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Summary: Animal models indicate that the abnormal move-
ments of focal dystonia result from disordered sensorimotor
integration. Sensorimotor integration involves a comparison of
sensory information resulting from a movement with the sen-
sory information expected from the movement. Unanticipated
sensory signals identified by sensorimotor processing serve as
signals to modify the ongoing movement or the planning for
subsequent movements. Normally, this process is an effective
mechanism to modify neural commands for ongoing movement
or for movement planning. Animal models of the focal dysto-
nias spasmodic torticollis, writer’s cramp, and benign essential
blepharospasm reveal different dysfunctions of sensorimotor
integration through which dystonia can arise. Animal models of

spasmodic torticollis demonstrate that modifications in a vari-
ety of regions are capable of creating abnormal head postures.
These data indicate that disruption of neural signals in one
structure may mutate the activity pattern of other elements of
the neural circuits for movement. The animal model of writer’s
cramp demonstrates the importance of abnormal sensory pro-
cessing in generating dystonic movements. Animal models of
blepharospasm illustrate how disrupting motor adaptation can
produce dystonia. Together, these models show mechanisms by
which disruptions in sensorimotor integration can create dys-
tonic movements. Key Words: Spasmodic torticollis, writer’s
cramp, blepharospasm, sensorimotor integration, dystonia, an-
imal models.

Dystonia is a syndrome characterized by sustained
muscle contractions that cause twisting movements or
abnormal postures. Although there is a genetic compo-
nent to dystonia, primary dystonia typically does not
result from a clear brain abnormality or lesion. When
dystonia involves two or more body segments, it is clas-
sified as generalized dystonia. Involvement of only one
side of the body is hemidystonia and dystonia affecting
only one segment of the body is segmental dystonia.
Although some forms of dystonia affect many parts of
the body, the syndrome can be limited to a single body
part in focal dystonia. Focal dystonias include the un-
controllable spasms of eyelid closure with blepharo-
spasm, the involuntary rotation of the head into abnormal
postures with cervical dystonia or spasmodic torticollis,
and the spasms of the laryngeal muscles with spasmodic
dysphonia. In addition to these focal dystonias, there are
occupational dystonias that only appear with one action
of the affected body part such as writing with writer’s
cramp, or embrasure with musician’s dystonia in horn
players.'™* The focus of the current review is the con-
tribution of animal models of focal dystonia to under-
standing the neural basis of dystonia.
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There are at least two possible ways to consider gen-
eralized and focal dystonia. One hypothesis is that the
neural basis for the two syndromes is different. The
second position is that generalized and focal dystonia are
two ends of a continuum. There is significant support for
this latter position. Irrespective of genetic etiology, the
form and location of dystonia exhibited by an individual
correlates with the age of onset.'* Dystonia appearing in
children typically begins with the legs and progresses to
generalized dystonia. In contrast, the focal dystonia
blepharospasm affecting the eyelids usually begins after
age 50. To evaluate focal dystonia, it is valuable to first
review the neural changes with generalized dystonia.

The best-characterized genetic mutation associated
with generalized dystonia is a deletion in the DYT1 gene.
Most DYT1 mutations that produce torsion dystonia re-
sult from a 3-bp deletion (GAG).'® The TorsinA protein
encoded by the DYT1 gene is a member of the AAA+
superfamily of ATPases that appears to function in the
nuclear envelope. The mutated gene product may disrupt
association of the cytoskeleton with the nucleus.'®~%°
This genetic disorder is autosomal dominant with low
penetrance, so that the phenotypic expression varies from
severe generalized dystonia to no manifestation of the
syndrome.'*!-*

A DYTI mutation alters the activity of several brain
regions, modifies analysis of sensory information, and
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affects explicit motor learning in humans. Based on
positron emission tomography (PET) scans, Eidelberg
and colleagues®* 2 identified a torsion dystonia-related
change in the pattern of brain activity. There was abnor-
mal glucose utilization in the posterior putamen/globus
pallidus, cerebellum, and supplementary motor area in
patients with primary torsion dystonia produced by the
DYT]1 deletion. This increased metabolism was not the
result of dystonic movement because the hypermetabo-
lism was present even when the subjects slept without
making movements. The pattern of altered brain metab-
olism was even present in individuals with the DYT1
mutation who were not symptomatic. The brain regions
exhibiting this pattern of abnormal activity have high
levels of TorsinA and TorsinB expression.”®™2% Al-
though TorsinA expression is also high in areas not
associated with primary torsion dystonia, the combina-
tion of abnormal activity and DYT1 expression suggest
that modifications in the activity of a specific set of brain
circuits may participate in creating dystonic movements.

