Skip to main content
Log in

Effect of a heating–cooling cycle on elastic strain and Young’s modulus of high performance and ordinary concrete

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In this paper, the variations of elastic strain and Young modulus of high performance concrete and ordinary concrete during a heating–cooling cycle is presented. For the HPC, two heating rates are applied: 1.5 and 0.1 °C/min corresponding respectively to accidental and service conditions. For ordinary concrete, the results of service conditions are given. The temperatures of 400 and 220 °C are the heating’s final temperature phase of the accidental and service conditions respectively. The present work analyses the differences between the value of the elastic strain and the Young’s modulus at the beginning of the test (at ambient temperature), the end of the heating part and the end of the cooling part of each variation. Indeed, during the heating phase, the corresponding heating rates are applied until successive constant temperature levels are achieved: 150, 200, 300 and 400 °C for the high-performance concrete under accidental conditions and 140, 190 and 220 °C for both high-performance and ordinary concrete under service conditions. Those applied temperatures are maintained for several hours to ensure the stabilisation of internal temperature and physico-chemical thermo dependent processes. Moreover, the influence of the difference in mix concretes between the two types of concretes and the heating rate influence on those variations is also presented.

Résumé

Dans cet article, les variations de la déformation élastique et du module d’Young du béton à haute performance (BHP) et du béton ordinaire (BO) au cours d’un cycle de chauffage refroidissement est présenté. Pour le BHP, deux taux de chauffage sont appliqués: 1.5 et 0.1 °C/min, correspondant respectivement aux conditions accidentelles et de service. Pour le béton ordinaire, les résultats de conditions de service sont donnés. Les températures de 400 et 220 °C sont les températures finales de la phase de chauffage pour les conditions accidentelles et de service, respectivement. Une étude comparative entre la valeur de la déformation élastique et le module de Young au début de l’essai (à température ambiante), à la fin de la partie de chauffage et la fin de la partie de refroidissement de chaque variation est réalisée. En effet, au cours de la phase de chauffage, les taux de chauffage correspondants sont appliques jusqu’à des plateaux de températures : 150, 200, 300 et 400 °C pour le béton à haute performance sous des conditions accidentelles et 140, 190 et 220 °C pour les deux bétons (haute performance et ordinaire) sous des conditions de service. Les températures appliquées sont maintenues pendant plusieurs heures pour assurer la stabilisation de la température interne et les processus thermo-physico-chimiques. En outre, l’influence de la différence dans les compositions de bétons entre les deux types de bétons et de l’influence de la vitesse de chauffage sur ces variations est également présentée.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Lin WM, Lin TD, Powers-Couche LJ (1996) Microstructure of fire damaged concrete. ACI Mater J 93(3):199–205

    Google Scholar 

  2. Anderberg Y (1997) Spalling phenomena of HPC and OC. In: Phan LT, Carino NJ, Duthinh D, Garboczi E (eds) Proc. Int. workshop of fire performance of high-strength concrete, NIST Spec. Publ. 919, National Institute of Standards and Technology, Gaithersburg, pp 69–73

  3. Gawin D, Majorana CE, Schrefler BA (1999) Numerical analysis of hygro-thermic behaviour and damage of concrete at high temperature. Mech Cohes-Frict Mater 4:37–74

    Article  Google Scholar 

  4. Khoury GA, Grainger BN, Sullivan PJE (1985) Transient thermal strain of concrete: literature review, conditions within specimen and behaviour of individual constituents. Mag Concr Res 37(132):131–144

    Article  Google Scholar 

  5. Khoury GA, Grainger BN, Sullivan PJE (1985) Strain of concrete during first heating to 600 °C under. Mag Concr Res 37(133):195–215

    Article  Google Scholar 

  6. Schneider U (1988) Concrete at high temperature: a general review. Fire Saf J 13:55–68

    Article  Google Scholar 

  7. Harmathy TZ, Allen LW (1973) Thermal properties of selected masonry unit concretes. J Am Concr Inst 70(2):132–142

    Google Scholar 

  8. Labani JM, Sullivan PJ (1974) The performance of lightweight aggregate concrete at elevated temperature, Reports CSTR no. 7312. Concrete Structure and Technology, Imperial College, London, p 100

