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Alexander Thiel,*‡ and Karl Herholz‡

*Max Planck-Institute for Neurological Research, †Center for Molecular Medicine (CMMC), and ‡Departments of Neurology
and §Radiology at the University of Cologne, 50931 Cologne, Germany

Summary: Imaging in patients with brain tumors aims toward
the determination of the localization, extend, type, and malig-
nancy of the tumor. Imaging is being used for primary diag-
nosis, planning of treatment including placement of stereotaxic
biopsy, resection, radiation, guided application of experimental
therapeutics, and delineation of tumor from functionally im-
portant neuronal tissue. After treatment, imaging is being used
to quantify the treatment response and the extent of residual
tumor. At follow-up, imaging helps to determine tumor pro-
gression and to differentiate recurrent tumor growth from treat-
ment-induced tissue changes, such as radiation necrosis. A
variety of complementary imaging methods are currently being
used to obtain all the information necessary to achieve the
abovementioned goals. Computed tomography and magnetic
resonance imaging (MRI) reveal mostly anatomical informa-
tion on the tumor, whereas magnetic resonance spectroscopy

and positron emission tomography (PET) give important infor-
mation on the metabolic state and molecular events within the
tumor. Functional MRI and functional PET, in combination
with electrophysiological methods like transcranial magnetic
stimulation, are being used to delineate functionally important
neuronal tissue, which has to be preserved from treatment-
induced damage, as well as to gather information on tumor-
induced brain plasticity. In addition, optical imaging devices
have been implemented in the past few years for the develop-
ment of new therapeutics, especially in experimental glioma
models. In summary, imaging in patients with brain tumors
plays a central role in the management of the disease and in the
development of improved imaging-guided therapies. Key
Words: Gliomas, PET, MRS, FHBG, FIAU, molecular
imaging.

GENERAL AND MOLECULAR ASPECTS

Primary brain tumors may arise form various cell
types of the brain including glial cells, neurons, neuro-
glial precursor cells, pinealocytes, the meninges, choroid
plexus, pericytes of the vessels, cells of the hypophysis,
and lymphocytes. The incidence of primary brain tumors
varies between subtypes. The most common primary
brain tumors in adults are gliomas and meningiomas. For
gliomas, the incidence is six to eight in 100,000, with
approximately 50% belonging to malignant subtypes.
Lower-grade gliomas tend to occur in younger patients,
whereas higher-grade tumors are more frequent in older
patients. Gliomas are divided histologically into astrocy-
tomas, oligodendrogliomas, mixed gliomas, ependymal
tumors, and tumors of the choroid plexus. Grading is

performed according to the World Health Organization
(WHO) criteria, taking into account the presence of nu-
clear changes, mitotic activity, endothelial proliferation,
and necrosis.1,2 Glioblastoma, corresponding to WHO
grade IV, is the most fatal and most common primary
brain neoplasm with an incidence of three to four in
100,000. Approximately 50% of all gliomas and 20% of
all primary intracranial tumors are glioblastomas. To-
gether with all intracranial neoplasms, the glioblastoma
is the second most common cause of death due to an
intracranial disease after stroke. Despite aggressive mul-
timodal treatment strategies (surgery, radiation, chemo-
therapy) median survival of patients with gliomas is lim-
ited, depending on grade and age at diagnosis varying
from 1 year for glioblastoma, to 2–3 years for grade III
and to 5–10 years for a grade II glioma.
A better understanding of glial tumorgenesis is crucial

for the development of specific molecular therapeutic
targets to overcome current therapeutic limitations. A
complex series of molecular changes occurs, which re-
sults in dysregulation of the cell cycle, alterations of
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apoptosis and cell differentiation, in neovascularization
as well as tumor cell migration and invasion into the
brain parenchyma. Genetic alterations which play an im-
portant role in glioma development include a loss, mu-
tation or hypermethylation of the tumor suppressor gene
TP53 or other genes involved in the regulation of the cell
cycle, such as cyclin-dependent kinase N2A/p16,
p14ARF and primitive neuroectodermal tumor (PTEN),
as well as activation or amplification of oncogenes and
growth factors and/or their receptors, such as MDM2,
cyclin-dependent kinase 4, cyclin D1 and D3, epidermal
growth factor receptor (EGFR), vascular endothelial
growth factor (VEGF), PDGFR [platelet-derived growth
factor (PDGF) receptor], and transforming growth fac-
tor-�.3–5 During progression from low-grade astrocy-
toma (WHO grade II) to anaplastic astrocytoma (WHO
grade III) and to glioblastoma multiforme (WHO grade
IV) a step-wise accumulation of genetic alterations oc-
curs. Whereas TP53 mutation and PDGF and PDGFR-