In addition to dystonic movements, individuals with
primary torsion dystonia also exhibit deficiencies in sen-
sory processing.?’ ' Primarily, these deficits are in tem-
poral processing. Dystonic patients require significantly
longer intervals between stimuli than do control subjects
to distinguish whether two somatosensory or two visual
stimuli occur asynchronously. Pairing a visual and a
somatosensory stimulus exacerbates the difference be-
tween controls and individuals with generalized dystonia
in their ability to identify temporal differences.’® Aglioti
et al.’® hypothesize that these deficits represent basal
ganglia dysfunction. Nevertheless, the evidence that the
cerebellum plays a role in temporal processing suggests
that the somatosensory processing difficulties may also
arise from cerebellar dysfunction.>*> This interpreta-
tion is consistent with the data showing that both the
basal ganglia and the cerebellum exhibit abnormal activ-
ity levels with generalized dystonia.>~%°

In addition to altered brain and sensory activity, indi-
viduals with the DYT1 deletion who do not have dys-
tonic movements manifest deficits in motor learning.
Ghilardi and colleagues®® show that these individuals
exhibit normal implicit motor learning but have difficul-
ties with explicit motor learning tasks. The authors hy-
pothesize that this motor learning deficit in DYT1 carri-
ers results from failures of spatial working memory.

Generalized dystonia only occurs in 30—-40% of indi-
viduals with the DYT1 deletion. Individuals with the
DYT1 mutation but who do not exhibit dystonic move-
ments show changes in brain metabolism similar to dys-
tonic patients. The existence of comparable brain alter-
ations in dystonic and nondystonic individuals with the
same gene mutation demonstrates that the DYT1 muta-
tion alone is insufficient to produce generalized dysto-
nia.® There must be additional factors, environmental or
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genetic, that lead to the expression of dystonia. Studies
of the focal dystonia, benign essential blepharospasm,
indicate that dystonia arises from the combination of a
predisposing factor, probably genetic, and a second pre-
cipitating event, such as motor adaptation to cornea irri-
tation.”*” Applying the hypothesis for the development
of benign essential blepharospasm to generalized dysto-
nia may explain why some individuals with the DYT1
deletion exhibit generalized dystonia, but others do not.

Animal models of focal dystonia enable us to dissect
out the multiple components that combine to cause dys-
tonia. It is easier to investigate these factors in focal
dystonia than generalized dystonia because focal dys-
tonic movements occur on a background of normal
movement. Currently, there are animal models of the
focal dystonias spasmodic torticollis, writer’s cramp, and
benign essential blepharospasm. Each of these animal
models provides different information about dystonia.
Animal models of spasmodic torticollis identify different
brain regions, each of which is capable of creating ab-
normal head postures. The animal model of writer’s
cramp demonstrates the importance of abnormal sensory
processing in creating dystonic movements. Animal
models of blepharospasm explore how disrupting motor
adaptation can produce dystonia. Together, the models
illustrate a valuable way to think about how transforma-
tions of sensorimotor integration can create dystonic
movements.