  9. Harada T, Takeda J, Yamane S, Furumura F (1972) Strength, elasticity and thermal properties of concrete subjected to elevated temperature. In: International seminar on concrete for nuclear reactors, paper SP34. ACI Special Publication, p 377–406

  10. Franssen JM (1987) Etude du comportement au feu des structures mixtes acier-béton. Thèse de Doctorat Université de liège, Belgique, p 276

    Google Scholar 

  11. Schneider U (1998) Concrete at high temperatures: a general review. Fire Saf J 13:55–68

    Article  Google Scholar 

  12. Dias WPS, Khoury GA, Sullivane PJE (1990) Mechanical properties of hardened cement paste exposed to temperatue up to 700 °C (1292F). ACI Mater J 87(2):160–166

    Google Scholar 

  13. Bažant ZP, Kaplan MF (1996) Concrete at high temperatures: material behaviour and mathematical modelling. Longman Concr Des Constr Ser, London, p 412p

    Google Scholar 

  14. Heinfling G (1998) Contribution à la modélisation numérique du comportement du béton et des structures en béton armé sous sollicitations thermomécaniques à hautes températures, Thèse de doctorat, INSA de Lyon, Lyon, p 227

  15. Gross H (1973) On high temperature creep of concrete. In: T.A. Jaeger (ed) International conference on structural mechanics in reactor technology 2nd SMIRT, vol. 3, Paper H6/5, Berlin

  16. Hager IG (2004) comportement à haute température des bétons à haute performance-évolution des principales propriétés mécaniques, Thèse de doctorat, ENPC, France

  17. Xiao J, Konig G (2004) Study on concrete at high temperature in China: an overview. Fire Saf J 39:89–103

    Article  Google Scholar 

  18. Sabeur H (2011) On the modeling of the dehydration induced transient creep of concrete at high temperatures. Mater Struct 44:1609–1627

    Article  Google Scholar 

  19. Sabeur H, Meftah F, Colina H, Plateret G (2006) Correlation between transient creep of concrete and its dehydration. Mag Concr Res 60(3):157–163

    Article  Google Scholar 

  20. Chang YF, Chen YH, Sheu MS, Yao GC (2006) Residual stress–strain relationship for concrete after exposure to high temperature. Cem Concr Res 36:1999–2005

    Article  Google Scholar 

  21. Biolzi L, Cattaneo S, Rosati G (2008) Evaluating residual properties of thermally damaged concrete. Cem Concr Compos 30:907–916

    Article  Google Scholar 

  22. Ghan YN, Peng GF, Anson M (1999) Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures. Cem Concr Compos 21:23–27

    Article  Google Scholar 

  23. Colina H (2000) Etude du fluage thermique transitoire du béton. Advancement Report of CEA-ENPC Research Project, p 27

  24. Sabeur H, Meftah F (2008) Dehydration creep of concrete at high temperatures. Mater Struct 41:17–30

    Article  Google Scholar 

  25. Sabeur H, Colina H (2006) Transient thermal creep of concrete in accidental conditions at temperatures up to 400 °C. Mag Concr Res 58(4):201–208

    Article  Google Scholar 

  26. Colina H, Sercombe J (2004) Transient thermal creep of concrete at temperatures up to 300 °C in service conditions. Mag Concr Res 56(10):559–574

    Article  Google Scholar 

  27. RILEM TC 129-MHT (1998) Test methods for mechanical properties of concrete at high temperatures. Recommendations: Part 7: transient creep for service and accident conditions. Mater Struct 31:290–295

    Google Scholar 

  28. Khoury GA (2003) Stress–strain of concrete. Course on effect of heat on concrete, 9–13 June, Udine

  29. Diederichs U, Jumppanen UM, Pentalla V (1992) Behavior of high strength concrete at elevated temperatures. Espoo 1989. Helsinki University of Technology, Department of structural Engineering, Report 92, p 72

Download references

Acknowledgments

This work was undertaken with co-operation between the Laboratory of Mechanic (LAM), UMLV and the Laboratory of Material Analysis and Identification (LAMI), ENPC-LCPC joint laboratory, two laboratories of the Institut Navier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabeur Hassen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassen, S., Colina, H. Effect of a heating–cooling cycle on elastic strain and Young’s modulus of high performance and ordinary concrete. Mater Struct 45, 1861–1875 (2012). https://doi.org/10.1617/s11527-012-9875-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-012-9875-5

Keywords

Navigation