overexpression represent early changes during low-grade
glioma development, progression to anaplastic astrocy-
toma is associated with pRB alteration and loss of het-
erozygocity (LOH) of 19q, further malignant progression
to glioblastoma including LOH 10q and mutations of the
PTEN gene.6 These secondary glioblastomas, which de-
velop from better differentiated astrocytomas, can be
distinguished from primary de novo glioblastomas on the
basis of molecular genetic findings7 with amplification
and/or overexpression of the EGFR, p16 deletion, PTEN
mutation, pRB alteration, and LOH 10p and 10q associ-
ated with primary glioblastoma. Most importantly, mo-
lecular alterations have been identified, which indicate
therapeutic response of patients and, thus, are prognos-
tically relevant: anaplastic oligodendrogliomas with
LOH 1p and/or LOH 19q are characteristically sensitive
to PCV (procarbazine, lomustine, and vincristine) che-
motherapy, and patients’ survival is significantly pro-
longed.8–11

An overview of the tumors in the cranial cavity is
given in Table 1.12–50

IMAGING FOR PRIMARY DIAGNOSIS

Cranial computed tomography (CT) and magnetic res-
onance imaging (MRI) with and without contrast media
are widely used for primary diagnosis of brain tumors.
Standard T1- and T2-weighted MRIs detect brain tumors
with high sensitivity. Beside primary information on the
size and localization of the tumor, especially MRI pro-
vides additional information about secondary phenom-
ena such as mass effect, edema, hemorrhage, necrosis,
and signs of increased intracranial pressure at high spa-
tial resolution and with high tissue contrast. A set of
various MRI acquisitions parameters, like T1-, T2-, pro-
ton-, diffusion-, and perfusion-weighted images as well

as fluid attenuated inversion recovery (FLAIR) se-
quences give a characteristic pattern of each tumor de-
pending on tumor type and grade.
Most brain tumors are hypointense on T1-weighted

images and hyperintense on FLAIR, T2-, and proton-
weighted images. Highly proliferative active tumors such
as glioblastomas lead to a destruction of the blood-brain
barrier (BBB) with subsequent leakage of contrast media
(FIG. 1), which is being used for diagnostic purpose in
CT and T1-weighted MRI. In contrast, low-grade tumors
usually have no or minimal enhancement. The contrast-
enhancing lesion (T1 � Gd) corresponds histologically
to a hypercellular region with neovascularization, a cen-
tral hypointense area (T1) is mainly caused by tumor
necrosis. Already in the CT-era, biopsies from signal
changes in areas surrounding the contrast-enhancing tu-
mor revealed the presence of migrating tumor cells. The
tumor volume measured as the volume of T2 hyperin-
tensity is the strongest predictor of overall survival in
patients with supratentorial diffuse astrocytoma WHO
°II and the only predictor of malignant progression.51

Studies on the value of diffusion-weighted imaging
(DWI) MRI are ongoing. DWI is able to characterize
morphological features including edema, necrosis, and
viable tumor tissue by measuring differences in the ap-
parent diffusion coefficient (ADC). DWI might be able
to detect areas of tumor infiltration which are not visible
on other MRIs.52 Furthermore, DWI seems to be useful
in providing a greater degree of confidence in distin-
guishing brain abscesses from cystic or necrotic brain
tumors than conventional MRI.53

Moreover, dynamic contrast-enhanced MRI is a new
and promising imaging tool for measuring physiological
tumor properties (e.g., microvascular permeability and
plasma volume; FIG. 2). The vascular hyperpermeability
of tumor vessels for macromolecular solutes yields a
proteinaceous exudate within the tumor interstitium that
is considered a favorable milieu for the in-growth of new
capillary buds. Changes in tumor vessel permeability and
tumor volume as assessed by dynamic contrast enhanced
perfusion MRI serve as surrogate marker for angiogenesis
and allow the prediction of pathologic tumor grade54,55 with
high sensitivity but limited specificity.56–58

It should be pointed out that the different tissue com-
partments within a glioblastoma giving rise to different
magnetic resonance signals have different gene and pro-
tein expression patterns.59 Thus, there is potential for
imaging-guided proteomics and microarray analysis to
identify specific markers of tumor behavior.
Because intratumoral heterogeneity of brain tumors is

not adequately reflected in conventional MRI because
evaluation of the contrast enhancing lesion can either
under- or overestimate the presence of active tumor,
magnetic resonance spectroscopy (MRS) and positron
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TABLE 1. Overview of Tumors in the Cranial Cavity

Tumor Entities (% of all
primary brain tumors) MRI/CT

PET

Ref.FDG* Methionine†

1. Gliomas
Pilocytic astrocytoma
WHO I° (�3%)

Cystic tumor with focal contrast
enhancement

Variable, focally
increased

Up to 2-fold 18
21

Astrocytoma WHO II°
(�5%)

