of background pixels and the class of

object pixels. In the case of the air-entrained concrete

images, the problem with relying solely on this

algorithm or any statistical method is that the threshold

can depend on the quantity and spread of each class of

pixels. For example, a sample with 3 % air content

would likely have a different computed threshold

compared to a sample with a 20 % air content, even if

the samples were prepared using the same blackening

agent and same powder. Even a cropped portion of the

same image could end up with a different threshold

compared to the sample as a whole or compared to a

different cropped section. For this reason, it is advised

that the user check and possibly re-evaluate the

computed threshold.

A proper threshold should provide a binary matrix

that is representative of the grayscale image. In the

case of air-entrained concrete images, the most

obvious indicator of a satisfactory threshold is one

that results in accurate air void profile diameters. To

this end, the threshold was chosen using the following

steps: (1) We computed the threshold using Otsu’s

statistical algorithm. (2) We create a binary image of

black background pixels and white object pixels using

this threshold. (3) We zoomed in on a random

selection of air voids and compared the diameters

between the grayscale image and the binary image. (4)
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If the diameters did not match, we slightly adjusted the

threshold. A lower threshold generally increased the

diameters of the air voids in the binary image and

conversely, a higher threshold generally decreased the

diameters in the binary image. If necessary, we

repeated steps 2 through 4, particularly when testing

a new material. The result was a binary image that was

segmented from the original grayscale image. An

example of the original grayscale image and corre-

sponding binary image obtained using this procedure

is shown in Fig. 2.

Threshold adjustments are sometimes necessary

because there is typically a reduction of contrast at the

perimeters of the air void boundaries. At the region

just inside the bubble perimeters, the depth of the

bFig. 1 Backscattered SEM images of air voids filled with white

powder from a 2-lm silica b 3-lm barium sulfate c 9-lm corn

starch. Silica and barium effectively filled the air voids, making

each of these powders suitable for image analysis. Because of its

relatively large particle size, the corn starch created a wall

effect, rendering it less effective at capturing the full profile area

of the air voids. Using a powder of this size tends to cause an

underestimation of the air content and overestimation of the

spacing factor. On the other hand, smaller powders tended to

scatter on the surface, so it was necessary to carefully wipe the

surface after application to ensure that the air content was not

overestimated

Fig. 2 a Grayscale image of powder-filled air voids on a

polished and inked mortar sample. b Corresponding binary

image segmented using Otsu’s thresholding algorithm
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bubble profile is shallow compared to the center,

therefore increasing the likelihood that black ink will

show through the white powder. As a result, the

whiteness of the object pixels at those locations

decrease. Figure 3a, b compares grayscale and binary

images of just one bubble from Fig. 2. Visually, it

appears that the bubble boundary in the binary image

matches that of the grayscale image. This feature is

important when computing air content, specific sur-

face, bubble spacing, distribution, etc. Fig. 3c is a plot

of the gray values of one line through the center of the

bubble, confirming that the brightness of the pixels

decrease as the location becomes closer to the bubble

boundary. If sample preparation is performed care-

fully, the diameter of the binary bubble should not be

sensitive to the threshold. In this example, the

threshold was 85, computed using Otsu’s method. At

the horizontal centerline, 22 pixels had graylevels

above 85. Yet if the threshold were reduced to 81 or

increased to 94, the quantity of white object pixels on

this line is the same.

Generally, the more careful the sample preparation

technique, the less likely any threshold adjustments

are needed. The reason is because noisy images tend to

have more uniform graylevels, reducing the effective-

ness of an algorithm that is based on class separability.

Indeed, the more careful the sample preparation

technique, the more effective Otsu’s method is in

determining a proper threshold and the less likely any

adjustments are needed. For example, if the white

powder is not cleanly wiped, excess powder particles

could spill over the edge of a bubble profile onto the

black surface. A scattering of white particles on a

black surface will result in the averaging of gray

values at those pixel locations, therefore reducing

class separability and raising the sensitivity of the

threshold. In general, the user should strive to reduce

threshold sensitivity through careful application and

removal of the white powder.