SPASMODIC TORTICOLLIS

Spasmodic torticollis, or cervical dystonia, is a sus-
tained involuntary muscle contraction that rotates the
head into an abnormal posture.'***~*' The muscle con-
tractions appear to reflect reduced inhibition in the motor
and somatosensory cortex that lead to excessive muscle
activation."**** In addition, the overactivity of neck
muscles alters motor cortex so that the representation of
neck muscles appears to displace the adjacent hand rep-
resentation.** Similar to patients with generalized dysto-
nia,>>~>>% individuals with spasmodic torticollis exhibit
increased metabolism in the basal ganglia, thalamus, pre-
motor-motor cortex, and cerebellum.?>~2° Patients with
cervical dystonia also exhibit sensory abnormalities sim-
ilar to those present in generalized dystonia. There is a
reduction in the ability to recognize temporal asynchrony
of pairs of spatial stimuli with cervical dystonia, but the
ability to identify visual stimuli asynchrony is normal.*®
Similarly, the perception of vibration induced illusion of
movement is subnormal in patients with spasmodic tor-
ticollis.*® One striking aspect of the sensory changes that
occur with cervical dystonia is that approximately 70%
of the patients have a sensory trick that alleviates the
dystonic posture.®! For example, touching the cheek re-
duces agonist EMG activity in the dystonic muscle by
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48%.*" The slower and smaller than normal interaction
between the vestibulo-collic reflexes and voluntary
movements demonstrates reflex dysfunction in spas-
modic torticollis.*®

Animal models of cervical dystonia recreate the pri-
mary symptom of the focal dystonia, sustained abnormal
head posture. The data from these studies identify brain
regions whose modification reproduces the neck move-
ments of spasmodic torticollis.

Early studies reported that disrupting dopamine in the
striatum produced head asymmetry that resembled torti-
collis.**~>? Malouin and Bédard’* showed that unilateral
electrolytic lesions of the lateral substantia nigra pars
reticulata (SNr) produced a sustained contralateral head
turn in cats. Electrolytic lesions of the medial forebrain
bundle as well as 6-OHDA lesions to deprive the stria-
tum of dopamine caused persistent ipsilateral head turn
and reduced head mobility. Disruption of caudate func-
tioning appeared to be the cause of the head asymmetry
because injections of dopamine and thyrotropin-releas-
ing hormone into the caudate produced head asymmetry
but did not affect head motility.>’ Although unilateral
dopamine depletion of the striatum caused head and pos-
tural asymmetries, it is unclear that this modification
related directly to human torticollis. The head asymmetry
in this animal model required an 80-90% depletion of
dopamine, which produced hemi-Parkinsonism. The ef-
fect of these dopamine lesions was probably more a head
position bias than a dystonic posture.”> Nevertheless,
these studies demonstrated that abnormalities in basal
ganglia activity could play a role in imposing an abnor-
mal head position.

The observation that neuroleptic drug treatment of
typical antipsychotics could elicit acute dystonia and
other extrapyramidal side effects’* ' is the basis for
another animal model of cervical dystonia. Antipsychotic
drugs that cause acute dystonia typically have a strong
affinity for o receptors. The o receptor is a novel opioid
receptor that is naloxone insensitive and steroselective
for (+) enantiomers of benzomorphans.®' Expression of
the receptor is highest in the substantia nigra pars com-
pacta, red nucleus, cerebellum, and many cranial motor
nuclei.®"®* In alert rats, microinjection of o receptor
ligands into the red nucleus produces a marked rotation
of the head about the saggital axis, such that the side of
the head ipsilateral to the injection rotates upward. This
dystonic head posture begins within 10 min of the injec-
tion, peaks approximately 20 min after the injection and
disappears within 60-90 min.®> Although some data sug-
gest that both o, and o, receptors play a role in acute
human dystonia,®® microinjection of o ligands into the
rat red nucleus shows that activation of the o,, but not
the o, receptor causes neck dystonia.®” The mechanism
through which o agonists injected into the red nucleus
produce neck dystonia is unclear. Early studies report

that iontophoretic application of ¢ agonists that cause
neck dystonia inhibit red nucleus neurons.®®*® In con-
trast, the same investigator finds in a later study that o
agonists that cause head torsion in rats prolong burst
duration of red nucleus neurons in the in vitro turtle
brainstem preparation.”® Regardless of the physiological
actions of o agonists, however, the data from red nucleus
microinjections demonstrate that altering the activity of
one of the cerebellum’s interfaces with the rest of the
brain can acutely cause torticollis-like head postures.