T1: slightly hypointense T2:
hyperintense

Decreased 1- to 2-fold See text

Anaplastic astrocytoma
WHO III° (�5%)

T1: hypointense T2: hyperintense
Contrast enhancement and perifocal
edema

Variable 2- to 3-fold

Glioblastoma WHO IV°
(20–25%)

Irregular tumor border T1: central
necrosis hypointense T2: perifocal
edema hyperintense contrast
enhancement

Increased �2.5-fold

Oligodendroglioma WHO
II°/III° (�5%)

Inhomogenous tumor with focal con-
trast enhancement and calcifications
on CCT in 70–90%

Decreased/
increased

�2.5-fold

Oligoastrocytoma WHO
II°/III° (�5%)

Decreased/
increased

2- to 3-fold

Ependymomas (2–3%) Characteristic localization in IVth
ventricle or intramedullary;
heterogenous, cystic, hemorrhages

Decreased 1.3- to 2.7-fold 40
50
36

Choroid plexus papilloma
(�1%)

Characteristic localization in ventricles;
sharp tumor border; gross contrast
enhancement

N.A. N.A.

Gliomatosis cerebri diffusely infiltrating; hyperintense (T2,
FLAIR)

N.A. N.A.

2. Neuronal and glio
neuronal tumors

Dysembryoplastic
neuroepithelial tumor
(�1%)

Multicystic subcortical tumors with
focal contrast enhancement

Decreased benzodiazepine receptor
density as possible reason for
epileptogenicity

45
27
43

Dysplastic gangliocytoma
(�1%)

Increased Increased

Ganglioglioma (�1%) Cortical localization, solid or cystic
with calcifications and little contrast
enhancement

Variable, de-
pending on
WHO grade

N.A. 26
44
34

Central neurocytoma
(�1%)

Sharp tumor border, inhomogenous
with cysts, necroses, calcifications,
positive contrast enhancement

Increased, de-
pending on
proliferative
activity

increased 35
41

3. Tumors of the pineal
gland (<1%)

Pineocytoma N.A. N.A.
Pineoblastoma Contrast enhancing Increased N.A. 12
Germinoma Isointense with contrast enhancement N.A. N.A.

4. Embryogenic tumors
Medulloblastoma
(20–25%

�15 y.o.; 1% �20 y.o.)

Cystic tumor in 4th ventricle (75%) or
cerebellum (25%); T1: hypointense;
T2: hyperintense; moderate contrast
enhancement

Strongly
increased

Increased 24

Primitive neuroecto-
dermal tumors (PNET)

Decreased; rela-
tively in-
creased in
spinal
localization

N.A. 24
33

(Table continues)
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TABLE 1. Continued

Tumor Entities (% of all
primary brain tumors) MRI/CT

PET

Ref.FDG* Methionine†

5. Meningeal tumors
Meningiomas
(25–30%)

Localization: in 50% convexity,
parasagital or falx; other local-
izations: sphenoid bone (15–
20%), parasellar (5–10%), fron-
tobasal (5–10%), infratentorial
(10%)

Variable (0.2- to
1.8-fold)

Increased (1.3- to 3.6-
fold)

14
31
17
25
38

CT: hyperdense, calcifications
(25%)

MRI: T1 isointense; T2 hypoin-
tense; infiltration of bone; dural
artery; dural tail sign

CT/MRI: contrast enhancement
and peritumoral edema

[68GA]DOTATOC-PET detects somatostatin
receptor expression in meningiomas

20

Hemangiopericytoma
(�0.5%)

Decreased Increased 28

6. Tumors of the region
of the sella

Craniopharyngioma
(�2%)

Adenomas of the
hypophysis (5–8%)

Intrasellar (30%) and suprasellar
(70%); cystic, calcifications,
contrast enhancement

Microadenomonas on T1 hypo- or
isointense; slow contrast en-
hancement; macroadenomas on
T1 and T2 isointense with
strong contrast enhancement

-[18F]FDG-PET variable depending on histo-
logical type

-Specific binding to D2-receptors on
[18 F]FESP-PET differentiates adenomas of
hypophysis from perisellar meningiomas and
craniopharyngiomas;

-Specific increase in monoaminooxidase activ-
ity on [11C]Deprenyl-PET differentiates ade-
nomas of hypophysis from perisellar menin-
giomas by specific increased
monoaminooxidase activity

37
14
32

7. Tumors of cranial
nerves

Neurinoma (6–8%) Cranial nerve VIII (90%), others:
V, VII, IX–XII; sharp tumor
border, T1 hypointense, T2 hy-
perintense, strong contrast en-
hancement