The sample preparation technique is rarely perfect.

Because of this imperfection, some scattering of white

powder may occur. This scatter can manifest itself as

single disconnected object pixels. As an option, single

disconnected object pixels can be removed from the

binary image by scanning every white pixel and

checking if the value of all adjacent pixels are black.

We chose to perform this step because it slightly

reduced the noise and negligibly changed the fraction

of white pixels (typically less than 0.01 %).

At this point, it is possible to compute the air void

content by simply computing the ratio of the white

pixels to the total number of pixels from the image.

However, in order to compute more advanced prop-

erties, such as specific surface, spacing factor, and air
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Fig. 3 Grayscale (a) and corresponding binary (b) image of one
bubblewithapproximatelya22-pixel (175 lm)diameter. cThegray
value of each pixel versus the distance along the blue line shown in

a. Here, the computed threshold was 85. (Color figure online)
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void distribution, the connectivity of each object must

be defined. In image processing, connectivity refers to

the way pixels relate to their immediate neighbors. In

2-dimensions, there are two common neighborhood

types: the 4-connected neighborhood and the 8-con-

nected neighborhood. The 4-connected neighborhood

specifies that connected pixels are neighbors to every

pixel that touch edge to edge. Therefore, since pixels

lie on a square grid, there is a maximum of 4 possible

neighbors for any pixel. The 8-connected neighbor-

hood specifies that connected pixels are neighbors to

every pixel that touches edge to edge or corner to

corner, resulting in a maximum of 8 possible neigh-

bors for any pixel. Although the results were not too

sensitive to connectivity, the 8-connected neighbor-

hood tended to erroneously promote connectivity

between air voids that were in very close proximity

to each other. Therefore, the 4-connected neighbor-

hood was chosen to most closely resemble the

structure of the convex air voids. By systematically

scanning the grid, each connected pixel was identified

and grouped into objects that represented a 2D slice

through each air void.

4 Image analysis

Once the image of the sample has been scanned,

converted into a binary matrix, and processed using

pixel connectivity, our script can determine a number

of properties. These properties are based on the

assumption that all connected components (connected

white pixels) are ‘‘objects’’ representing the 2-D

image generated by a random plane through a 3-D

sample of mortar. Using information from the 2-D

image, real 3-D properties can be estimated based on

principles of stereology.

4.1 Air content

The simplest property of air-entrained mortar com-

puted from a plane section is the volumetric air

content. Air content is computed using the Principle of

Delesse [5], a fundamental principle of stereology that

states the following: if a structure containing objects is

randomly sectioned, then the areal density AA of the

profiles of those objects is equal to the volumetric

density VV of the objects in the structure:

VV ¼ AA ð1Þ

The script computes the areal density of the air voids

by counting the number of white pixels in the image

and dividing by the total number of pixels. This value

is equivalent to the air content in the sample.

4.2 Powers spacing factor and specific surface

In Powers’s 1949 paper [15] on the role of air in frost

resistant concrete, Powers defined an air void spacing

factor �L as the distance between the surface of a bubble

and its sphere of influence, such that

�L ¼

3

a
1:4ðp

A
þ 1Þ1=3 � 1

h i p

A
� 4:33

p

aA
p

A
\4:33

8>><
>>:

ð2Þ

where a is the specific surface, defined as the ratio of

the average void surface area to the average void

volume, and p/A is the volumetric paste to air ratio,

where p is the volume fraction of cement, water, and

supplementary cementitious materials (if any). In this

study, p is computed from the mix proportions.

Equation 2 shows that it is necessary to determine

the specific surface of the air voids to compute the

Powers spacing factor. In a discussion appended to

[15], T.F. Willis showed that

a ¼ 4

l
¼ 4n

A
ð3Þ

where l is the average chord length through the air

voids along a line of traverse, n is the number of air

voids intersected per unit length of traverse, and A is

the air content.