The interstitial nucleus of Cajal (INC) in the midbrain
was also identified as a site that might play a role in
torticollis in the middle of the previous century. An early
study demonstrated that stimulation of the INC produced
rotation toward the side of stimulation.”"”? There were
even attempts to eliminate torticollis with stereotaxic
lesions of this region in humans.”>’* A recent study in
nonhuman primates created an animal model of cervical
dystonia by showing that altering INC activity disrupted
sensorimotor integration of head information.”> As with
the early study,”! Klier et al.”” found that microstimula-
tion of INC produced ipsiversive head rotations. Micro-
injection of muscimol into the INC produced prolonged
contraversive torsional head shifts that matched those
found in humans with torticollis.”® Klier et al.”” inter-
preted their data as showing that the INC is a neural
integrator for torsional head position in which the nuclei
on each side of the midbrain establish opposite directions
of head rotation. As appears to occur for eye movements,
a head position neural integrator would convert a signal
to turn the head into neural activity appropriate to hold
the head in the new position following the movement. If
the INC misinterpreted sensory inputs, or there was an
imbalance between the two nuclei, then a dystonic head
posture would occur. Consistent with this primate model
of torticollis, humans with midbrain damage involving
the INC exhibited cervical dystonia.”””8

Although the animal models of cervical dystonia do
not address the basis for the development of the dystonia,
they demonstrate that modifying the activity of at least
three brain regions can cause a torticollis-like head pos-
ture. Two of these regions, the basal ganglia and the
cerebellum, are regions that show elevated glucose up-
take in generalized®> > and cervical dystonia.”” These
data indicate that disrupting any component of an inter-
connected set of brain regions can cause dystonic head
movements. Disruptions of INC activity also causes cer-
vical dystonia-like head postures. This region appears to
convert efference copy information about the intended
head movement into a signal to hold the head in the new
position. Altering INC activity appears to be equivalent
to the brain misrepresenting the intended or actual head
movement, a derangement of sensorimotor integration.
The animal model of writer’s cramp further illustrates
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the importance of disordered sensory signals from a
movement in the generation of focal dystonia.

FOCAL HAND DYSTONIA

Most focal hand dystonias are task specific in that they
primarily occur when an individual performs a certain
task such as writing.'***~4° Although there is no evi-
dence for brain lesions causing focal hand dystonias,
brain function changes significantly with hand dystonia.
Reduced inhibition of motor cortex occurs with writer’s
cramp.®*® Consistent with these physiological studies,
individuals with writer’s cramp exhibit reduced GABA
levels in cortex.®' As with many forms of dystonia, in-
creased excitability or reduced inhibition is present at
spinal and brainstem levels with writer’s cramp.®'-82~8¢
PET imaging reveals a decrease in D2 receptors or re-
ceptor binding in the putamen with writer’s cramp.®
One of the most striking aspects of hand dystonia is that
the somatosensory cortex loses its crisp organization
with hand dystonia. The hand representation is disor-
dered both for the cortex receiving input from the af-
fected hand®**~®' and for the cortex receiving input from
the unaffected hand.®® Associated with the disordered
somatosensory cortex organization, individuals with
writer’s cramp exhibit deficits in somatosensory percep-
tion similar to those occurring with torticollis.”*%*

Based on their animal model, Byl, Merzenich, and col-
leagues” %% propose the “sensorimotor learning” hypoth-
esis of focal hand dystonia. This hypothesis emerges from
the observation that somatosensory representations in cor-
tex are plastic and can be modified by Hebb-like process-
es.'® 13 For example, if a neuron receives nearly simul-
taneous inputs from a weak and a strong sensory synapse,
the weak synapse will gain in strength. In the normal pri-
mary somatosensory cortex, area 3b, there is a precise
differentiation of the representation of the fingers. Re-
ceptive fields are small and do not include more than one
finger. These receptive field properties, however, are
modifiable. As an individual practices a hand movement,
the movement becomes more efficient and stereotyped.
This stereotyped movement causes near simultaneous
activation of multiple sensory inputs to somatosensory
cortex. If individuals repetitively perform tasks that si-
multaneously activate multiple somatosensory regions,
somatosensory cortex receptive fields can dedifferentiate
by responding to previously ineffective sites on the skin.
This change occurs as pyramidal neurons receive simul-
taneous inputs from different skin regions and fingers on
already active neurons.''* Normally, inhibitory pro-
cesses prevent cortical networks from being re-excited
by an input for several hundred milliseconds after the
arrival of the first stimulus. In focal dystonia, however,
the magnitude and duration of inhibitory processes de-
crease,*> which facilitates this abnormal linking of so-
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matosensory signals. As cortical somatosensory recep-
tive fields dedifferentiate, the “sensorimotor learning”
hypothesis posits that individuals become less able to
integrate sensory and motor signals that makes move-
ment dystonic. In a variation on this theme, Sanger and
Merzernich'®* propose that an increased gain produced
by abnormal linking of different somatosensory re-
sponses causes focal dystonia.