Iso- or
hypo-metabolic

Only slight increase 15
16
39
49

8. Lymphomas
Primary lymphoma of
the CNS
(2–5%)

Localization around ventricles and
in basal ganglia; in 50% multi-
ple sites; on T1 and T2 isoin-
tense, homogenous contrast en-
hancement, perifocal edema

Increased; FDG-PET
allows differential
diagnosis from
toxoplasmosis

Increased 48
22
46
13

9. Metastatic tumors (�20%
of all brain tumors)

Lung, breast,
melanoma,
gastrointestinal, hyper-
nephroma

Supratentorial (90%) localized at
inner border of cortex; infraten-
torial (10%); 50–70% multiple;
30–50% single; T1 hyperintense,
T2 hypointense, ring-like con-
trast enhancement

Variable; screening
for metastasis
with [18F]FDG is
not recommended

N.A. 19
29
30
42
47

[68GA]DOTATOC-PET detects somatostatin
receptor positive metastasis of carcinoid
tumors

23

* � [18F]FDG in comparison to cortical cerebral metabolic rate of glucose (CMRGlc).
† � [11C]MET in comparison to contralateral control region.
N.A. � Not available.
[18F]FESP � [18F]fluoro-ethyl-spiperone.
[68GA]DOTATOC � [68GA]-1,4,7,10-tetraazacyclododecan-N,N�,N��,N���-tetraacetacid-D-Phe-Tyr-octreoid.
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emission tomography (PET) are being performed to gain
additional information on metabolic and molecular tu-
mor markers. MRS gives additional information on the
real extent of the tumor and on tissue metabolites, such
as N-acetylaspartate (NAA), creatine, choline, and lac-
tate.60 The increase of choline-containing compounds
and of NAA appears to correlate best with the degree of
tumor infiltration.61,62 The appearance of creatine differ-
entiates gliomas from metastasis, which generally lack
creatine.63 An improved automated MRS analysis ap-
proach (nosologic imaging) enables correct differentia-
tion between low-grade glioma, high-grade glioma, me-
ningiomas, metastasis, necrosis, and healthy tissue in up
to 90% of cases and shall facilitate a noninvasive diag-
nosis of lesion type.64,65 Disadvantages of MRS include
its low spatial resolution, which cannot fully address the

anatomical and contrast heterogeneity of brain tumors
observed with MRI.
The role of PET has been primarily investigated in

patients with gliomas as the most frequent and most
difficult to treat primary brain tumors. PET reveals
highly specific quantitative information on the metabolic
state of gliomas.66–68 PET allows the quantitative local-
ization of expression of endogenous or exogenous genes
coding for enzymes or receptors by measuring the accu-
mulation or binding of the respective enzyme substrates
or receptor binding compounds.69–71 Depending on the
radiotracer, various molecular processes can be visual-
ized by PET, most of them relating to an increased cell
proliferation within gliomas (FIG. 1). Radiolabeled
2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG), methyl-
[11C]-L-methionine ([11C]MET) and 3�-deoxy-3�-

FIG. 1. Parameters of interest in the noninvasive diagnosis of brain tumors. Alteration of the blood-brain barrier and the extent of
peritumoral edema are detected by MRI. Signs of increased cell proliferation can be observed by means of multi-tracer PET imaging
using [18F]FDG, [11C]MET, and [18F]FLT as specific tracers for glucose consumption, amino acid transport and DNA synthesis,
respectively. Secondary phenomena, such as inactivation of ipsilateral cortical cerebral glucose metabolism, may be observed
([18F]FDG) and are of prognostic relevance. Gd � gadolinium. Reproduced with permission from Jacobs AH. PET in gliomas. In:
Neuroonkologie (Schlegel U, Weller M, Westphal M, eds), pp 72–76. Copyright © 2003, Thieme-Verlag. All rights reserved.186

FIG. 2. Representative image of an axial T1-weighted postcontrast sequence (a), a corresponding color coded “relative enhancement
map” of a dynamic contrast enhanced three-dimensional T1-weighted sequence (b), and signal intensity (SI) curves of different tumor
areas (c) in a patient with glioblastoma multiforme. Areas with a strong uptake of contrast media show high SI values during the first 2
min with a subsequent wash out phenomena (blue region of interest and blue curve), which is indicative of a substantial microvascular
leak with progressive accumulation of contrast agent in the tumor interstitial space. Areas with lower microvascular permeability values
show a less pronounced tumor enhancement (pink region of interest and pink curve), whereas necrotic tumor areas only show a minor
uptake of contrast media (black region of interest and black curve). Tumor heterogeneity and different areas of microvascular perme-
ability within an individual tumor mass are characteristic findings for malignant tumors and are only visible on dynamic imaging
sequences (b) and not on conventional MRIs (a).
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[18F]fluoro-L-thymidine ([18F]FLT) are taken up by pro-
liferating gliomas depending on their tumor grade as a
reflection of increased activity of membrane transporters
for glucose, ([18F]FDG), amino acids ([11C]MET), and
nucleosides ([18F]FLT) as well as increased expression
of cellular hexokinase ([18F]FDG) and thymidine kinase
([18F]FLT) genes, which specifically phosphorylate
[18F]FDG and [18F]FLT, respectively.
[18F]FDG-PET depicts the rate of glucose uptake and