The conventional technique for determining a is to

use a stereoscopic microscope and employ either the

linear traverse method or the point-count method

described in ASTM C457. It is also possible to

replicate the same action using automatic image

analysis. For example, one could take lines of traverse

on a matrix and determine the number of times an air

void was encountered by counting the number of times

the pixel value changes from 1 to 0 or from 0 to 1. This

change in pixel value represents the movement

between the paste/aggregate matrix and the air void.

However, a limitation to this method is that Eq. 3

assumes that all the air voids in the sample are convex

in shape. Although this assumption should be valid for
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entrained air voids, which should be spherical, the

assumption of convexity is not always true for

entrapped air voids, which can be irregularly shaped.

Here, we develop a more general equation of the

specific surface of objects in a matrix. Beginning with

two independent derivations by Saltykov [19] and

Tomkeieff [25],

SV ¼ 2IL ð4Þ

where SV is the surface density of objects within

another object and IL is the number of intersects per

length of random line of traverse.1

The surface density is defined as the set of points at

the interface between the objects and the matrix

divided by the volumetric sum of the objects and the

matrix. SV therefore is in units of [length]-1. In the

case of air voids within a paste matrix,

SV ¼ Sap

Vp þ Va
ð5Þ

where Sap is the surface of the air-paste interface, Vp is

the volume of the paste/aggregate matrix, and Va is the

volume of the air voids. Note that SV is not the same

definition as the specific surface a. Knowing that

VV ¼ AA, we rewrite SV as follows:

a ¼ Sap

Va

¼ SVð
Vp þ Va

Va

Þ ¼ SV

VV

¼ SV

AA

ð6Þ

Substituting Eq. 4 into Eq. 6,

a ¼ 2IL

AA

ð7Þ

If all the objects are convex, then IL ¼ 2n and

a ¼ 2n=AA ¼ 2n=VV , where n is the number of

intercepted objects per unit length of traverse, since

every object crossed by a line of traverse would

intersect at the boundary of any convex object exactly

twice. Therefore, for convex objects within a matrix,

such as entrained air voids dispersed with a cement or

concrete sample, the specific surface of the air voids

presented in Powers’ 1949 paper (Eq. 3) is equivalent

to Saltykov’s 1945 equation (Eq. 4) of surface

density.2

Many methods of stereology, such as Eqs. 3 and 4,

were developed for the computing capabilities of the

middle 20th century. Using image processing, it is

possible to use stereological principles that were once

considered to be impractical or useful for academic

exercise only. For example, the specific surface of

objects can be determined by directly computing the

perimeter of those objects on a representative 2D

plane. Measuring a perimeter is never straightforward,

but if an image finely discretizes the object bound-

aries, the perimeter can be computed by counting

pixels. It can be shown from Buffon’s 1777 needle

problem that

BA ¼ p
2
IL ð8Þ

where BA is the boundary length density of objects in a

representative 2D plane, where ‘‘boundary length

density’’ is defined as the perimeter of the objects

divided by the area of the plane. Equating Eq. 7 and

Eq. 4, we find that

a ¼ 4

p
BA

AA

ð9Þ

Eq. 9 shows that given the perimeter and area of

objects on a representative 2D plane through a 3D

sample, it is possible to determine the specific surface

of those objects. Note that this formulation is more

general than Eq. 3 which is used in ASTM C457, since

Eq. 9 does not require the objects to be convex.

However, because the objects in question area pri-

marily spherical air voids, in our samples, Eq. 3 and

Eq. 9 agree well with each other.

4.3 Air void perimeters

To use Eq. 9, it is necessary to compute the boundary

length, or perimeter, of those air voids on a represen-

tative 2D plane.