Byl and colleagues®>°7-'15"1¢ required owl monkeys
to perform repetitive hand movements to receive re-
wards. Before beginning the task and again after the
monkeys developed dystonic hand movements, the in-
vestigators measured area 3b receptive fields for the
hand. In one task,’**”"''> two monkeys were required to
hold on to a hand piece molded to fit the hand. While the
monkey gripped the hand piece, it opened and closed by
6.4 mm one to nine times. If the monkey maintained its
grip by keeping all of its fingers on the hand piece, the
monkey received a reward. The monkeys performed 300
trials per day in which they received 1100-3000 opening
and closings of the hand in a 1- to 2-h period. Training
occurred 5 or 6 days a week over a 12- to 25-week
period. Both monkeys developed hand dystonia so that
fingers pulled away from the hand piece as the monkey
attempted to grasp it. In another study,''® the investiga-
tors made another three monkeys perform repetitive
squeezing of a hand piece for reward. Two of the mon-
keys developed hand dystonia within 5 or 24 weeks. The
third monkey began with a hand squeezing strategy, but
switched to a variable arm pulling procedure in the sec-
ond week of training. This animal did not develop dys-
tonic hand movements within 24 weeks of training. The
dystonic movements in these monkeys did not result
from inflammation of the tendons or hand caused by
repetitive hand movements.''® The change in hand rep-
resentation in the somatosensory cortex that accompa-
nied hand dystonia in these monkeys, however, was dra-
matic. Receptive field size was 10-20 times larger than
normal and receptive fields frequently included more
than one distal digit. As occurred with human writer’s
cramp,® monkeys also showed enlarged receptive fields
in the cortex receiving inputs from the hand not used in
the task.'"

The dramatic transformation in somatosensory cortex
representation of the hand in human writer’s cramp could
cause the syndrome or simply reflect the altered sensory
signals produced by the dystonic movements.''” Al-
though the monkey model of hand dystonia cannot dis-
tinguish between these two possibilities, the sensorimo-
tor learning hypothesis argues that the dedifferentiation
of somatosensory cortex causes hand dystonia. The ani-
mal model studies support this interpretation because
somatosensory cortex was normal before training but
dedifferentiated with the development of dystonic hand
movements. It is surprising, however, that monkeys can
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develop focal hand dystonia with only 216,000 occur-
rences of the hand piece opening and closing. Before
developing a task-related focal dystonia, a human expe-
riences many more repetitions of a movement than the
monkeys. For example, writer’s cramp usually appears
around age 38,4 after the individual has written for at
least 32 years. Moreover, the majority of individuals
never develop writer’s cramp in a lifetime of writing.
Although these observations from humans indicate the
necessity of a predisposing factor in the development of
writer’s cramp, the animal model demonstrates that a
disruption of the sensory processing from a movement is
a critical component of this focal dystonia.

BLEPHAROSPASM

The dystonic movements of blepharospasm are invol-
untary spasms of bilateral eyelid closure.”*” In addition
to lid spasms, subjects exhibit an increased spontaneous
blink rate that may result from the increased excitability
of the trigeminal system that is a constituent of blepha-
rospasm.' 87129 This focal dystonia typically appears
later in life than any other dystonia, usually after age
50.7-9-37-121.122 PET and functional magnetic resonance
imaging studies of blepharospasm patients reveal hyper-
activity of brain regions typical of other forms of dysto-
nia, frontal cortex, striatum, thalamus, and cerebel-
lum.'**~'?7 There appear to be three general categories of
blepharospasm: 1) benign essential blepharospasm, an
idiopathic focal dystonia; 2) reflex blepharospasm, a syn-
drome associated with dopamine depletion; and 3) Bell’s
palsy associated blepharospasm, a syndrome concomi-
tant with facial palsy. There are animal models that re-
produce reflex blepharospasm and benign essential
blepharospasm.