has been used to detect the metabolic differences be-
tween normal brain tissue, low-grade and high-grade
gliomas, and radionecrosis.72–74 Increased intratumoral
glucose consumption correlates with tumor grade, cell
density, biological aggressiveness, and survival of pa-
tients in both primary and recurrent gliomas.74–79 In
general, low-grade tumors have a metabolic activity sim-
ilar to white matter and higher-grade tumors, similar to
gray matter (FIG. 3). A tumor-to-white matter ratio
greater than 1.5 and tumor-to-gray matter ratio less than
0.6 were found to be indicative of high grade tumors with
high sensitivity (94%) and limited specificity (77%).80

Relatively benign tumors with a high FDG uptake in-
cluded pilocytic astrocytoma and ganglioglioma. Pilo-
cytic astrocytomas have a good prognosis despite exhib-
iting high FDG uptake and positive contrast
enhancement (MRI) due to the presence of metabolically
active fenestrated endothelial cells. The limited differen-
tiation between tumor and normal gray matter by
[18F]FDG-PET may be improved by scanning at delayed
intervals 3–7 h after tracer injection.81 However, due to
the relative high background levels of cortical glucose
consumption more specific radiotracers for glioma diag-
nosis were developed.
The radiolabeled amino acids methyl-[11C]-L-methio-

nine ([11C]MET), [11C]-tyrosine, [18F]fluoro-tyrosine
and O-(2-[18F]-fluoroethyl)-L-tyrosine have been shown
to be more specific tracers for tumor detection and tumor
delineation due to their low uptake in normal
brain.21,78,82–86 The increased methionine uptake (factor
of 1.3–3.5 in comparison with a contralateral control
region) is related to increased transport mediated by type
L amino acid carriers.87,88 [11C]MET-uptake correlates
to cell proliferation in vitro, the expression of Ki-67 and
proliferating cell nuclear antigen, as well as to microves-
sel density, explaining its role as a marker for active
tumor proliferation.82,89,90 The intensity of [11C]MET-
uptake differentiates between WHO II° and WHO III°/
IV° gliomas (FIG. 3).21,86 Uptake is increased not only in
solid parts of the tumor but also in the infiltration ar-
ea.91,92 In 80% of gliomas WHO II° [11C]MET-uptake is
greater than 1.5-fold of the normal brain tissue,21

whereas glucose metabolism is reduced compared with
gray matter. Most studies indicated that [11C]MET-up-
take is inversely correlated to prognosis,93–95 but due to
significant [11C]-MET uptake also in most low-grade

gliomas this relation is less close than with FDG. For
WHO III°/IV° gliomas increased [11C]MET-uptake is
directly correlated to increased [18F]FDG uptake78,96 and
exceeds the area of involvement depicted by Gd-en-
hanced MRI.97 It should be pointed out that increased
[11C]MET uptake also depends on tumor type, with ol-
igodendrogliomas accumulating more radiotracer than
astrocytomas from the same histological grade.21,78,98

Disadvantages of [11C]methionine are its uptake in
acutely ischemic and inflammatory brain tissue99 as well
as its short half-life.
The third parameter, which can be noninvasively as-

sessed by PET is the incorporation of nucleosides into
DNA in proliferating cells. Radiolabeled thymidine
([3H]TdR) is the gold standard for determination of cell
proliferation in cell culture, and to date 11C- and 18F-

FIG. 3. Noninvasive differentiation between low- and high-
grade glioma. In low-grade gliomas (WHO II°) glucose metabo-
lism is similar to white matter (arrows) and amino acid uptake is
only moderately increased. In high-grade gliomas (GBM; WHO
°IV), both glucose metabolism and amino acid uptake are in-
creased. Reproduced with permission from Jacobs AH. PET in
gliomas. In: Neuroonkologie (Schlegel U, Weller M, Westphal M,
eds), pp 72–76. Copyright © 2003, Thieme-Verlag. All rights
reserved.186
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labeled thymidine compounds have been radiosynthe-
sized to allow a noninvasive assessment of tumor prolif-
eration as well as early response to chemotherapy by
PET. 3�-deoxy-3�-[18F]fluoro-L-thymidine ([18F]FLT) is
stable in vivo and has been used for the evaluation of
tumor proliferation primarily in extra-cranial tissues. Un-
published results in patients with gliomas indicate that
[18F]FLT is a promising tracer to study glioma prolifer-
ation especially in areas with high [18F]FDG back-
ground. Relative [18F]FLT uptake within gliomas is
greater than relative [11C]MET uptake (FIG. 1), indicat-
ing the possible role of [18F]FLT as a more specific
tumor marker than [18F]FDG and [11C]MET.100–103 The
overall goal is to be able to quantify chemotherapeutic
effects early (within days to weeks).
A summary of MRI and PET findings in human brain

tumors are given in Table 1.