1 Although the relationship between the surface density of

objects in a matrix and the intersection density of traverse lines

through the sample can be traced to Saltykov’s 1945 derivation,

this principle is directly linked to the origin of stereological

methods in 1777 when George-Louis Leclerc, Comte de Buffon,

formulated and solved the first known problem of geometric

probability theory: the probability that a randomly tossed needle

intersects with a grid of parallel lines [2]. The solution to

Buffon’s Needle Problem was the first step that led to the

mathematical foundation of the field of stereology.

2 The relationship between surface density and the number of

intersects per length of traverse line was independently derived

at least seven times [7, 23], [4, 8, 9] since 1945, until the

International Society of Stereology was founded in 1961. See

[28] for a theoretical foundation and historical review of these

stereological formulations.
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An estimation of the perimeter of the air voids can

be obtained by taking each connected component from

the image and determining the equivalent circumfer-

ence, assuming that each connected component is a

circular intersection of the spherical air voids with the

plane. However, this method is problematic because of

the imperfections related to sample preparation. For

example, there are cases where two air voids are in

very close proximity to each other. Either sample

grinding/polishing and/or imperfect placement of

white powder on these air voids causes the voids to

appear connected together on the surface. When two

or more air voids appear to come in contact, it becomes

difficult to separate these air voids as distinct objects

through automatic image processing, especially if the

objects are not always regular in shape. Therefore,

assuming each connected component is a discrete,

circular intersection would lead to an underestimation

of the true perimeter of the air voids.

We developed a more accurate method of comput-

ing air void perimeters by identifying the boundary

pixels and computing the distance between each

neighboring boundary pixel. These boundary pixels

were determined by identifying white pixels that

neighbored black pixels. The length of the boundary

was determined by identifying the manner in which

successive white boundary pixels connect to each

other. We designated a 4-connected neighborhood as

described in Sect. 3 to define boundary pixel connec-

tivity. Once the boundary pixels were identified, the

straight-line Pythagorean distances between the cen-

ters of successive boundary pixels were computed to

estimate the perimeter of each object.3 This perimeter

value was used to compute the specific surface in Eq.9.

4.4 Reconstruction of the air void size distribution

To study the effect of air-entraining agents on the air

void distribution, it is desirable to estimate the size

distribution of the air-entrained bubbles. In general,

the process of estimating the 3D size distribution of

objects using the apparent sizes, or profiles on a 2D

plane is called ‘‘unfolding’’ or ‘‘reconstruction.’’

Sphere reconstruction can be accomplished by taking

either a parametric or non-parametric approach. In a

parametric approach, a distribution function repre-

senting the apparent circle sizes is first assumed and

then transformed into a sphere distribution function.

An analytical solution to this transformation was first

published in 1925 by S. D. Wicksell [29]. Another

noteworthy solution was published in 1955 by Reid

[17], who included a transformation between spheres

and chord lengths as well.

For an excellent review of stereological properties

of air voids, including parametric methods, we refer

the reader to Snyder et al. [24].

A non-parametric approach to sphere reconstruc-

tion does not assume an analytical form of the circle

size distribution. Rather, the method operates on the

collected data directly. The first mention of a non-

parametric reconstruction method was included in the

1925 Wicksell paper, but the solution was greatly

modified and expanded by Scheil [21] in 1931. In

1934, Schwartz [22] modified Scheil’s method, which

was later improved on by Saltykov in 1958 [20].

Saltykov’s method, which is fully described by

Underwood [26, 27], was chosen for this analysis

and is briefly described here.

Consider a sphere of radius R. A rule of geometric

probability states that if a large number of planes

intersect the sphere, the profile circles will have a

probability distribution /(r) such that

/ðrÞ ¼ r

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p ð10Þ

where r is the radius of each profile circle. Equiva-

lently, /(r) is the probability that a large quantity of

identically sized spheres in a sample is randomly

sectioned once. Note that the form of the curve of Eq.

10 increases asymptotically to r ¼ R. However, as

expected, the area under the curve is equal to unity

since /(r) is a probability density function. An

alternative representation of the curve is a histogram,

where each bin corresponds to a class of profile radii.