The evidence linking blepharospasm to basal ganglia
dysfunction®#>'712% Jed investigators to modify dopa-
mine levels to model reflex blepharospasm in animals.
The blink system is exquisitely sensitive to dopamine lev-
els. The excitability of trigeminal reflex blinks increases as
dopamine is lost with normal aging.'?® Elevated dopamine
levels increase the rate of spontaneous blinking.'#* "% De-
spite this increased blink rate, elevated dopamine levels or
systemic treatment with apomorphine, a D,/D, receptor
agonist, reduces trigeminal reflex blink excitability and the
speed of lid closure.'**~'*® Conversely, destroying the ma-
jority of nigral dopamine neurons with catecholamine-spe-
cific toxins such as 6-OHDA, or as a result of Parkin-
son’s disease, dramatically decreases the spontaneous
blink rate but increases the excitability of trigeminal
reflex blinks.'*~'® This elevated trigeminal excitability
can be sufficient for a strong trigeminal stimulus such as
touching the cornea to cause involuntary spasms of lid
closure in humans'**~'*! and rats.'*"

In addition to the reflex blepharospasm in rats caused
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FIG. 1. Schematic of the circuit through which the basal ganglia
modulates trigeminal reflex blink excitability from Basso et al.’>®
NRM = nucleus raphe magnus; OO = orbicularis oculi motoneu-
rons in the facial nucleus; SC = superior colliculus; V = spinal
trigeminal complex.

by 6-OHDA lesions of the substantia nigra pars compac-
ta,'*° systemic injection of the catecholamine depleting
compound, Ro 4-1284, produced a reserpine syndrome
in mice and rats that included lid closures described as
blepharospasm.'>? The characteristics of blepharospasm
in this study, however, were unclear. A later study153
reported that Ro 4-1284 increased blink rate from a
predrug rate of 0.34 blinks/min to 1.42 blinks/min after
10 days of Ro 4-1284 treatment. Although these results
appear to conflict with previous observations that dopa-
mine reduction depresses the spontaneous blink rate, it is
unclear whether the investigators measured spontaneous
blinks or increased reflex blinking from elevated trigem-
inal excitability caused by dopamine depletion.

Although the circuits through which dopamine mod-
ulates spontaneous blink rate are unknown, Basso and
colleagues'>*'>% have determined how the basal ganglia
regulate trigeminal reflex blink excitability (FIG. 1). This
circuit accounts for the reflex blepharospasm resulting
from dopamine depletion. GABAergic (GABA) SNr in-
hibit neurons in the intermediate layers of the superior
colliculus (SC). These neurons excite a small group of
neurons in the nucleus raphe magnus (NRM). These
serotonergic (SHT) nucleus raphe magnus neurons in-
hibit trigeminal reflex blink circuits (V), which innervate
the lid closing, orbicularis oculi motoneurons (OO). The
dopamine depletion of Parkinson’s disease increases
substantia nigra pars reticulata inhibition of superior col-
liculus neurons.'*® The consequent reduction of nucleus
raphe magnus neuron excitation from the superior col-
liculus decreases inhibition of the trigeminal blink cir-
cuit, thereby increasing its excitability. Conversely, ele-
vating basal ganglia dopamine levels causes an increase
in nucleus raphe magnus inhibition of the blink circuits
that reduces trigeminal blink excitability.
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FIG. 2. Reflex blinks and blink oscillations (dry eye) and spasm of lid closure (blepharospasm) elicited by stimulation of the supraorbital
branch of the trigeminal nerve (A). Top traces are two consecutive trials from a human subject with dry eye. Bottom traces are two
consecutive trials from a human subject with benign essential blepharospasm. Each trace is a single trial. The spasms of lid closure with
blepharospasm appear to be blink oscillations with a very short interblink interval.

The development of reflex blepharospasm rather than
benign essential blepharospasm with nigral dopamine
depletion does not rule out a role for dopamine in the
development of this focal dystonia. Recent genetic evi-
dence from patients with benign essential blepharospasm
shows a modification in the gene for the Ds recep-
tor.'3”-138 Future animal studies need to explore the func-
tion of the Dy receptor in blinking.