IMAGING FOR PLANNING RESECTION AND
RADIATION THERAPY INCLUDING
DELINEATION FROM FUNCTIONAL

NEURONAL TISSUE

MRI is the method of choice for tumor localization.
Delineation of the tumor in three dimensions (sagittal,
coronal, and axial) allows the selection of the best oper-
ative procedure. CT is being used for detection of calci-
fications in oligodendrogliomas, meningiomas, or cra-
niopharyngiomas and for tumors that are located at the
base of the skull. Magnetic resonance angiography is
being used alone or together with conventional angiog-
raphy to study the location of the tumor with respect to
its vascularization. In selected patients and in specialized
institutions, MRS and PET are being used in conjunction
with MRI to define the real extend of the tumor.91,104–107

Most importantly, tumors that are located in eloquent
areas require preoperative functional imaging by func-
tional MRI (fMRI) or functional PET (FIG. 4).108–115

These combined imaging procedures are especially im-
portant in those patients where tumor growth has led to
changes within the neuronal network as a result of func-
tional brain plasticity. These changes consist either of a
displacement of functional important neuronal tissue
(like language areas) surrounding the lesion or in the
recruitment of new brain areas that are usually not in-
volved in the performance of a certain task.114–116 Func-
tional imaging studies alone can provide information
about which brain areas are involved in the performance
of a certain behavioral task but can not answer the diag-
nostically important question of whether a certain brain
area is essential for that task. This additional information
can be obtained by combining functional brain images
with transcranial magnetic stimulation, an electrophysi-
ological method to temporarily interfere with normal
brain function116a. A distance of 1 cm or more between

the functional relevant cortex, as delineated by fMRI,
and the tumor significantly reduces the risk of postoper-
ative loss of function.117 The evaluation of the cerebral
reorganization of motor function is an essential step in
predicting the risk of motor deficits in patients with an
indication for operative treatment.118 Only these com-
bined imaging technologies will allow to maximize the
spatial extent of tumor treatment and to simultaneously
preserve functional relevant tissue.119 Moreover, meta-
bolic or molecular information derived from PET or
SPECT studies is being used in some institutions for the
exact planning for radio-105 and gene therapy.120,121 This
is of special importance because tumor volume as de-
picted by contrast-enhanced MRI is always smaller than
the tumor volume as depicted by [11C]MET-PET.97

Whether [11C]MET-PET-guided extended fields of radi-
ation have a significant influence on time to progression
and overall survival has to be proven in future studies.
In recent years, diffusion tensor white matter fiber

tracking and intraoperative MRI have become promising
tools to guide the neurosurgeon intraoperatively. These
techniques allow to maximize tumor resection without
additional morbidity122,123 by avoiding lesions to fiber
tracts like the pyramidal tract.124–126

IMAGING FOR PLANNING STEREOTAXIC
BIOPSY AND TARGETED APPLICATION OF

THERAPEUTICS

Brain tumors may consist of different parts, which are
heterogenous with respect to tumor grading; thus, low-
and high-grade areas may be present within the same

FIG. 4. Preoperative differentiation of tumor tissue from func-
tionally important neuronal tissue through multimodal and mul-
titracer imaging. These combined imaging procedures shall
guide the neurosurgeon to operate as much tumor as possible
but at the same time to leave the functionally important tissue
intact. Reproduced with permission from Jacobs et al. Molecular
imaging of gliomas. Mol Imaging 1:309–355. Copyright © 2002,
MIT Press Journals. All rights reserved.67
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tumor. Stereotaxic biopsy aims at the tumor sites with the
highest tumor grade. Therefore, suitable targets for biopsy
will have positive contrast enhancement on T1-weighted
MRI, a high choline-peak on MRS, hypermetabolism on
[18F]FDG-PET,127–129 and high accumulation of [11C]me-
thionine.92,130,131 Moreover, in the development of new
experimental therapies, multimodal imaging procedures
help identify the most active tumor parts for targeted place-
ment of local infusion catheters (FIG. 5). In a phase I
clinical gene therapy trial, imaging the expression of en-
dogenous genes by [18F]FDG- and [11C]MET-PET as di-
rect measures for the respective gene expression and as
surrogate markers for proliferation and tumor cell density
was used to identify the biological active tumor portion as
proper target tissue and to measure response to gene therapy
(FIG. 5).120,121