3 The most accurate perimeter measurements in image analysis

fit smooth curves to the boundaries of objects. These smoothing

methods essentially enlarge the image and interpolate between

the new, high-resolution pixels along the object boundary. The

difficulty with these smoothing techniques lies in the fact that

the perimeter of any real object is magnification-dependent.

Higher magnification reveals more irregularities on the object

boundary, leading to larger perimeter calculations. Advanced

techniques [18] can be employed to determine the optimal

smoothing technique; however, because sample preparation of

the mortar sample surfaces is imperfect, we decided that these

advanced methods would not necessarily produce more mean-

ingful results.
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Figure 4a, b compare the smooth and discrete versions

of Eq. 10.

Consider now a more realistic situation in which a

sample is composed of a polydispersed system of

spheres. For each discrete group, or class of spheres,

the corresponding profile sizes will vary according to

Eq. 10. Because there are multiple sphere sizes, the

total distribution of profile sizes is a summation of the

histograms corresponding to each sphere class. In

order to compute the sphere sizes from an image of

circular profiles, the histogram of profiles correspond-

ing to the largest sphere class is subtracted from the

total histogram, revealing the profiles of all spheres

smaller than the largest sphere class. This ‘‘histogram

stripping’’ method is repeated for the next-largest

sphere class until only the smallest class remains.

If the diameter of the largest spheres is Dm, then the

class width D is defined as D ¼ Dm=k, where k is the

number of classes. If i is the profile class number and j

is the sphere class number, Saltykov’s expression

relating the number density of profiles to the number

density of spheres is

NAði; jÞ ¼ NVðjÞD½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � ði� 1Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � i2

p
�

ð11Þ

where NA is the number of profiles per unit area andNV

is the number of spheres per unit volume. For a

discrete sphere distribution, Eq. 11 is applied sepa-

rately for each class. The result is a reconstruction of

the 3D sphere distribution. Saltykov originally solved

for NV in terms of NA and D in the form of a table of

coefficients using a maximum of 15 classes. However,

it is no longer necessary to use this table because the

computation can be performed rapidly on a computer

using any desired number of classes.

One known problem that can arise with this

classical reconstruction method involves negative

binning. Because of sampling statistics and other

practical measurement problems, a negative number

of spheres from a smaller class may be computed. This

phenomenon occurs when the measured number of

profiles in a class is lower than its expected value and

occurs most frequently with the smallest spheres in a

sample [26]. In general, the problem can be solved by

using an expectation-maximization algorithm [6][10],

error bars [12], and/or histogram smoothing. In our

image analysis, we avoided negative binning by

Rr

φ (r)

(a)

R
r

φ (r)

(b)

Fig. 4 Probability distribution function a and corresponding

discrete histogram b of the profile radius r if a sphere of radius R

is randomly sectioned by a plane

Table 1 Example saturated surface dry (SSD) bulk density

measurements for air-entrained and non-air-entrained mortar

Bulk density

Air-entrained mortar 2.023 g/cm3

Control 2.130 g/cm3

% Difference 5.29%

The % difference estimates the volume of entrained air

Table 2 The first column is an example of the computed air

content for both air-entrained and non-air-entrained mortar

using image analysis

Air content a �L

Air-entrained mortar 5.58% 55 mm-1 388 lm

Control 0.43% 29 mm-1 727 lm

Difference 5.15%

The difference estimates the volume of entrained air. This

value agrees favorably with the entrained air content computed

using bulk density measurements (shown in Table 1). The

additional columns compare the specific surface a and Powers

spacing factor �L from the same samples
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choosing a large enough bin width that avoided gaps in

the histogram. For our images, using a bin width =

4 lm was large enough to avoid negative binning

during reconstruction.