Schicatano and colleagues'>® created a two-compo-
nent model of benign essential blepharospasm based on
the explanation usually put forth for the development of
human blepharospasm. Dystonia arises from the combi-
nation of a permissive condition and a precipitating
event.”” Benign essential blepharospasm patients fre-
quently come to the clinic with an initial complaint of
dry eye.''” Therefore, Schicatano and colleagues '*° rea-
soned that cornea irritation might be the precipitating
event for the development of benign essential blepharo-
spasm. The normal adaptive response to dry eye or eye
irritation is to increase trigeminal reflex blink excitability
and to generate additional large amplitude blinks in re-
sponse to a trigeminal reflex blink stimulus. These addi-
tional blinks are called blink oscillations (FIG. 2). Be-
cause blink oscillations with dry eye occur with a
constant interblink interval, the investigators proposed
that the spasms of lid closure of blepharospasm were an
exaggeration of the normally compensatory process
evoked by dry eye or eye irritation. To create the per-
missive component of benign essential blepharospasm
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that would allow an exaggerated response to dry eye, the
investigators produced a small, unilateral lesion of sub-
stantia nigra pars compacta dopaminergic neurons. By
itself, this small 6-OHDA lesion of dopamine neurons
slightly increased trigeminal reflex blink excitability but
did not generate reflex blepharospasm or spasms of lid
closure. To create the precipitating factor, the zygomatic
branch of the facial nerve was crushed to transiently
eliminate approximately 30% of the orbicularis oculi
innervation. By itself, this procedure induced a mild dry
eye, which slightly increased trigeminal reflex blink ex-
citability and resulted in the development of blink oscil-
lations similar to that seen in human dry eye. Combining
the two procedures, however, dramatically elevated tri-
geminal reflex blink excitability, increased spontaneous
blinking, and caused long-lasting spasms of lid closure
similar to benign essential blepharospasm. These blepharo-
spasm-like characteristics continued after the facial nerve
regained full function and eliminated the dry eye. Thus, this
animal model recreated many of the characteristics of the
focal dystonia benign essential blepharospasm.

As occurs in focal dystonia*®?*'% and generalized
dystonia,?®*1%° the animal model of benign essential
blepharospasm'>’ creates dysfunctional sensorimotor in-
tegration in which the nervous system either misinter-
prets sensory signals or misrepresents the desired move-
ment. Sensorimotor integration continuously adjusts the
eyelid system to maintain cornea integrity. These adjust-
ments, motor adaptations, result from interactions among
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the activity of cornea afferents, sensory inputs from the
eyelid movement, and a model of the sensory signals
anticipated from the eyelid movement. Altering any
component of this triad transforms the signals of the
other two components. For example, reducing eyelid
motility increases afferent input from the cornea because
of dry eye and produces an unexpectedly small sensory
signal from the attempted eyelid movement relative to
the intended eyelid movement. This change in the sen-
sory signals revises the inputs to the eyelid motor circuits
in an attempt to reduce cornea afferent input and gener-
ate a blink equivalent to the expected lid movement
through long-term potentiation- and long-term depres-
sion-like modifications of trigeminal blink circuits.'®'
The increased cornea afferent input also transforms the
trigeminal reflex blink circuit from a single response
circuit into a damped oscillator (FIG. 2).'?°

The neural basis of generating dystonic spasms of
eyelid closure is unknown. Data from animal and human
studies, however, suggest that the cerebellum may be
crucial in this process. The cerebellum is essential for
eyelid adaptation to reduced eyelid motility.'®* Interposi-
tus neurons of the cerebellum activate lid closing, orbic-
ularis oculi motoneurons via the red nucleus'®*~'%> and
also modulate trigeminal complex neuronal activity.'®®
Thus, the cerebellum participates in sensorimotor pro-
cessing and modulates blink circuits. There is abundant
evidence from animal studies that the cerebellum is im-
portant in generalized dystonia.'®”~'"! Low-dose injec-
tion of kainic acid into the mouse cerebellum causes a
transient generalized dystonia including spasms of lid
closure. These dystonic postures result from glutamater-
gic modifications of Purkinje cell discharge because
transgenic mice lacking Purkinje cells do not exhibit
dystonic posturing following kainic acid injections into
the vermis'® (see Hess and colleagues'’® in this issue).
In a genetically dystonic rat (dt), deep cerebellar nucleus
neurons exhibit a bursting rather than a tonic discharge
pattern and removal of the cerebellum eliminates dys-
tonic posturing.'®”'”"'72 This bursting discharge pattern
parallels the activity of the orbicularis oculi muscle dur-
ing eyelid spasms. The cerebellum may modulate the
excitability of the facial nucleus and/or interact with
other neural structures to create an oscillatory pattern in
reflex blink circuits that can convert into spasms of lid
closure in the presence of a permissive condition, such as
sensorimotor dysfunction.