In trials employing convection-enhanced delivery of
local chemotherapeutics, DWI is being used to assess the
convective process and routine diagnostic MR imaging
to identify the tumor response.132

IMAGING FOR DETERMINATION OF
TREATMENT EFFECT, TUMOR

PROGRESSION, AND DIFFERENTIATION OF
RECURRENT TUMOR FROM RADIATION

NECROSIS

The effects of treatment should ideally be visualized
with the same imaging parameters that have been used
before therapy (FIG. 5). However, there are several lim-
itations inherent in each imaging modality. On contrast-
enhanced MRI, residual tumor and postsurgical changes
can both result in abnormal enhancement. Therefore,
MRI cannot be used postoperatively after day 3 and for
several weeks because the surgical damage of the BBB,
with subsequent leakage of contrast media, leads to a
false-positive indicator of the presence of residual or
recurrent tumor. Moreover, conventional MRI tech-
niques usually fail to detect early effects of radio- and
chemotherapy because individual treatment effects are
only visible after more than 12 months,133–135 with a
substantial interobserver variability in the assessment of
treatment response.136 Especially after the application of
biologically active agents (gene therapy vectors, toxins),
the value of conventional MRI to detect therapy-specific
changes of tumor viability is limited137 as reviewed pre-
viously.138

In contrast, dynamic contrast enhanced MRI, as a sur-
rogate marker for angiogenesis, is useful for monitoring
antiangiogenic therapies in brain tumors.139 Moreover,
diffusion-weighted MRI detects therapy-induced water
diffusion changes and has been suggested to provide an
early surrogate marker for quantification of treatment
response.140 It was found that low values for the ADC
indicating high tissue viability imply better response to

radiotherapy, whereas high ADC values indicating ne-
crosis correlate with poorer response.141 Assessment of
ADC ratios from tumor and contralateral control regions
were also useful in the differentiation of radiation effects

FIG. 5. Multimodal imaging for the establishment of imaging-
guided experimental treatment strategies. Coregistration of
[18F]FIAU-, [11C]MET-, [18F]FDG-PET and MRI before (left col-
umn) and after (right column) targeted application (stereotactic
infusion) of a gene therapy vector. The region of specific [124I]-
FIAU retention (68 h) within the tumor after LIPO-HSV-1-tk trans-
duction (white arrow) resembles the proposed tissue dose of
vector-mediated gene expression and shows signs of necrosis
(cross right column; reduced methionine uptake [MET] and glu-
cose metabolism [FDG]) after ganciclovir treatment. Reproduced
with permission from Jacobs et al. Positron-emission tomogra-
phy of vector-mediated gene expression in gene therapy for
gliomas. Lancet 358:727–729. Copyright © 2001, Elsevier Lim-
ited. All rights reserved.120
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(high ADC ratios) from tumor recurrence or progression
(low ADC ratios).142 However, it should be kept in mind
that dexamethasone treatment significantly reduces the
diffusivity of edematous brain,143 thus confounding the
interpretation of DWIs.
Because MRS can reliably differentiate pure tumor,

pure necrosis, and normal tissue, specific changes in
tumor metabolite levels as detected by MRS may be
predictive for the effectiveness of experimental treatment
strategies.144 However, MRS alone may not be particu-
larly helpful because most patients have mixed histolog-
ical findings comprised of necrosis and tumor giving rise
to inconclusive findings. In contrast, progression from
low-grade to high-grade gliomas leads to a characteris-
tically increased concentration of choline and a reduced
NAA peak with high diagnostic accuracy.
Due to the relatively high cortical background activity,

[18F]FDG-PET is not suited to detect residual tumor after
therapy.145,146 Similar to structural imaging, the effects
of radio- and chemotherapy can be visualized by
[18F]FDG-PET only after several weeks147 with a possi-
ble transient increase of [18F]FDG-uptake in the initial
phase which is most likely due to infiltration of macro-
phages consuming [18F]FDG.148–150 At further follow-
up, however, recurrent tumor and progression from low-
grade to high-grade glioma can be visualized by a newly
appearing hypermetabolism.151,152 [18F]FDG-PET has a
sensitivity of 75% and a specificity of 81% for the de-
tection of recurrent tumor versus radiation necrosis.153