5 Example of results

Using the image processing techniques discussed in

Sects. 2, 3, 4, the air void structure of a number

samples were analyzed. This image analysis procedure

was verified by comparing the bulk densities with

computed air contents. First, the bulk densities were

measured by weighing and measuring the volumes of

both air-entrained and control samples. Because an

air-entrained specimen contains both entrapped and

entrained air, and a control specimen contains only

entrapped air, the percent difference in bulk density

was therefore equivalent to the amount of entrained air

only. An example of these values are shown in Table 1,

which shows that the entrained air content for this

sample was 5.29 %. This value assumes that amount

of entrapped air in an air-entrained and control sample

is nearly the same.

The air content obtained by image analysis com-

putes the total volume of air in a sample. Therefore,

the entrained air content can also be estimated by

computing the air content for both air-entrained and

control samples and taking the difference. These

values were computed using the image of a plane

through the sample volume. The results are shown in

Table 2 . Here, the difference in air content was

5.15 %. Because this value agrees well with the

percent difference in bulk density, we can have

confidence that the quantities computed by image

analysis are accurate.

Table 2 also reports the specific surface a andPowers
spacing factor �L for the same example specimens. Note

that while a was similar for both the air-entrained and

control sample, �L was much greater in the control

sample. This result was expected since the air content

was much lower in the control. Typically, �L is

computed as an average value for the entire scanned

image. However, it is possible to segment the image

into a grid of sub-images. By computing �L for each

sub-image, it would be possible to determine if local

variations exist throughout the sample.

The mean profile diameter, which was computed by

associating the area of each observed air void as a

circular section, was 66 lm. Using Saltykov’s method

described in §4.4, the size distribution of the air voids

was reconstructed from the profile distribution. His-

tograms of the profile and sphere distributions are

compared in Fig. 5. Note that the mean sphere

diameter, which was 40 lm, is smaller than the mean

profile diameter. This trend follows from the tendency

to capture the larger profile diameters when taking a

random plane through a random assembly of spheres,

but never larger than the actual size of the spheres (see

Fig. 4).

A Matlab script was written to perform the image

analysis and is available as supplementary material
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Fig. 5 aDistribution of the observedbubble profiles from images

of typical air-entrainedmortar. These distributions are normalized

per mm2. b The computed sphere distribution per mm3 is shown

usingSaltykov’s classical sphere reconstructionmethod described

in Sect.4.4. A best fit lognormal distribution is plotted in red. The

observed mean profile radius was 33 lm and the computed mean

sphere radiuswas 20 lm.The absence of reconstructed bubbles in

the lowest size range (less than 8 lm) is a result of the limitation in

scanning resolution. (Color figure online)
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with this manuscript. The code takes in as arguments

the scanned image file and the volumetric ratio of

cement paste to total solids, where the total solid

content is the sum of the paste and aggregate. In the

example shown here, paste to solids ratio was 0.8 as

determined by the mix proportions.

6 Conclusion

This manuscript presents a technique for analyzing the

air void system of mortar or concrete using automatic

image analysis. First, the bulk densities of air-

entrained and non-air-entrained companion samples

were compared to approximate the entrained air

content. The same samples were also ground and

polished prior to applying a thin coat of black acrylic

ink and filling the exposed voids with a fine white

barium sulfate powder. These samples were scanned at

3,200 dpi using a flatbed scanner and processed into

binary images using Otsu’s method of thresholding.

The resulting image contained black pixels that

represented cement paste or aggregate and white

pixels that represented air voids. Using stereological

methods, 3D quantities of interest were approximated.

The determined quantities were the total volumetric

air content, Powers spacing factor, specific surface,

and the approximate size distribution of the air voids.

The analysis was performed by writing a Matlab script

which is available as supplementary material to

download and modify.

Using this method of air void analysis, the air void

structure of various mortar or concrete samples can be

rapidly compared. For example, the effectiveness of

air-entraining agents or the interactions between the

air-entraining agents and various admixtures can be

quantified. By determining the total volume, spacing,

fineness, and distribution of air bubbles, these param-

eters can be directly linked to strength and workabil-

ity, as well as resistance to frost damage.
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