IMPLICATIONS OF ANIMAL MODELS OF
FOCAL DYSTONIA

Human data suggest that dystonia may be a continuum
of syndromes from generalized to focal dystonias. Re-
gardless of genetic background, the type of dystonia
depends upon the age of development.®'* In generalized

dystonia appearing in children, the dystonic movements
begin in the legs, whereas cranial dystonias appear after
age 50 and do not progress to generalized dystonia. Most
imaging studies in both generalized and focal dystonias
report that the same brain regions exhibit increased glu-
cose uptake or blood flow,2380.8589123-125.127.173.174 1,
virtually all cases of primary dystonia, there is dysfunc-
tion of the thalamus, frontal cortex, cerebellum, and
basal ganglia, particularly the striatum. These altered
activity patterns at least partially reflect a reduction in
cortical inhibition.**'"” Finally, abnormalities in sensory
processing accompany all forms of dystonia.>**' Animal
models reinforce these clinical observations. Generalized
dystonia in the genetically dt rat results exclusively from
modifications in the cerebellum. 67170172175 1 contrast,
generalized dystonia in the genetically dystonic hamster
dt(sz) appear primarily to create basal ganglia dysfunc-
tion.'’°~'%¢ These generalized dystonia models imply
that disruption anywhere in the sensorimotor circuit can
produce dystonia. For example, microinjection of o re-
ceptor agonists into the red nucleus causes cervical dys-
tonia.®®’® Modification of basal ganglia function enables
the development of blepharospasm.'®® Thus, animal
models of dystonia reveal that disruption in a variety of
brain regions can cause dystonia. Alterations in sensory
processing are concomitant with these motor system
transformations. Indeed, data from the animal model of
hand dystonia suggest that degradation of the hand rep-
resentation in somatosensory cortex alone is sufficient to
produce dystonic hand movements.”® These types of data
point to the conclusion that dystonia results from a dis-
ruption of sensorimotor integration.

Sensorimotor integration may be a comparison of sen-
sory information resulting from a movement with the
sensory information expected from the movement. Inher-
ent to this concept is the postulation that the nervous
system has learned the sensations that a specific motor
command should generate. Based on this knowledge,
unanticipated sensory signals identified by sensorimotor
processing can serve as signals to modify the ongoing
movement or subsequent movements. Normally, this
process provides an effective and unconscious way to
adapt neural commands to internal or external changes in
the movement environment. Several lines of evidence
suggest that the cerebellum plays an important role in
this process.'®”~'?! Nevertheless, sensorimotor integra-
tion for complicated actions such as hand movements
probably engages multiple brain regions such as motor
cortex areas, basal ganglia, somatosensory cortex, and
cerebellum. Disruption of neural signals in any structure
could mutate the activity pattern in all of the others. For
example, if the basal ganglia fails to suppress competing
motor commands of a specific movement,'°>'3 then
sensorimotor integration should recognize the unantici-
pated sensory signals from the movement and attempt to
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compensate for them. If sensorimotor processing is ab-
normal in dystonia, the brain will not identify the move-
ment as anomalous. Dedifferentiation of the hand repre-
sentation of somatosensory cortex can provide
unanticipated sensory information from a normal move-
ment. The attempt to correct this illusory error may pro-
duce dystonic hand movements. Disruptions of primary
motor cortex can create motor commands in which the
movement does not match the anticipated sensory con-
sequences. Animal models of focal dystonia provide
powerful tools to analyze these complex interactions.
Understanding modifications in sensorimotor processing
in focal dystonia may help establish how genetic muta-
tions combine with the environment to create generalized
dystonia.
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