Moreover, in patients after stereotactic radiotherapy for
brain metastasis, coregistration of [18F]FDG-PET images
with MRI yields an improvement of the sensitivity for
the detection of recurrent tumor from 65–86%. Disad-
vantages of [18F]FDG-PET include accumulation of
[18F]FDG in macrophages that may infiltrate the sites
having received radiation therapy. Therefore, radiation
necrosis may be indistinguishable from recurrent tumor.
It should be noted that in patients receiving corticoste-
roids as symptomatic treatment evaluation of [18F]FDG-
PET may be hampered by a reduced cortex-to-white
matter ratio.154

[11C]MET-PET in contrast is much better suited to
follow the effects of radiation therapy, which show as a
reduction of relative methionine-uptake,146 which may
also be observed in animal models.149 Most importantly,
[11C]MET-PET successfully differentiates between re-
current tumor and radiation necrosis (FIG. 6) 155 with the
detection of recurrent tumor at high sensitivity and high
specificity.91,156,157 Similar results have been obtained
with other tracers for amino acid transport, such as O-(2-
[18F]fluoroethyl)-L-tyrosine and 3-[123I]iodo-
-methyl-L-
tyrosine with a reliable differentiation between post-ther-
apeutic benign lesions and tumor recurrence after
treatment of low- and high-grade tumors.158,159

IMAGING IN EXPERIMENTAL BRAIN
TUMOR MODELS

Imaging studies in experimental brain tumor models
over the past 10 years aimed toward 1) the development
of new radiotracers for cellular proliferation and protein
synthesis, 2) characterization of these tracers with re-
spect to their ability to detect responses to radio- and
chemotherapy at a relatively early stage, 3) strategies for
imaging transcriptional regulation and migration of tu-
mor cells, and 4) imaging the expression of exogenous
genes carrying a marker or therapeutic function and in-
troduced into experimental gliomas for the purpose of
developing improved gene therapeutic vectors. These ex-
perimental strategies have been reviewed in detail pre-
viously.67

New developments aim toward 1) the detection of
tumor cell migration in vivo,160 2) the establishment of in
vivo assays for direct imaging of tumor-specific signal
transduction pathways (e.g., p53-, E2F-1 and HIF-1-

regulated pathways161–164), 3) the design of labeled pep-
tides binding specifically to the cell adhesion receptor
integrin 
(v)�3 or other tumor-specific antigens and of
labeled bone marrow-derived endothelial precursor cells
to allow highly specific tumor visualization and the study
of glioma angiogenesis and neovascularization,165–169 4)
the generation and in vivo characterization of transgenic
mice with gliomas induced by signaling through Ras and
Akt pathways,170 and 5) the construction of bifunctional
imaging marker and therapeutic genes to allow direct
assessment of therapeutic gene expression in culture and
in vivo models by directly corresponding assays.171,172

Especially the design of small tumor-specific antibody
fragments is an attractive way for specific detection of

FIG. 6. Differentiation between recurrent tumor and radiation
necrosis. Biopsy of this clinically worsening tumor, taken from
the region with positive magnetic resonance contrast enhance-
ment, evidenced only necrosis. However, a second biopsy from
the area of increased amino acid uptake (arrowheads) revealed
the findings of recurrent tumor. Reproduced with permission
from Thiel et al. Enhanced accuracy in differential diagnosis of
radiation necrosis by positron emission tomography-magnetic
resonance imaging coregistration: technical case report. Neuro-
surgery 46:232–234. Copyright © 2000, Lippincott Williams &
Wilkins. All rights reserved.155
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tumor cells by imaging in vivo as well as for targeted
therapy by radioimmunotherapy.
Many of the current experimental protocols investigat-

ing new drug and treatment strategies for experimental
gliomas include MRI, optical or PET imaging of either
the distribution of therapeutic agents,173–175 or therapy-
induced tumor-changes,171,176–184 with the overall at-
tempt of designing image-guided treatments.120,121 Most
intriguing for potential clinical application is the design
of multifunctional nanoparticles that can be detected
both by MRI and fluorescence imaging, allowing for the
noninvasive preoperative assessment of the tumor and
for the intraoperative visualization of tumor margins by
optical imaging.185

SUMMARY AND CONCLUSION

Multimodal imaging (CT, MRI, PET, optical) and
multitracer PET imaging 1) reveal the best set of ana-
tomical, biochemical and molecular information on a
specific tumor and, hence, a noninvasive diagnosis of
lesion type and grade, 2) guide therapeutic choices, and
3) assess therapy effects. It should be pointed out that
these imaging modalities are not competing with each
other but give complementary information on various
parameters of interest. Not every patient can be studied
by these imaging technologies, and it is not necessary to
do so. But these imaging technologies should be used
together in selected patients to advance model systems
and our understanding of the complex mechanism of
glioma formation, behavior and migration and to allow
the development and assessment of new therapeutic mo-
dalities including molecular targeted and gene therapies
(“imaging-guided therapies”).
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